On the Single-Parity Locally Repairable Codes with Multiple Repairable Groups
Abstract
:1. Introduction
Organization
2. Related Work
3. Background
3.1. Replication Scheme
3.2. Erasure Codes
3.3. Locally Repairable Codes
- ∃t subsets , such that the code symbols denoted by can reconstruct the symbol .
- ∀, that .
- ∀, that .
3.4. Contribution
- Motivated by a novel perspective on generator matrices with the standard form, we propose a novel characterization of single-parity LRCs.
- Based on this novel characterization, we give a simple novel proof of the bound (3).
- Some necessary conditions of the optimal codes are proposed based on the new proof, which might provide some guidelines for the optimal code constructions.
- Our novel characterization has high scalability and can be applied to local multiple-parity case of LRCs.
4. Single-Parity LRCs
4.1. Terminology
4.2. Novel Characterization
- ∃t parity symbols , where , such that for any .
- for any .
- for any .
4.3. Illustration and Discussion
5. Scalability of the Novel Characterization
5.1. Local Multiple-Parity Case
5.2. Discussion and Proof
5.3. Illustration
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Simitci, H.; Xu, Y.; Ogus, A.; Calder, B.; Gopalan, P.; Li, J.; Yekhanin, S. Erasure coding in windows azure storage. In Proceedings of the 2012 USENIX Annual Technical Conference (USENIX ATC 12), Boston, MA, USA, 13–15 June 2012; pp. 15–26. [Google Scholar]
- Sathiamoorthy, M.; Asteris, M.; Papailiopoulos, D.; Dimakis, A.G.; Vadali, R.; Chen, S.; Borthakur, D. Xoring elephants: Novel erasure codes for big data. In Proceedings of the VLDB Endowment, Riva del Garda, Italy, 26–30 August 2013; pp. 325–336. [Google Scholar]
- Hadoop-HDFS Architecture. Available online: http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html (accessed on 6 June 2018).
- Gopalan, P.; Huang, C.; Simitci, H.; Yekhanin, S. On the locality of codeword symbols. IEEE Trans. Inf. Theory 2012, 58, 6925–6934. [Google Scholar] [CrossRef]
- MacWilliams, F.J.; Sloane, N.J.A. The Theory of Error-Correcting Codes (3rd Printing); North-Holland: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Tamo, I.; Barg, A. A family of optimal locally recoverable codes. IEEE Trans. Inf. Theory 2014, 60, 4661–4676. [Google Scholar] [CrossRef]
- Huang, C.; Chen, M.; Li, J. Pyramid codes: Flexible schemes to trade space for access efficiency in reliable data storage systems. In Proceedings of the 6th IEEE International Symposium on Network Computing and Applications, Cambridge, MA, USA, 12–14 July 2007; pp. 79–86. [Google Scholar]
- Cadambe, V.R.; Mazumdar, A. Bounds on the size of locally recoverable codes. IEEE Trans. Inf. Theory 2015, 61, 5787–5794. [Google Scholar] [CrossRef]
- Rawat, A.S.; Papailiopoulos, D.S.; Dimakis, A.G.; Vishwanath, S. Locality and Availability in Distributed Storage. IEEE Trans. Inf. Theory 2016, 62, 4481–4493. [Google Scholar] [CrossRef]
- Liu, T.; Chen, C.C.; Kim, W.; Milor, L. Comprehensive reliability and aging analysis on srams within microprocessor systems. Microelectron. Reliab. 2015, 55, 1290–1296. [Google Scholar] [CrossRef]
- Zhang, F.; Zhai, J.; He, B.; Zhang, S.; Chen, W. Understanding co-running behaviors on integrated cpu/gpu architectures. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 905–918. [Google Scholar] [CrossRef]
- Liu, T.; Chen, C.C.; Cha, S.; Milor, L. System-level variation-aware aging simulator using a unified novel gate-delay model for bias temperature instability, hot carrier injection, and gate oxide breakdown. Microelectron. Reliab. 2015, 55, 1334–1340. [Google Scholar] [CrossRef] [Green Version]
- Dimakis, A.G.; Godfrey, P.B.; Wainwright, M.J.; Ramchandran, K. Network Coding for Distributed Storage Systems. In Proceedings of the IEEE INFOCOM 2007, Anchorage, AK, USA, 6–12 May 2007; pp. 2000–2008. [Google Scholar]
- Rashmi, K.V.; Shah, N.B.; Kumar, P.V. Optimal exact-regenerating codes for distributed storage at the msr and mbr points via a product-matrix construction. IEEE Trans. Inf. Theory 2011, 57, 5227–5239. [Google Scholar] [CrossRef]
- Shah, N.B.; Rashmi, K.V.; Kumar, P.V.; Ramchandran, K. Interference alignment in regenerating codes for distributed storage: Necessity and code constructions. IEEE Trans. Inf. Theory 2012, 58, 2134–2158. [Google Scholar] [CrossRef]
