The Role of Cytokines in the Pathogenesis of Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
3. Cytokines and Schizophrenia
3.1. Interleukin-1β
3.2. Interleukin-2
3.3. Interleukin-4
3.4. Interleukin-6
3.5. Interleukin-8
3.6. Interleukin-10
3.7. Interleukin-12
3.8. Interleukin-17
3.9. Interleukin-18
3.10. Tumor Necrosis Factor α
3.11. Interferon γ
3.12. Transforming Growth Factor β
3.13. Chemokines
4. Immunogenetics of Cytokine Alternations in Schizophrenia
5. The Role of Early Childhood Trauma
6. Gut Microbiome Dysbiosis in Schizophrenia
7. Association of Alterations in the Cytokine Network with Neuroimaging
8. Glial Dysfunction
9. The Role of Nuclear Factor-κB and Human Endogenous Retroviruses
10. Patient Stratification
11. Conclusions
- (1)
- Evidence of altered levels of a given cytokine in patients with schizophrenia and in the CHR/UHR population;
- (2)
- Evidence of alterations in both psychosis and remission;
- (3)
- Evidence of alterations in all patient populations.
- (1)
- Evidence of alternated peripheral levels in acute psychosis (FEAN, FEP, ARCh), but not in patients in remission (SCh);
- (2)
- Evidence of inverse or no alterations in peripheral levels in stable chronic (SCh) and acute psychotic (FEAN, FEP ARCh) patients.
Author Contributions
Funding
Conflicts of Interest
References
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Haijma, S.V.; Haren, N.; van Cahn, W.; Koolschijn, P.C.M.P.; Pol, H.E.H.; Kahn, R.S. Brain Volumes in Schizophrenia: A Meta-Analysis in Over 18 000 Subjects. Schizophr. Bull. 2013, 39, 1129–1138. [Google Scholar] [CrossRef]
- Vita, A.; Peri, L.; de Deste, G.; Sacchetti, E. Progressive loss of cortical gray matter in schizophrenia: A meta-analysis and meta-regression of longitudinal MRI studies. Transl. Psychiatry 2012, 2, e190–e213. [Google Scholar] [CrossRef]
- Lewandowski, K.E.; Cohen, B.M.; Öngur, D. Evolution of neuropsychological dysfunction during the course of schizophrenia and bipolar disorder Evolution of neuropsychological dysfunction during the course of schizophrenia and bipolar disorder. Psychol. Med. 2011, 41, 225–241. [Google Scholar] [CrossRef] [PubMed]
- McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 2008, 30, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barron, H.; Hafizi, S.; Andreazza, A.C.; Mizrahi, R. Neuroinflammation and oxidative stress in psychosis and psychosis risk. Int. J. Mol. Sci. 2017, 18, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crespi, B.J.; Thiselton, D.L. Comparative immunogenetics of autism and schizophrenia. Genes Brain Behav. 2011, 10, 689–701. [Google Scholar] [CrossRef]
- Najjar, S.; Pearlman, D.M. Neuroin fl ammation and white matter pathology in schizophrenia: Systematic review. Schizophr. Res. 2015, 161, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.J.; Goldsmith, D.R. Towards an Immunophenotype of Schizophrenia: Progress, Potential Mechanisms, and Future Directions. Neuropsychopharmacology 2017, 42, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Stuart, M.J.; Baune, B.T. Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: A systematic review of biomarker studies. Neurosci. Biobehav. Rev. 2014, 42, 93–115. [Google Scholar] [CrossRef]
