DPP: A Novel Disease Progression Prediction Method for Ginkgo Leaf Disease Based on Image Sequences
Abstract
:1. Introduction
- This study investigates plant disease progression prediction based on image sequences and constructs an image sequence dataset of Ginkgo leaf blight.
- To effectively forecast the progression of Ginkgo leaf blight, we propose a novel disease progression prediction method (DPP) with multi-level feature translation architecture and an enhanced spatiotemporal attention module (eSTA). It possesses the capability to capture multi-level and robust spatiotemporal dependencies of disease symptoms on Ginkgo leaves.
- Experimental results validate that the proposed DPP method can accurately forecast the disease progression of Ginkgo leaf blight to a great extent, outperforming existing spatiotemporal predictive learning methods. This method has the potential to guide scientific management of Ginkgo leaf disease and offers a novel perspective for plant disease prediction research.
2. Materials and Methods
2.1. Image Sequence Dataset of Ginkgo Leaf Blight
2.2. Spatiotemporal Predictive Learning
2.3. A Novel Disease Progression Prediction Method for Ginkgo Leaf Blight
2.3.1. Multi-Level Feature Translation Architecture
2.3.2. Enhanced Spatiotemporal Attention Translator
2.4. Implementation Details
2.5. Evaluation Metrics
3. Results and Discussion
3.1. Qualitative Comparison
3.2. Quantitative Comparison
3.3. Ablation Study
3.3.1. Multi-Level Feature Translation Architecture
- In terms of the MAE, the DPP methods achieved a substantial decrease of at least 15.96% compared to the SimVP methods (Methods 2 and 5);
- Considering the MSE, the DPP methods offered a reduction of at least 20.43% compared to the SimVP methods (Methods 3 and 6);
- With respect to the SSIM, the DPP methods consistently presented an increase of 0.01 compared to the SimVP methods;
- Regarding the PSNR, the DPP methods offered an improvement of at least 1.514 dB compared to the SimVP methods (Methods 3 and 6).
3.3.2. Enhanced Spatiotemporal Attention Module
3.4. Limitations and Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Fu, C.; Wu, Z.; Xu, H.; Liu, H.; Schneider, H.; Lin, J. Ginkgo biloba. Trends Genet. 2021, 37, 488–489. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.Y.; Li, W.H.; Lin, C.F.; Wu, H.R.; Zhao, Y.P. International biological flora: Ginkgo biloba. J. Ecol. 2022, 110, 951–982. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Ginkgo biloba: A famous living fossil tree and an ancient herbal traditional Chinese medicine. Curr. Nutr. Food Sci. 2022, 18, 259–264. [Google Scholar] [CrossRef]
- Liu, Y.; Xin, H.; Zhang, Y.; Che, F.; Shen, N.; Cui, Y. Leaves, seeds and exocarp of Ginkgo biloba L. (Ginkgoaceae): A Comprehensive Review of Traditional Uses, phytochemistry, pharmacology, resource utilization and toxicity. J. Ethnopharmacol. 2022, 298, 115645. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Li, X.; Li, Z. Detecting and identifying pathogens and antagonistic bacteria associated with Ginkgo biloba leaf spot disease. Front. Microbiol. 2024, 15, 1346318. [Google Scholar] [CrossRef]
- Su, X.; Shi, R.; Li, X.; Yu, Z.; Hu, L.; Hu, H.; Zhang, M.; Chang, J.; Li, C. Friend or Foe? The Endophytic Fungus Alternaria tenuissima Might Be a Major Latent Pathogen Involved in Ginkgo Leaf Blight. Forests 2023, 14, 1452. [Google Scholar] [CrossRef]
- Zhang, Z.; You, W.; Zhu, L.; Xu, M. Investigation on the occurrence of the leaf blight of Ginkgo biloba in North Area, Nanjing. J. Jiangsu For. Sci. Technol. 2019, 46, 34–37. [Google Scholar]
- Xu, L.; Granger, C.; Dong, H.; Mao, Y.; Duan, S.; Li, J.; Qiang, Z. Occurrences of 29 pesticides in the Huangpu River, China: Highest ecological risk identified in Shanghai metropolitan area. Chemosphere 2020, 251, 126411. [Google Scholar] [CrossRef]
- Kenarova, A.; Boteva, S. Fungicides in agriculture and their side effects on soil enzyme activities: A review. Bulg. J. Agric. Sci. 2023, 29, 33. [Google Scholar]
