The Biology, Impact, and Management of Xyleborus Beetles: A Comprehensive Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biology and Ecology of Xyleborus
2.1. Life Cycle and Reproduction
2.1.1. Host Tree Selection
2.1.2. Egg Laying and Gallery Construction
2.1.3. Fungal Inoculation
2.1.4. Larval Development
2.1.5. Pupal Stage and Emergence
2.1.6. Reproductive Strategy and Inbreeding
2.1.7. Generational Overlap and Population Dynamics
2.1.8. Ecological and Evolutionary Implications
2.2. Habitat and Distribution
Xyleborus Species | Fungus-Associated | Affected Plants | Distribution |
---|---|---|---|
Xyleborus affinis | Fusarium oxysporum | Archidendron clypearia (Jack) Benth. [55,56] | Global [25,26,33,57,58,59,60] |
Ceratocystis fimbriata | Manguifera indica [2,61] | ||
Raffaelea lauricola | Persea americana Persea borbonia Persea palustris Sassafras albidum Lindera benzoin Cinnamomum camphora | ||
Xyleborus dispar | Ophiostoma novo-ulmi | Dutch elm disease | Northern Europe [62] |
Xyleborus glabratus | Raffaelea lauricola | Persea americana Persea borbonia Persea palustris Sassafras albidum Lindera benzoin Cinnamomum camphora | Asia, North America, [9,36,63] |
Xyleborus bispinatus | Unknown | Ficus carica L. | Italy [64] |
Raffaelea lauricola | Persea americana | Mexico [3,65,66] | |
Florida, USA [8,37] | |||
Unknown | Apate monachus | Iberian Peninsula [67] | |
Xyleborus volvulus | Raffaelea lauricola | Persea americana | From United States to South America. It is also found in Africa and Asia [9,47,49,68] |
Xyleborus perforans | Fusarium parceramosum | Pinnus spp. | America, Europe, and Australis [69] |
Fusarium aff. solani | |||
Ophiostoma ips | |||
Raffaelea deltoideospora | |||
Sporothrix pseudoabietina | |||
Xyleborus ferrogineus | Ceratocystis cacaofunesta | Theobroma cacao L. [51] | Latin America and Africa [60,69] |
Invasive Species and Range Expansion
2.3. Natural Enemies
- (a)
- Predators
- (b)
- Parasitoids
- (c)
- Pathogens
- (d)
- Nematodes: Certain species of nematodes, such as Steinernema and Heterorhabditis, can parasitize and kill Xyleborus beetles. They enter through natural openings and release bacteria that kill the beetles [75].
- (e)
- Woodpeckers: These birds can excavate infested wood to reach and feed on both adult Xyleborus beetles and their larvae. Woodpeckers are natural predators of many bark beetle species, including ambrosia beetles. For instance, particularly Three-toed Woodpeckers, play a role in regulating bark beetle populations in coniferous forest landscapes [76].
3. Economic and Ecological Impact
3.1. Economic Impact
3.2. Ecological Impact
3.3. Ecosystem Services
4. Control and Management Strategies
4.1. Preventive Measures
4.2. Chemical Control
4.3. Biological Control
4.4. Integrated Pest Management (IPM)
5. Research and Advances
5.1. Molecular and Genetic Studies
5.2. Behavioral Studies
6. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kirkendall, L.R.; Biedermann, P.H.W.; Jordal, B.H. Evolution and Diversity of Bark and Ambrosia Beetles. In Bark Beetles: Biology and Ecology of Native and Invasive Species; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 85–156. ISBN 9780124171732. [Google Scholar]
- Hulcr, J.; Stelinski, L.L. The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management. Annu. Rev. Entomol. 2017, 62, 285–303. [Google Scholar] [CrossRef] [PubMed]
- Rabaglia, R.J.; Dole, S.A.; Cognato, A.I. Review of American Xyleborina (Coleoptera: Curculionidae: Scolytinae) Occurring North of Mexico, with an Illustrated Key. Ann. Entomol. Soc. Am. 2006, 99, 1034–1056. [Google Scholar] [CrossRef]
- Smith, S.M.; Beaver, R.A.; Singh, S.; Cognato, A.I. Taxonomic Clarification and Neotype Designation for Three Indian Xyleborine Species (Coleoptera: Curculionidae, Scolytinae). Zootaxa 2018, 4394, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Cognato, A.I.; Smith, S.M.; Li, Y.; Pham, T.H.; Hulcr, J. Genetic Variability among Xyleborus glabratus Populations Native to Southeast Asia (Coleoptera: Curculionidae: Scolytinae: Xyleborini) and the Description of Two Related Species. J. Econ. Entomol. 2019, 112, 1274–1284. [Google Scholar] [CrossRef]