- Rodrigues-Amorim, D.; Rivera-Baltanás, T.; Spuch, C.; Caruncho, H.J.; González-Fernandez, Á.; Olivares, J.M.; Agís-Balboa, R.C. Cytokines dysregulation in schizophrenia: A systematic review of psychoneuroimmune relationship. Schizophr. Res. 2017, 197, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.; Peter, B.; Seabolt, W.; Mellor, A.B.K. Meta-Analysis of Cytokine Alterations in Schizophrenia: Clinical Status and Antipsychotic Effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Upthegrove, R.; Manzanares-Teson, N.; Barnes, N.M. Cytokine function in medication-naive first episode psychosis: A systematic review and meta-analysis. Schizophr. Res. 2014, 155, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, M.H.; Rapaport, B.M. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 2016, 21, 1696–1709. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhang, Y.; Fan, W.; Tang, W.; Zhang, C. Interleukin-17 Alteration in First-Episode Psychosis: A Meta-Analysis. Mol. Neuropsychiatry 2017, 3, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Çakici, N.; Sutterland, A.L.; Penninx, B.W.J.H.; Dalm, V.A.; de Haan, L.; van Beveren, N.J.M. Altered peripheral blood compounds in drug-naïve first-episode patients with either schizophrenia or major depressive disorder: A meta-analysis. Brain. Behav. Immun. 2020, 88, 547–558. [Google Scholar] [CrossRef]
- Pandey, G.N.; Ren, X.; Rizavi, H.S.; Zhang, H. Proinflammatory cytokines and their membrane-bound receptors are altered in the lymphocytes of schizophrenia patients. Schizophr. Res. 2015, 164, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Misiak, B.; Krefft, M.; Bielawski, T.; Moustafa, A.A.; Sąsiadek, M.M.; Frydecka, D. Toward a unified theory of childhood trauma and psychosis: A comprehensive review of epidemiological, clinical, neuropsychological and biological findings. Neurosci. Biobehav. Rev. 2017, 75, 393–406. [Google Scholar] [CrossRef]
- Lavratti, C.; Dorneles, G.; Pochmann, D.; Peres, A.; Bard, A.; de Lima Schipper, L.; Dal Lago, P.; Wagner, L.C.; Elsner, V.R. Exercise-induced modulation of histone H4 acetylation status and cytokines levels in patients with schizophrenia. Physiol. Behav. 2017, 168, 84–90. [Google Scholar] [CrossRef]
- Varese, F.; Smeets, F.; Drukker, M.; Lieverse, R.; Lataster, T.; Viechtbauer, W.; Read, J.; Van Os, J.; Bentall, R.P. Childhood adversities increase the risk of psychosis: A meta-analysis of patient-control, prospective-and cross-sectional cohort studies. Schizophr. Bull. 2012, 38, 661–671. [Google Scholar] [CrossRef]
- Thompson, A.D.; Nelson, B.; Yuen, H.P.; Lin, A.; Amminger, G.P.; McGorry, P.D.; Wood, S.J.; Yung, A.R. Sexual trauma increases the risk of developing psychosis in an ultra high-risk “prodromal” population. Schizophr. Bull. 2014, 40, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Misiak, B.; Frydecka, D. A history of childhood trauma and response to treatment with antipsychotics in first-episode schizophrenia patients. J. Nerv. Ment. Dis. 2016, 204, 787–792. [Google Scholar] [CrossRef]
- Bailey, T.; Alvarez-Jimenez, M.; Garcia-Sanchez, A.M.; Hulbert, C.; Barlow, E.; Bendall, S. Childhood trauma is associated with severity of hallucinations and delusions in psychotic disorders: A systematic review and meta-analysis. Schizophr. Bull. 2018, 44, 1111–1122. [Google Scholar] [CrossRef]
- Gur, T.L.; Shay, L.; Palkar, A.V.; Fisher, S.; Varaljay, V.A.; Dowd, S.; Bailey, M.T. Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain Behav. Immun. 2017, 64, 50–58. [Google Scholar] [CrossRef]