- Fenu, G.; Malloci, F.M. Forecasting plant and crop disease: An explorative study on current algorithms. Big Data Cogn. Comput. 2021, 5, 2. [Google Scholar] [CrossRef]
- Hjelkrem, A.-G.R.; Eikemo, H.; Le, V.H.; Hermansen, A.; Nærstad, R. A process-based model to forecast risk of potato late blight in Norway (The Nærstad model): Model development, sensitivity analysis and Bayesian calibration. Ecol. Model. 2021, 450, 109565. [Google Scholar] [CrossRef]
- Fenu, G.; Malloci, F.M. An application of machine learning technique in forecasting crop disease. In Proceedings of the 2019 the 3rd International Conference on Big Data Research, Cergy-Pontoise, France, 20–22 November 2019; pp. 76–82. [Google Scholar]
- Liu, Z.; Bashir, R.N.; Iqbal, S.; Shahid, M.M.A.; Tausif, M.; Umer, Q. Internet of Things (IoT) and machine learning model of plant disease prediction–blister blight for tea plant. IEEE Access 2022, 10, 44934–44944. [Google Scholar] [CrossRef]
- Bhatia, A.; Chug, A.; Singh, A.P.; Singh, R.P.; Singh, D. A Forecasting Technique for Powdery Mildew Disease Prediction in Tomato Plants. In Advances in Intelligent Systems and Computing: Proceedings of Second Doctoral Symposium on Computational Intelligence: DoSCI 2021; Springer: Singapore, 2022; pp. 509–520. [Google Scholar]
- Huang, Y.; Chen, Z.-X.; Tao, Y.U.; Huang, X.-Z.; Gu, X.-F. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Guimarães, N.; Pádua, L.; Marques, P.; Silva, N.; Peres, E.; Sousa, J.J. Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sens. 2020, 12, 1046. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; White, J.C.; Wulder, M.A.; Næsset, E. Remote sensing in forestry: Current challenges, considerations and directions. For. Int. J. For. Res. 2024, 97, 11–37. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Xiao, Y.; Dong, Y.; Huang, W.; Liu, L. Regional prediction of Fusarium head blight occurrence in wheat with remote sensing based Susceptible-Exposed-Infectious-Removed model. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103043. [Google Scholar] [CrossRef]
- Li, L.; Dong, Y.; Xiao, Y.; Liu, L.; Zhao, X.; Huang, W. Combining disease mechanism and machine learning to predict wheat fusarium head blight. Remote Sens. 2022, 14, 2732. [Google Scholar] [CrossRef]
- Ruan, C.; Dong, Y.; Huang, W.; Huang, L.; Ye, H.; Ma, H.; Guo, A.; Sun, R. Integrating remote sensing and meteorological data to predict wheat stripe rust. Remote Sens. 2022, 14, 1221. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, C.; Xu, J.; Huang, L.; Zhang, D.; Liang, D. Forecasting the wheat powdery mildew (Blumeria graminis f. Sp. tritici) using a remote sensing-based decision-tree classification at a provincial scale. Australas. Plant Pathol. 2018, 47, 53–61. [Google Scholar] [CrossRef]
- Förster, A.; Behley, J.; Behmann, J.; Roscher, R. Hyperspectral plant disease forecasting using generative adversarial networks. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1793–1796. [Google Scholar]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-c. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Zhao, H.; Wildes, R.P. Review of video predictive understanding: Early action recognition and future action prediction. arXiv 2021, arXiv:2107.05140. [Google Scholar]
- Song, X.; Zhao, S.; Yang, J.; Yue, H.; Xu, P.; Hu, R.; Chai, H. Spatio-temporal contrastive domain adaptation for action recognition. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 9787–9795. [Google Scholar]
- Jia, T.; Yan, P. Predicting citywide road traffic flow using deep spatiotemporal neural networks. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3101–3111. [Google Scholar] [CrossRef]
- Ji, J.; Wang, J.; Huang, C.; Wu, J.; Xu, B.; Wu, Z.; Zhang, J.; Zheng, Y. Spatio-temporal self-supervised learning for traffic flow prediction. Proc. AAAI Conf. Artif. Intell. 2023, 37, 4356–4364. [Google Scholar] [CrossRef]