- Jordal, B.; Tischer, M. Genetic and Taxonomic Assessment of the Widespread Afrotropical Ambrosia Beetle Xyleborus principalis (Coleoptera, Scolytinae). Int. J. Trop. Insect Sci. 2020, 40, 707715. [Google Scholar] [CrossRef]
- Osborn, R.K.; Castro, J.; Duong, T.A.; Hulcr, J.; Li, Y.; Martínez, M.; Cognato, A.I. Symbiotic Fungi Associated with Xyleborine Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae) and the Imperative of Global Collaboration. Ann. Entomol. Soc. Am. 2023, 116, 51–71. [Google Scholar] [CrossRef]
- Dreaden, T.J.; Campbell, A.S.; Gonzalez-Benecke, C.A.; Ploetz, R.C.; Smith, J.A. Response of Swamp Bay, Persea palustris, and Redbay, P. borbonia, to Raffaelea spp. Isolated from Xyleborus glabratus. For. Pathol. 2017, 47, e12288. [Google Scholar] [CrossRef]
- Saucedo-Carabez, J.R.; Ploetz, R.C.; Konkol, J.L.; Carrillo, D.; Gazis, R. Partnerships between Ambrosia Beetles and Fungi: Lineage-Specific Promiscuity among Vectors of the Laurel Wilt Pathogen, Raffaelea lauricola. Microb. Ecol. 2018, 76, 925–940. [Google Scholar] [CrossRef]
- Gugliuzzo, A.; Biedermann, P.H.W.; Carrillo, D.; Castrillo, L.A.; Egonyu, J.P.; Gallego, D.; Haddi, K.; Hulcr, J.; Jactel, H.; Kajimura, H.; et al. Recent Advances toward the Sustainable Management of Invasive Xylosandrus Ambrosia Beetles. J. Pest Sci. 2021, 94, 615–637. [Google Scholar] [CrossRef]
- Cloonan, K.R.; Montgomery, W.S.; Narvaez, T.I.; Carrillo, D.; Kendra, P.E. Community of Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) in Agricultural and Forest Ecosystems with Laurel Wilt. Insects 2022, 13, 971. [Google Scholar] [CrossRef]
- Hlásny, T.; König, L.; Krokene, P.; Lindner, M.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.F.; Schelhaas, M.-J.; Svoboda, M.; et al. Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Curr. For. Rep. 2021, 7, 138–165. [Google Scholar] [CrossRef]
- Spence, D.J.; Smith, J.A.; Ploetz, R.; Hulcr, J.; Stelinski, L.L. Effect of Chipping on Emergence of the Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae) and Recovery of the Laurel Wilt Pathogen from Infested Wood Chips. J. Econ. Entomol. 2013, 106, 2093–2100. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, P.H.W.; Klepzig, K.D.; Taborsky, M. Fungus Cultivation by Ambrosia Beetles: Behavior and Laboratory Breeding Success in Three Xyleborine Species. Environ. Entomol. 2009, 38, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.F.; Riggins, J.J. Drivers of Invasion by Laurel Wilt of Redbay and Sassafras in the Southeastern US. Landsc. Ecol. 2023, 38, 567–581. [Google Scholar] [CrossRef]
- Souza, A.G.C.; Maffia, L.A.; Murta, H.M.; Alves, Y.H.; Pereira, R.M.; Picanço, M.C. First Report on the Association between Ceratocystis Fimbriata, an Agent of Mango Wilt, Xyleborus affinis, and the Sawdust Produced during Beetle Colonization in Brazil. Am. Phytopathol. Soc. 2013, 97, 1116. [Google Scholar] [CrossRef]
- Olatinwo, R.O.; Fraedrich, S.W.; Mayfield, A.E. Laurel Wilt: Current and Potential Impacts and Possibilities for Prevention and Management. Forests 2021, 12, 181. [Google Scholar] [CrossRef]
- Hughes, M.A.; Inch, S.A.; Ploetz, R.C.; Er, H.L.; van Bruggen, A.H.C.; Smith, J.A. Responses of Swamp Bay, Persea palustris, and Avocado, Persea americana, to Various Concentrations of the Laurel Wilt Pathogen, Raffaelea lauricola. For. Pathol. 2015, 45, 111–119. [Google Scholar] [CrossRef]
- Hughes, M.A.; Smith, J.A.; Ploetz, R.C.; Kendra, P.E.; Mayfield, A.E.; Hanula, J.L.; Hulcr, J.; Stelinski, L.L.; Cameron, S.; Riggins, J.J.; et al. Recovery Plan for Laurel Wilt on Redbay and Other Forest Species Caused by Raffaelea lauricola and Disseminated by Xyleborus glabratus. Plant Health Prog. 2015, 16, 173–210. [Google Scholar] [CrossRef]