- Kamath, G.M.; Prakash, N.; Lalitha, V.; Kumar, P.V. Codes with local regeneration and erasure correction. IEEE Trans. Inf. Theory 2014, 60, 4637–4660. [Google Scholar] [CrossRef]
- Gligoroski, D.; Kralevska, K.; Jensen, R.E.; Simonsen, P. Repair Duality with Locally Repairable and Locally Regenerating Codes. arXiv, 2017; arXiv:1701.06664. [Google Scholar]
- Balaji, S.B.; Krishnan, M.N.; Vajha, M.; Ramkumar, V.; Sasidharan, B.; Kumar, P.V. Erasure coding for distributed storage: An overview. arXiv, 2018; arXiv:1806.04437, 2018. [Google Scholar] [CrossRef]
- Hao, J.; Xia, S.-T. Bounds and constructions of locally repairable codes: Parity-check Matrix Approach. arXiv, 2016; arXiv:1601.05595. [Google Scholar]
- Wang, A.; Zhang, Z. Repair locality with multiple erasure tolerance. IEEE Trans. Inf. Theory 2014, 60, 6979–6987. [Google Scholar] [CrossRef]
- Pamies-Juarez, L.; Hollmann, H.D.L.; Oggier, F. Locally repairable codes with multiple repair alternatives. In Proceedings of the IEEE International Symposium on Information Theory (IEEE ISIT 2013), Istanbul, Turkey, 7–12 July 2013; pp. 892–896. [Google Scholar]
- Huang, P.; Yaakobi, E.; Uchikawa, H.; Siegel, P.H. Linear locally repairable codes with availability. In Proceedings of the IEEE International Symposium on Information Theory (IEEE ISIT 2015), Hong Kong, China, 14–19 June 2015; pp. 1871–1875. [Google Scholar]
- Su, Y.-S. On constructions of a class of binary locally repairable codes with multiple repair groups. IEEE Access 2017, 5, 3524–3528. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, Z.; Liu, M. Achieving arbitrary locality and availability in binary codes. In Proceedings of the IEEE International Symposium on Information Theory (IEEE ISIT 2015), Hong Kong, China, 14–19 June 2015; pp. 1866–1870. [Google Scholar]
- Lu, Y.; Hao, J.; Xia, S.-T. On the Single-Parity Locally Repairable Codes. IEICE Trans. Fundament. Lett. 2017, E100-A, 1342–1345. [Google Scholar] [CrossRef]
- HDFS Erasure Coding. Available online: http://hadoop.apache.org/docs/r3.1.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html (accessed on 7 June 2018).
- HDFS-RAID. Available online: https://wiki.apache.org/hadoop/HDFS-RAID (accessed on 8 June 2018).
- Intel(R) Intelligent Storage Acceleration Library. Available online: https://github.com/01org/isa-l/ (accessed on 9 June 2018).
- Hao, J.; Xia, S.-T. Constructions of optimal binary locally repairable codes with multiple repair groups. IEEE Commun. Lett. 2016, 20, 1060–1063. [Google Scholar] [CrossRef]
- Kralevska, K.; Gligoroski, D.; Øverby, H. Balanced locally repairable codes. In Proceedings of the International Symposium on Turbo Codes and Iterative Information Processing (ISTC 2016), Brest, France, 5–9 September 2016; pp. 280–284. [Google Scholar]
- Prakash, N.; Kamath, G.M.; Lalitha, V.; Kumar, P.V. Optimal linear codes with a local-error-correction property. In Proceedings of the IEEE International Symposium on Information Theory (IEEE ISIT 2012), Cambridge, MA, USA, 1–6 July 2012; pp. 2776–2780. [Google Scholar]
Notations | Descriptions |
---|---|
n | code length |
k | code dimension |
d | code minimum distance |
code symbols | |
information symbols | |
r | locality of locally repairable codes (LRC) |
t | availability of LRC |
Singleton bound | |
G | generator matrix |
/ | the columns with weight at most r in G |
weight of vectors, the number of non-zero elements of vectors | |
support of vectors, the set of the indices of non-zero elements |
Storage Scheme | Repair Cost | Storage Cost |
---|---|---|
[f] Replication | 1 × | f × |
[] RS | k × | × |
[] LRC | r × | × |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Liu, X.; Xia, S. On the Single-Parity Locally Repairable Codes with Multiple Repairable Groups. Information 2018, 9, 265. https://doi.org/10.3390/info9110265
Lu Y, Liu X, Xia S. On the Single-Parity Locally Repairable Codes with Multiple Repairable Groups. Information. 2018; 9(11):265. https://doi.org/10.3390/info9110265
Chicago/Turabian StyleLu, Yanbo, Xinji Liu, and Shutao Xia. 2018. "On the Single-Parity Locally Repairable Codes with Multiple Repairable Groups" Information 9, no. 11: 265. https://doi.org/10.3390/info9110265
APA StyleLu, Y., Liu, X., & Xia, S. (2018). On the Single-Parity Locally Repairable Codes with Multiple Repairable Groups. Information, 9(11), 265. https://doi.org/10.3390/info9110265