- Castro, R.; Souto, Y.M.; Ogasawara, E.; Porto, F.; Bezerra, E. Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 2021, 426, 285–298. [Google Scholar] [CrossRef]
- Lin, H.; Gao, Z.; Xu, Y.; Wu, L.; Li, L.; Li, S.Z. Conditional local convolution for spatio-temporal meteorological forecasting. Proc. AAAI Conf. Artif. Intell. 2022, 36, 7470–7478. [Google Scholar] [CrossRef]
- Susarla, A.; Liu, A.; Thai, D.H.; Le, M.T.; Züfle, A. Spatiotemporal disease case prediction using contrastive predictive coding. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 1 November 2022; pp. 26–34. [Google Scholar]
- Wang, Y.; Wu, H.; Zhang, J.; Gao, Z.; Wang, J.; Philip, S.Y.; Long, M. Predrnn: A recurrent neural network for spatiotemporal predictive learning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2208–2225. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Tan, C.; Wu, L.; Li, S.Z. Simvp: Simpler yet better video prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 3170–3180. [Google Scholar]
- Tan, C.; Gao, Z.; Li, S.; Li, S.Z. Simvp: Towards simple yet powerful spatiotemporal predictive learning. arXiv 2022, arXiv:2211.12509. [Google Scholar]
- Tan, C.; Gao, Z.; Wu, L.; Xu, Y.; Xia, J.; Li, S.; Li, S.Z. Temporal attention unit: Towards efficient spatiotemporal predictive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 18770–18782. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Guo, M.-H.; Lu, C.-Z.; Liu, Z.-N.; Cheng, M.-M.; Hu, S.-M. Visual attention network. Comput. Vis. Media 2023, 9, 733–752. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, Y.; Qian, H.; Du, X. Rethinking performance gains in image dehazing networks. arXiv 2022, arXiv:2209.11448. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Guen, V.L.; Thome, N. Disentangling physical dynamics from unknown factors for unsupervised video prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11474–11484. [Google Scholar]
- Oprea, S.; Martinez-Gonzalez, P.; Garcia-Garcia, A.; Castro-Vargas, J.A.; Orts-Escolano, S.; Garcia-Rodriguez, J.; Argyros, A. A review on deep learning techniques for video prediction. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 2806–2826. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 2117–2125. [Google Scholar]
Training | Validation | Testing |
---|---|---|
1861 | 200 | 200 |
Method | MAE ↓ | MSE ↓ | SSIM ↑ | PSNR (dB) ↑ |
---|---|---|---|---|
ConvLSTM | 366.37 | 16.12 | 0.957 | 34.390 |
PredRNNv2 | 373.78 | 16.29 | 0.959 | 34.480 |
SimVP + gSTA 1 | 265.97 | 14.58 | 0.958 | 35.499 |
SimVP + TAU | 227.92 | 14.40 | 0.959 | 35.906 |
DPP 2 | 182.45 | 10.75 | 0.970 | 37.746 |
No. | Method | MAE ↓ | MSE ↓ | SSIM ↑ | PSNR (dB) ↑ |
---|---|---|---|---|---|
1 | SimVP + gSTA 1 | 265.97 | 14.58 | 0.958 | 35.499 |
2 | SimVP + TAU | 227.92 | 14.40 | 0.959 | 35.906 |
3 | SimVP + eSTA | 228.09 | 13.51 | 0.960 | 36.232 |
4 | DPP + gSTA | 200.11 | 11.15 | 0.968 | 37.398 |
5 | DPP + TAU | 191.55 | 10.96 | 0.969 | 37.556 |
6 | DPP + eSTA | 182.45 | 10.75 | 0.970 | 37.746 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, S.; Lin, J.; Bai, H. DPP: A Novel Disease Progression Prediction Method for Ginkgo Leaf Disease Based on Image Sequences. Information 2024, 15, 411. https://doi.org/10.3390/info15070411
Yao S, Lin J, Bai H. DPP: A Novel Disease Progression Prediction Method for Ginkgo Leaf Disease Based on Image Sequences. Information. 2024; 15(7):411. https://doi.org/10.3390/info15070411
Chicago/Turabian StyleYao, Shubao, Jianhui Lin, and Hao Bai. 2024. "DPP: A Novel Disease Progression Prediction Method for Ginkgo Leaf Disease Based on Image Sequences" Information 15, no. 7: 411. https://doi.org/10.3390/info15070411
APA StyleYao, S., Lin, J., & Bai, H. (2024). DPP: A Novel Disease Progression Prediction Method for Ginkgo Leaf Disease Based on Image Sequences. Information, 15(7), 411. https://doi.org/10.3390/info15070411