- Carrillo, D.; Crane, J.H.; Peña, J.E. Potential of Contact Insecticides to Control Xyleborus glabratus (Coleoptera: Curculionidae), a Vector of Laurel Wilt Disease in Avocados. J. Econ. Entomol. 2013, 106, 2286–2295. [Google Scholar] [CrossRef]
- Bonilla-Landa, I.; Cuapio-Muñoz, U.; Luna-Hernández, A.; Reyes-Luna, A.; Rodríguez-Hernández, A.; Ibarra-Juarez, A.; Suarez-Mendez, G.; Barrera-Méndez, F.; Caram-Salas, N.; Enríquez-Medrano, J.F.; et al. L-Proline as a Valuable Scaffold for the Synthesis of Novel Enantiopure Neonicotinoids Analogs. J. Agric. Food Chem. 2021, 69, 1455–1465. [Google Scholar] [CrossRef]
- Reyes-Luna, A.; Yáñez-Barrientos, E.; Alba-Mares, X.N.; Olivares-Romero, J.L.; Alonso-Castro, Á.J.; Cruz Cruz, D.; Villegas Gómez, C. Metabolomic Approaches in Assessing the Insecticidal Activity of the Extracts from Argemone Ochroleuca Sweet (Papaveraceae) against Three Diverse Crop Pests of Economic Importance. Chem. Biodivers. 2024, 21, e202301279. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, A.; Bonilla-Landa, I.; Vidal-Limon, A.; Ibarra-Juárez, A.; Barrera-Méndez, F.; Medrano, F.J.E.; Díaz de León, R.E.; Olivares-Romero, J.L. Synthesis, Insecticidal Activity, and Ensembled Docking of Nitroguanidines Bearing S- and R-Proline. Pest Manag. Sci. 2023, 79, 1912–1921. [Google Scholar] [CrossRef]
- Guerrero-Analco, J.A.; Murrieta-León, D.L.; Licona-Velazquez, S.; Monribot-Villanueva, J.L.; Ibarra-Juárez, L.A.; Hernández-Cervantes, G.; Ramírez-Vázquez, M.; Carmona-Hernández, O.; Lozada-García, J.A.; Pucheta-Fiscal, E.; et al. Antifungal and Insecticidal Activities of Selected Plant Species from Cloud Forest of Veracruz, Mexico: A Contribution to the Search of Novel Control Agents against Ambrosia Pest Complexes. Chem. Biodivers. 2023, 20, e202300274. [Google Scholar] [CrossRef]
- Castrejón-Antonio, J.E.; Tamez-Guerra, P.; Montesinos-Matías, R.; Ek-Ramos, M.J.; Garza-López, P.M.; Arredondo-Bernal, H.C. Selection of Beauveria bassiana (Hypocreales: Cordycipitaceae) Strains to Control Xyleborus affinis (Curculionidae: Scolytinae) Females. PeerJ 2020, 8, e9472. [Google Scholar] [CrossRef]
- Castillo-Esparza, J.F.; Mora-Velasco, K.A.; Rosas-Saito, G.H.; Rodríguez-Haas, B.; Sánchez-Rangel, D.; Ibarra-Juárez, L.A.; Ortiz-Castro, R. Microorganisms Associated with the Ambrosial Beetle Xyleborus affinis with Plant Growth-Promotion Activity in Arabidopsis Seedlings and Antifungal Activity against Phytopathogenic Fungus Fusarium sp. Microb. Ecol. 2023, 85, 1396–1411. [Google Scholar] [CrossRef]
- Mir, M.M.; Iqbal, U.; Mir, S.A. Production Technology of Stone Fruits; Springer: Singapore, 2021; ISBN 9789811589201. [Google Scholar]
- Hamilton, J.L.; Noah Workman, J.; Nairn, C.J.; Fraedrich, S.W.; Villari, C. Rapid Detection of Raffaelea lauricola Directly from Host Plant and Beetle Vector Tissues Using Loop-Mediated Isothermal Amplification. Plant Dis. 2020, 104, 3151–3158. [Google Scholar] [CrossRef]
- Ibarra Caballero, J.R.; Jeon, J.; Lee, Y.H.; Fraedrich, S.; Klopfenstein, N.B.; Kim, M.S.; Stewart, J.E. Genomic Comparisons of the Laurel Wilt Pathogen, Raffaelea lauricola, and Related Tree Pathogens Highlight an Arsenal of Pathogenicity Related Genes. Fungal Genet. Biol. 2019, 125, 84–92. [Google Scholar] [CrossRef]
- Ward, S.F.; Riggins, J.J. Warm Temperatures and Host Tree Abundance Explain Variation in Directional Spread by Laurel Wilt. Biol. Invasions 2023, 25, 2747–2761. [Google Scholar] [CrossRef]
- Hanula, J.L.; Sullivan, B. Manuka Oil and Phoebe Oil Are Attractive Baits for Xyleborus glabratus (Coleoptera: Scolytinae), the Vector of Laurel Wilt. Environ. Entomol. 2008, 37, 1403–1409. [Google Scholar] [CrossRef]
- Hanula, J.L.; Mayfield, A.E.; Reid, L.S.; Horn, S. Influence of Trap Distance from a Source Population and Multiple Traps on Captures and Attack Densities of the Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 2016, 109, 1196–1204. [Google Scholar] [CrossRef]
- Biedermann, P.H.W. Cooperative Breeding in the Ambrosia Beetle Xyleborus affinis and Management of Its Fungal Symbionts. Front. Ecol. Evol. 2020, 8, 518954. [Google Scholar] [CrossRef]
- Miller, D.R.; Rabaglia, R.J. Ethanol and (-)-α-Pinene: Attractant Kairomones for Bark and Ambrosia Beetles in the Southeastern US. J. Chem. Ecol. 2009, 35, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, A.E.; Brownie, C. The Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae) Uses Stem Silhouette Diameter as a Visual Host-Finding Cue. Environ. Entomol. 2013, 42, 743–750. [Google Scholar] [CrossRef]
- Fraedrich, S.W.; Harrington, T.C.; Rabaglia, R.J.; Ulyshen, M.D.; Mayfield, A.E.; Hanula, J.L.; Eickwort, J.M.; Miller, D.R. A Fungal Symbiont of the Redbay Ambrosia Beetle Causes a Lethal Wilt in Redbay and Other Lauraceae in the Southeastern United States. Plant Dis. 2008, 92, 215–224. [Google Scholar] [CrossRef]
- Fraedrich, S.W.; Harrington, T.C.; Bates, C.A.; Johnson, J.; Reid, L.S.; Best, G.S.; Leininger, T.D.; Hawkins, T.S. Susceptibility to Laurel Wilt and Disease Incidence in Two Rare Plant Species, Pondberry and Pondspice. Plant Dis. 2011, 95, 1056–1062. [Google Scholar] [CrossRef]
- Martini, X.; Hughes, M.A.; Killiny, N.; George, J.; Lapointe, S.L.; Smith, J.A.; Stelinski, L.L. The Fungus Raffaelea lauricola Modifies Behavior of Its Symbiont and Vector, the Redbay Ambrosia Beetle (Xyleborus Glabratus), by Altering Host Plant Volatile Production. J. Chem. Ecol. 2017, 43, 519–531. [Google Scholar] [CrossRef]
- Kuhns, E.H.; Martini, X.; Tribuiani, Y.; Coy, M.; Gibbard, C.; Peña, J.; Hulcr, J.; Stelinski, L.L. Eucalyptol Is an Attractant of the Redbay Ambrosia Beetle, Xyleborus glabratus. J. Chem. Ecol. 2014, 40, 355–362. [Google Scholar] [CrossRef]
- Kuhns, E.H.; Tribuiani, Y.; Martini, X.; Meyer, W.L.; Peña, J.; Hulcr, J.; Stelinski, L.L. Volatiles from the Symbiotic Fungus Raffaelea lauricola Are Synergistic with Manuka Lures for Increased Capture of the Redbay Ambrosia Beetle Xyleborus glabratus. Agric. For. Entomol. 2014, 16, 87–94. [Google Scholar] [CrossRef]
- Biedermann, P.H.W.; Vega, F.E. Ecology and Evolution of Insect-Fungus Mutualisms. Annu. Rev. Entomol. 2020, 65, 431–457. [Google Scholar] [CrossRef]
- Campbell, A.S.; Ploetz, R.C.; Dreaden, T.J.; Kendra, P.E.; Montgomery, W.S. Geographic Variation in Mycangial Communities of Xyleborus glabratus. Mycologia 2016, 108, 657–667. [Google Scholar] [CrossRef]
- Six, D.L. Ecological and Evolutionary Determinants of Bark Beetle—Fungus Symbioses. Insects 2012, 3, 339–366. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Juarez, L.A.; Burton, M.A.J.; Biedermann, P.H.W.; Cruz, L.; Desgarennes, D.; Ibarra-Laclette, E.; Latorre, A.; Alonso-Sánchez, A.; Villafan, E.; Hanako-Rosas, G.; et al. Evidence for Succession and Putative Metabolic Roles of Fungi and Bacteria in the Farming Mutualism of the Ambrosia Beetle Xyleborus affinis. mSystems 2020, 5, 5. [Google Scholar] [CrossRef]
- Saucedo, J.R.; Ploetz, R.C.; Konkol, J.L.; Ángel, M.; Mantilla, J.; Menocal, O.; Carrillo, D. Nutritional Symbionts of a Putative Vector, Xyleborus bispinatus, of the Laurel Wilt Pathogen of Avocado, Raffaelea lauricola. Symbiosis 2018, 75, 29–38. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.T.; Kasson, M.T.; Macias, A.M.; Skelton, J.; Carlson, P.S.; Yin, M.; Hulcr, J. Specific and Promiscuous Ophiostomatalean Fungi Associated with Platypodinae Ambrosia Beetles in the Southeastern United States. Fungal Ecol. 2018, 35, 42–50. [Google Scholar] [CrossRef]
- Menocal, O.; Cruz, L.F.; Kendra, P.E.; Crane, J.H.; Ploetz, R.C.; Carrillo, D. Rearing Xyleborus volvulus (Coleoptera: Curculionidae) on Media Containing Sawdust from Avocado or Silkbay, with or without Raffaelea lauricola (Ophiostomatales: Ophiostomataceae). Environ. Entomol. 2017, 46, 1275–1283. [Google Scholar] [CrossRef]
- Rabaglia, R.J.; Smith, S.L.; Rugman-Jones, P.; Digirolomo, M.F.; Ewing, C.; Eskalen, A. Establishment of non-native xyleborin eambrosia beetle, Xyleborus monographus (Fabricius) (Coleoptera: Curculionidae: Scolytinae), new to North America in California. Zootaxa 2020, 4786, 269–276. [Google Scholar] [CrossRef]
- Cruz, L.F.; Menocal, O.; Mantilla, J.; Ibarra-Juarez, L.A.; Carrillo, D. Xyleborus volvulus (Coleoptera: Curculionidae): Biology and Fungal Associates. Appl. Environ. Microbiol. 2019, 85, e01190. [Google Scholar] [CrossRef]
- Gohli, J.; Selvarajah, T.; Kirkendall, L.R.; Jordal, B.H. Globally Distributed Xyleborus Species Reveal Recurrent Intercontinental Dispersal in a Landscape of Ancient Worldwide Distributions Phylogenetics and Phylogeography. BMC Evol. Biol. 2016, 16, 37. [Google Scholar] [CrossRef]
- Hulcr, J.; Black, A.; Prior, K.; Chen, C.Y.; Li, H.F. Studies of Ambrosia Beetles (Coleoptera: Curculionidae) in Their Native Ranges Help Predict Invasion Impact. Fla. Entomol. 2017, 100, 257–261. [Google Scholar] [CrossRef]
- Mahony, Z.I.; Scarlett, K.; Carnegie, A.J.; Trollip, C.; Laurence, M.; Guest, D.I. Fungi Associated with the Ambrosia Beetle Xyleborus perforans (Coleoptera: Curculionidae: Scolytinae) on Drought-Stressed Pinus in New South Wales, Australia. Australas. Plant Pathol. 2024, 53, 51–62. [Google Scholar] [CrossRef]
- Hulcr, J.; Mann, R.; Stelinski, L.L. The Scent of a Partner: Ambrosia Beetles Are Attracted to Volatiles from Their Fungal Symbionts. J. Chem. Ecol. 2011, 37, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- Bateman, C.; Kendra, P.E.; Rabaglia, R.; Hulcr, J. Fungal Symbionts in Three Exotic Ambrosia Beetles, Xylosandrus amputatus, Xyleborinus andrewesi, and Dryoxylon onoharaense (Coleoptera: Curculionidae: Scolytinae: Xyleborini) in Florida. Symbiosis 2015, 66, 141–148. [Google Scholar] [CrossRef]
- Yin, M.L.; Chen, H.X.; He, Y.Z.; Gao, X.; Huang, S.B.; Wang, J. First Report of Fusarium oxysporum Causing Fusarium Dieback on Archidendron Clypearia in China. Plant Dis. 2021, 105, 500. [Google Scholar] [CrossRef]
- Batra, L.R. Ambrosia Fungi: A Taxonomic Revision, and Nutritional Studies of Some Species. Mycologia 1967, 59, 976–1017. [Google Scholar] [CrossRef]
- Ospina-Garcés, S.M.; Ibarra-Juarez, L.A.; Escobar, F.; Lira-Noriega, A. Evaluating Sexual Dimorphism in the Ambrosia Beetle Xyleborus affinis (Coleoptera: Curculionidae) Using Geometric Morphometrics. Fla. Entomol. 2021, 104, 61–70. [Google Scholar] [CrossRef]
- Castrejón-Antonio, J.E.; Tamez-Guerra, P.; García-Ortiz, N.; Muñiz-Paredes, F.; Sánchez-Rangel, J.C.; Montesinos-Matías, R. Biocontrol of Xyleborus affinis (Curculionidae: Scolitinae) Females and Progeny by Beauveria Bassiana (Hypocreales: Cordycipitaceae) in a Sawdust Artificial Diet Model. Insects 2023, 14, 477. [Google Scholar] [CrossRef]
- Kendra, P.E.; Montgomery, W.S.; Niogret, J.; Deyrup, M.A.; Guillén, L.; Epsky, N.D. Xyleborus glabratus, X. affinis, and X. ferrugineus (Coleoptera: Curculionidae: Scolytinae): Electroantennogram Responses to Host-Based Attractants and Temporal Patterns in Host-Seeking Flight. Environ. Entomol. 2012, 41, 1597–1605. [Google Scholar] [CrossRef]
- Rangel, R.; Pérez, M.; Sánchez, S.; Capello, S. Fluctuación Poblacional de Xyleborus ferrugineus y X. affinis (Coleoptera: Curculionidae) En Ecosistemas de Tabasco, México. Rev. Biol. Trop. 2012, 60, 1577–1588. [Google Scholar]
- Vega, F.E.; Ranger, C.M. Bark Beetles: Biology and Ecology of Native and Invasive Species; Oxford University Press (OUP): Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Jürisoo, L.; Süda, I.; Agan, A.; Drenkhan, R. Vectors of Dutch Elm Disease in Northern Europe. Insects 2021, 12, 393. [Google Scholar] [CrossRef]
- Menocal, O.; Cruz, L.F.; Kendra, P.E.; Berto, M.; Carrillo, D. Flexibility in the Ambrosia Symbiosis of Xyleborus bispinatus. Front. Microbiol. 2023, 14, 1110474. [Google Scholar] [CrossRef]
- Faccoli, M.; Campo, G.; Perrotta, G.; Rassati, D. Two Newly Introduced Tropical Bark and Ambrosia Beetles (Coleoptera: Curculionidae, Scolytinae) Damaging Figs (Ficus Carica) in Southern Italy. Zootaxa 2016, 4138, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.F.; Rabaglia, R.J.; Fairbanks, K.E.O.; Hulcr, J. North American Xyleborini North of Mexico: A Review and Key to Genera and Species (Coleoptera, Curculionidae, Scolytinae). Zookeys 2018, 2018, 19–68. [Google Scholar] [CrossRef]
- Castrejón-Antonio, J.E.; Montesinos-Matías, R.; Acevedo-Reyes, N.; Ayala-Zermeño, M.Á.; Berlanga-Padilla, A.M.; Arredondo-Bernal, H.C. Especies de Xyleborus (Coleoptera: Curculionidae: Scolytinae) Asociados a Huertos de Aguacate En Colima, México. Acta Zool. Mex. 2017, 33, 146–150. [Google Scholar]
- Gallego, D.; Di Sora, N.; Molina, N.; Gonzalez-Rosa, E.; Mas, H.; Knížek, M. First Record of Xyleborus bispinatus (Coleoptera: Curculionidae, Scolytinae) and Evidence of Stable Populations in the Iberian Peninsula. Zootaxa 2022, 5174, 157–164. [Google Scholar] [CrossRef]
- Castrejón-Antonio, J.E.; Montesinos-Matías, R.; Tamez-Guerra, P.; Guardiola, L.T.F.; Laureano-Ahuelican, B.; Bernal, H.C.A. Infestation of Xyleborus volvulus (Fabricius) (Coleoptera: Curculionidae: Scolytinae) in Mangifera indica L. (Mangifera: Anacardiaceae) in Manzanillo, Colima. Fla. Entomol. 2018, 101, 676–679. [Google Scholar] [CrossRef]
- Paladines-Rezabala, A.; Moreira-Morrillo, A.A.; Mieles, A.E.; Garcés-Fiallos, F.R. Advances in Understanding of the Interaction between Ceratocystis cacaofunesta and Xyleborus ferrugineus (Coleoptera: Curculionidae: Scolytinae) on Cocoa Trees. Sci. Agropecu. 2022, 13, 43–52. [Google Scholar]
- Lira-Noriega, A.; Soberón, J.; Equihua, J. Potential Invasion of Exotic Ambrosia Beetles Xyleborus glabratus and Euwallacea sp. in Mexico: A Major Threat for Native and Cultivated Forest Ecosystems. Sci. Rep. 2018, 8, 10179. [Google Scholar] [CrossRef]
- Costa, A.; Reeve, J.D. Olfactory Experience Modifies Semiochemical Responses in a Bark Beetle Predator. J. Chem. Ecol. 2011, 37, 1166–1176. [Google Scholar] [CrossRef]
- Schrey, N.M.; Reeve, J.D.; Anderson, F.E. Mitochondrial DNA Analysis of the Bark Beetle Predator Thanasimus dubius F. (Coleoptera: Cleridae) Reveals Regional Genetic Differentiation. Mol. Ecol. 2005, 14, 3317–3324. [Google Scholar] [CrossRef]
- Egonyu, J.P.; Baguma, J.; Ogari, I.; Ahumuza, G.; Kyamanywa, S.; Kucel, P.; Kagezi, G.H.; Erbaugh, M.; Phiri, N.; Ritchie, B.J.; et al. The Formicid Ant, Plagiolepis sp., as a Predator of the Coffee Twig Borer, Xylosandrus compactus. Biol. Control 2015, 91, 42–46. [Google Scholar] [CrossRef]
- Husein, D.; Rugman-Jones, P.; Dodge, C.E.; Chien, I.; Lara, J.R.; Liu, F.-L.; Liao, Y.-C.; Tuan, S.-J.; Stouthamer, R. Parasitoids Associated with Ambrosia Beetles in the Euwallacea fornicatus Species Complex (Coleoptera: Curculionidae: Scolytinae) in Taiwan. Biocontrol Sci. Technol. 2023, 33, 891–921. [Google Scholar] [CrossRef]
- Jaramillo, J.; Borgemeister, C.; Baker, P. Coffee Berry Borer Hypothenemus hampei (Coleoptera: Curculionidae): Searching for Sustainable Control Strategies. Bull. Entomol. Res. 2006, 96, 223–233. [Google Scholar] [CrossRef]
- Fayt, P.; Machmer, M.M.; Steeger, C. Regulation of Spruce Bark Beetles by Woodpeckers: A Literature Review. For. Ecol. Manag. 2005, 206, 1–14. [Google Scholar] [CrossRef]
- Harrington, T. Raffaelea Lauricola, a New Ambrosia Beetle Symbiont and Pathogen on the Lauraceae. Mycotaxon 2008, 104, 399–404. [Google Scholar]
- Evans, E.A.; Ballen, F.H. An Econometric Demand Model for Florida Green-Skin Avocados. HortTechnology 2015, 25, 405–411. [Google Scholar] [CrossRef]
- Mayfield III, A.E.; Entomologist, F.; Thomas, M.C.; Entomologist, T. The Redbay Ambrosia Beetle, Xyleborus glabratus Eichhoff (Scolytinae: Curculionidae); DACS-P-0165; Pest Alert; Florida Department of Agriculture & Consumer Services: Tallahassee, FL, USA, 2009.
- Evans, E.A.; Crane, J.; Hodges, A.; Osborne, J.L. Potential Economic Impact of Laurel Wilt Disease on the Florida Avocado Industry. HortTechnology 2010, 20, 234–238. [Google Scholar] [CrossRef]
- Ploetz, R.; Perez-Martinez, J.; Konol, J.; Fernandez, R. Management of laurel wilt of avocado, caused by Rafaelea lauricola. Eur. J. Plant Pathol. 2017, 149, 133–143. [Google Scholar] [CrossRef]
- Romero, P.; Ibarra-Juárez, L.A.; Carrillo, D.; Guerrero-Analco, J.A.; Kendra, P.E.; Kiel-Martínez, A.L.; Guillén, L. Electroantennographic Responses of Wild and Laboratory-Reared Females of Xyleborus affinis Eichhoff and Xyleborus ferrugineus (Fabricius) (Coleoptera: Curculionidae: Scolytinae) to Ethanol and Bark Volatiles of Three Host-Plant Species. Insects 2022, 13, 655. [Google Scholar] [CrossRef]
- Gramling, J.M. Potential Effects of Laurel Wilt on the Flora of North America. Southeast. Nat. 2010, 9, 827–836. [Google Scholar] [CrossRef]
- Mayfield, A.E.; Smith, J.A.; Hughes, M.; Dreaden, T.J. First Report of Laurel Wilt Disease Caused by a Raffaelea sp. on Avocado in Florida. Plant Dis. 2008, 92, 976. [Google Scholar] [CrossRef]
- Hulcr, J.; Dunn, R.R. The Sudden Emergence of Pathogenicity in Insect-Fungus Symbioses Threatens Naive Forest Ecosystems. Proc. R. Soc. B Biol. Sci. 2011, 278, 2866–2873. [Google Scholar] [CrossRef]
- Six, D.L.; Wingfield, M.J. The Role of Phytopathogenicity in Bark Beetle–Fungus Symbioses: A Challenge to the Classic Paradigm. Annu. Rev. Entomol. 2011, 56, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Ulyshen, M.D. Wood Decomposition as Influenced by Invertebrates. Biol. Rev. 2016, 91, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Reverchon, F.; Contreras-Ramos, S.M.; Eskalen, A.; Guerrero-Analco, J.A.; Quiñones-Aguilar, E.E.; Rios-Velasco, C.; Velázquez-Fernández, J.B. Microbial Biocontrol Strategies for Ambrosia Beetles and Their Associated Phytopathogenic Fungi. Front. Sustain. Food Syst. 2021, 5, 737977. [Google Scholar] [CrossRef]
- Kendra, P.E.; Niogret, J.; Montgomery, W.S.; Sanchez, J.S.; Deyrup, M.A.; Pruett, G.E.; Ploetz, R.C.; Epsky, N.D.; Heath, R.R. Temporal Analysis of Sesquiterpene Emissions from Manuka and Phoebe Oil Lures and Efficacy for Attraction of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 2012, 105, 659–669. [Google Scholar] [CrossRef]
- Kendra, P.E.; Montgomery, W.S.; Deyrup, M.A.; Wakarchuk, D. Improved Lure for Redbay Ambrosia Beetle Developed by Enrichment of α-Copaene Content. J. Pest Sci. 2016, 89, 427–438. [Google Scholar] [CrossRef]
- Kendra, P.E.; Montgomery, W.S.; Schnell, E.Q.; Deyrup, M.A.; Epsky, N.D. Efficacy of α-Copaene, Cubeb, and Eucalyptol Lures for Detection of Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 2016, 109, 2428–2435. [Google Scholar] [CrossRef]
- Niogret, J.; Kendra, P.E.; Epsky, N.D.; Heath, R.R. Comparative Analysis of Terpenoid Emissions from Florida Host Trees of the Redbay Ambrosia Beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Fla. Entomol. 2011, 94, 1010–1017. [Google Scholar] [CrossRef]
- Kendra, P.E.; Montgomery, W.S.; Niogret, J.; Peña, J.E.; Capinera, J.L.; Brar, G.; Epsky, N.D.; Heath, R.R. Attraction of the Redbay Ambrosia Beetle, Xyleborus glabratus, to Avocado, Lychee, and Essential Oil Lures. J. Chem. Ecol. 2011, 37, 932–942. [Google Scholar] [CrossRef]
- Peña, J.E.; Crane, J.H.; Capinera, J.L.; Duncan, R.E.; Kendra, P.E.; Ploetz, R.C.; McLean, S.; Brar, G.; Thomas, M.C.; Cave, R.D. Chemical Control of the Redbay Ambrosia Beetle, Xyleborus glabratus, and Other Scolytinae (Coleoptera: Curculionidae). Fla. Entomol. 2011, 94, 882–896. [Google Scholar] [CrossRef]
- Mayfield, A.E.; Barnard, E.L.; Smith, J.A.; Bernick, S.C.; Eickwort, J.M.; Dreaden, T.J. Effect of Propiconazole on Laurel Wilt Disease Development in Redbay Trees and on the Pathogen In Vitro. Arboric. Urban For. 2008, 34, 317–324. [Google Scholar] [CrossRef]
- Cloonan, K.R.; Montgomery, W.S.; Narvaez, T.I.; Kendra, P.E. A New Repellent for Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae), Primary Vector of the Mycopathogen That Causes Laurel Wilt. Plants 2023, 12, 2406. [Google Scholar] [CrossRef] [PubMed]
- Crane, J.; Ploetz, R.; Carrillo, D.; Evans, E.; Wasielewski, J.; Pybas, D. Current management recommendations for Laurel Wilt of avocados. Proc. Fla. State Hortic. Soc. 2016, 129, 4–10. [Google Scholar]
- Luna-Hernández, S.A.; Bonilla-Landa, I.; Reyes-Luna, A.; Rodríguez-Hernández, A.; Cuapio-Muñoz, U.; Ibarra-Juárez, L.A.; Suarez-Mendez, G.; Barrera-Méndez, F.; Pérez-Landa, I.D.; Enríquez-Medrano, F.J.; et al. Synthesis and Insecticidal Evaluation of Chiral Neonicotinoids Analogs: The Laurel Wilt Case. Molecules 2021, 26, 4225. [Google Scholar] [CrossRef] [PubMed]
- Pawar, T.J.; Romero, J.L.O.; Delgado-Alvarado, E.; Martinez-Castillo, J.; Silva, A.A.; Vallejo-Montesinos, J.; Jimenez-Halla, J.O. Synthesis and Insecticidal Activity of Nitroguanidines Featuring R- and S-Proline. In Proceedings of the 2023 IEEE International Conference on Engineering Veracruz (ICEV), Boca del Río, Mexico, 23–26 October 2023; pp. 1–5. [Google Scholar]
- Peña, J.E.; Weihman, S.W.; McLean, S.; Cave, R.D.; Carrillo, D.; Duncan, R.E.; Evans, G.; Krauth, S.; Thomas, M.C.; Lu, S.S.; et al. Predators and Parasitoids Associated with Scolytinae in Persea Species (Laurales: Lauraceae) and Other Lauraceae in Florida and Taiwan. Fla. Entomol. 2015, 98, 903–910. [Google Scholar] [CrossRef]
- Ploetz, R.C.; Pérez-Martínez, J.M.; Smith, J.A.; Hughes, M.; Dreaden, T.J.; Inch, S.A.; Fu, Y. Responses of Avocado to Laurel Wilt, Caused by Raffaelea Lauricola. Plant Pathol. 2012, 61, 801–808. [Google Scholar] [CrossRef]
- Deguine, J.-P.; Aubertot, J.-N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.G.; Ratnadass, A. Integrated Pest Management: Good Intentions, Hard Realities. A Review. Agron. Sustain. Dev. 2021, 41, 38. [Google Scholar] [CrossRef]
- Borden, J.H.; Chong, L.J.; Gries, R.; Pierce, H.D. Potential for Nonhost Volatiles as Repellents in Integrated Pest Management of Ambrosia Beetles. Integr. Pest Manag. Rev. 2001, 6, 221–236. [Google Scholar] [CrossRef]
- Borden, J.H.; Stokkink, E. Semiochemical-Based Integrated Pest Management of Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae) in British Columbia’s Forest Industry: Implemented in 1982 and Still Running. Can. Entomol. 2021, 153, 79–90. [Google Scholar] [CrossRef]
- Sivapalan, P. An Integrated Management Strategy to Minimize the Economic Damage to Mature Tea, Caused by the Shot-Hole Borer Beetle (Xyleborus fornicatus Eichh.). Tea Sci. 1985, 54, 4–10. [Google Scholar]
- Walgama, R.S. Ecology and Integrated Pest Management of Xyleborus fornicatus (Coleoptera: Scolytidae) in Sri Lanka. J. Integr. Pest Manag. 2012, 3, 1–8. [Google Scholar] [CrossRef]
- Cruz, L.F.; Rocio, S.A.; Duran, L.G.; Menocal, O.; Garcia-Avila, C.D.J.; Carrillo, D. Developmental Biology of Xyleborus bispinatus (Coleoptera: Curculionidae) Reared on an Artificial Medium and Fungal Cultivation of Symbiotic Fungi in the Beetle’s Galleries. Fungal Ecol. 2018, 35, 116–126. [Google Scholar] [CrossRef]
- Chang, H.; Liu, Q.; Hao, D.; Liu, Y.; An, Y.; Qian, L.; Yang, X. DNA Barcodes and Molecular Diagnostics for Distinguishing Introduced Xyleborus (Coleoptera: Scolytinae) Species in China. Mitochondrial DNA 2014, 25, 63–69. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Becerra, S.H.; Vázquez-Rivera, R.; Ventura-Hernández, K.I.; Pawar, T.J.; Olivares-Romero, J.L. The Biology, Impact, and Management of Xyleborus Beetles: A Comprehensive Review. Insects 2024, 15, 706. https://doi.org/10.3390/insects15090706
Rodríguez-Becerra SH, Vázquez-Rivera R, Ventura-Hernández KI, Pawar TJ, Olivares-Romero JL. The Biology, Impact, and Management of Xyleborus Beetles: A Comprehensive Review. Insects. 2024; 15(9):706. https://doi.org/10.3390/insects15090706
Chicago/Turabian StyleRodríguez-Becerra, Sared Helena, Rafael Vázquez-Rivera, Karla Irazú Ventura-Hernández, Tushar Janardan Pawar, and José Luis Olivares-Romero. 2024. "The Biology, Impact, and Management of Xyleborus Beetles: A Comprehensive Review" Insects 15, no. 9: 706. https://doi.org/10.3390/insects15090706
APA StyleRodríguez-Becerra, S. H., Vázquez-Rivera, R., Ventura-Hernández, K. I., Pawar, T. J., & Olivares-Romero, J. L. (2024). The Biology, Impact, and Management of Xyleborus Beetles: A Comprehensive Review. Insects, 15(9), 706. https://doi.org/10.3390/insects15090706