- Bailey, M.T.; Dowd, S.E.; Galley, J.D.; Hufnagle, A.R.; Rebecca, G.; Lyte, M. Exposure to social stressors alters the structure of the intestinal microbiota. Brain Behav. Immun. 2011, 25, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Yolken, R.H.; Severance, E.G.; Sabunciyan, S.; Gressitt, K.L.; Chen, O.; Stallings, C.; Origoni, A.; Katsafanas, E.; Schweinfurth, L.A.B.; Savage, C.L.G.; et al. Metagenomic sequencing indicates that the oropharyngeal phageome of individuals with schizophrenia differs from that of controls. Schizophr. Bull. 2015, 41, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Xu, J.; Li, Z.; Huang, Y.; Yuan, Y.; Wang, J.; Zhang, M.; Hu, S.; Liang, Y. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr. Res. 2018, 197, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Olde Loohuis, L.M.; Mangul, S.; Ori, A.P.S.; Jospin, G.; Koslicki, D.; Yang, H.T.; Wu, T.; Boks, M.P.; Lomen-Hoerth, C.; Wiedau-Pazos, M.; et al. Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia. Transl. Psychiatry 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trovão, N.; Prata, J.; Vondoellinger, O.; Santos, S.; Barbosa, M.; Coelho, R. Peripheral biomarkers for first-episode psychosis-opportunities from the neuroinflammatory hypothesis of schizophrenia. Psychiatry Investig. 2019, 16, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allswede, D.M.; Buka, S.L.; Yolken, R.H.; Torrey, E.F.; Cannon, T.D. Elevated maternal cytokine levels at birth and risk for psychosis in adult offspring. Schizophr. Res. 2016, 172, 41–45. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, W.; Huang, P.; Peng, L.; Huang, Q. Maternal C-reactive protein and cytokine levels during pregnancy and the risk of selected neuropsychiatric disorders in offspring: A systematic review and meta-analysis. J. Psychiatr. Res. 2018, 105, 86–94. [Google Scholar] [CrossRef]
- Purves-Tyson, T.D.; Weber-Stadlbauer, U.; Richetto, J.; Rothmond, D.A.; Labouesse, M.A.; Polesel, M.; Robinson, K.; Shannon Weickert, C.; Meyer, U. Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Mol. Psychiatry 2021, 26, 849–863. [Google Scholar] [CrossRef] [Green Version]
- Pedraz-Petrozzi, B.; Elyamany, O.; Rummel, C.; Mulert, C. Effects of inflammation on the kynurenine pathway in schizophrenia—A systematic review. J. Neuroinflamm. 2020, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolowska, M.; Chen, L.; Liu, Y.; Martinez-Anton, A.; Qi, H.; Logun, C.; Alsaaty, S.; Park, Y.H.; Kastner, D.L.; Chae, J.J.; et al. Prostaglandin E 2 Inhibits NLRP3 Inflammasome Activation through EP4 Receptor and Intracellular Cyclic AMP in Human Macrophages. J. Immunol. 2015, 194, 5472–5487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allswede, D.M.; Yolken, R.H.; Buka, S.L.; Cannon, T.D. Cytokine concentrations throughout pregnancy and risk for psychosis in adult offspring: A longitudinal case-control study. Lancet Psychiatry 2020, 7, 254–261. [Google Scholar] [CrossRef]
- Pillinger, T.; Osimo, E.F.; Brugger, S.; Mondelli, V.; McCutcheon, R.A.; Howes, O.D. A Meta-Analysis of Immune Parameters, Variability, and Assessment of Modal Distribution in Psychosis and Test of the Immune Subgroup Hypothesis. Schizophr. Bull. 2019, 45, 1120–1133. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Miller, B.J. Meta-analysis of cytokine and C-reactive protein levels in high-risk psychosis. Schizophr. Res. 2019, 226, 5–12. [Google Scholar] [CrossRef]
- Misiak, B.; Bartoli, F.; Carrà, G.; Stańczykiewicz, B.; Gładka, A.; Frydecka, D.; Samochowiec, J.; Jarosz, K.; Hadryś, T.; Miller, B.J. Immune-inflammatory markers and psychosis risk: A systematic review and meta-analysis. Psychoneuroendocrinology 2021, 127, 105200. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, H.Y.; Lin, J.J.; Lu, M.K.; Tan, H.P.; Jang, F.L.; Lin, S.H. Alterations of plasma cytokine biomarkers for identifying age at onset of schizophrenia with neurological soft signs. Int. J. Med. Sci. 2020, 17, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.K.; Miller, B.J. Meta-analysis of Cerebrospinal Fluid Cytokine and Tryptophan Catabolite Alterations in Psychiatric Patients: Comparisons between Schizophrenia, Bipolar Disorder, and Depression. Schizophr. Bull. 2018, 44, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, J.A.; Blanco, E.A.; Husain-Krautter, S.; Madeline Fagen, E.; Moreno-Merino, P.; del Ojo-Jiménez, J.A.; Ahmed, A.; Rothstein, T.L.; Lencz, T.; Malhotra, A.K. Cytokines in cerebrospinal fluid of patients with schizophrenia spectrum disorders: New data and an updated meta-analysis. Schizophr. Res. 2018, 202, 64–71. [Google Scholar] [CrossRef]
- Orlovska-waast, S.; Köhler-forsberg, O.; Wiben, S.; Merete, B.; Kondziella, D.; Krogh, J.; Eriksen, M. Cerebrospinal fl uid markers of in flammation and infections in schizophrenia and affective disorders: A systematic review and meta-analysis. Mol. Psychiatry 2019, 24, 869–887. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Peng, W.; Wang, J.; Zhou, W.J.; Zhou, Y.H.; Ying, B.W. Plasma levels of IL-1Ra are associated with schizophrenia. Psychiatry Clin. Neurosci. 2019, 73, 109–115. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Zare-Shahabadi, A.; Rezaei, N. Cytokine Alterations in Schizophrenia: An Updated Review. Front. Psychiatry 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahan, S.; Bragazzi, N.L.; Yogev, A.; Bar-Gad, M.; Barak, V.; Amital, H.; Amital, D. The relationship between serum cytokine levels and degree of psychosis in patients with schizophrenia. Psychiatry Res. 2018, 268, 467–472. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, Q.; Li, N.; Wang, F.; Xiang, H.; Zhang, Z.; Su, Y.; Huang, Y.; Zhao, G.; Zhou, R.; et al. Plasma levels of Th17-related cytokines and complement C3 correlated with aggressive behavior in patients with schizophrenia. Psychiatry Res. 2016, 246, 700–706. [Google Scholar] [CrossRef]
- Romeo, B.; Brunet-Lecomte, M.; Martelli, C.; Benyamina, A. Kinetics of cytokine levels during antipsychotic treatment in schizophrenia: A meta-Analysis. Int. J. Neuropsychopharmacol. 2018, 21, 828–836. [Google Scholar] [CrossRef]
- Tourjman, V.; Kouassi, É.; Koué, M.; Rocchetti, M.; Fortin-Fournier, S.; Fusar-Poli, P.; Potvin, S. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: A meta-analysis. Schizophr. Res. 2013, 151, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Capuzzi, E.; Bartoli, F.; Crocamo, C.; Clerici, M.; Carrà, G. Acute variations of cytokine levels after antipsychotic treatment in drug-naïve subjects with a first-episode psychosis: A meta-analysis. Neurosci. Biobehav. Rev. 2017, 77, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Marcinowicz, P.; Więdłocha, M.; Zborowska, N.; Dębowska, W.; Podwalski, P.; Misiak, B.; Tyburski, E.; Szulc, A. A Meta-Analysis of the Influence of Antipsychotics on Cytokines Levels in First Episode Psychosis. J. Clin. Med. 2021, 10, 2488. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, Y.; You, X.; Zhang, W.; Ma, Y.; Long, Q.; Liu, Z.; Hao, W.; Zeng, Y.; Teng, Z. Effects of risperidone on blood levels of interleukin-6 in schizophrenia. Medicine 2020, 99, e19694. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.S.; Hooton, J.; Schaefer, C.A.; Zhang, H.; Petkova, E.; Babulas, V.; Perrin, M.; Gorman, J.M.; Susser, E.S. Elevated Maternal Interleukin-8 Levels and Risk of Schizophrenia in Adult Offspring. Am. J. Psychiatry 2004, 161, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Frydecka, D.; Krzystek-Korpacka, M.; Lubeiro, A.; Stramecki, F.; Stańczykiewicz, B.; Beszłej, J.A.; Piotrowski, P.; Kotowicz, K.; Szewczuk-Bogusławska, M.; Pawlak-Adamska, E.; et al. Profiling inflammatory signatures of schizophrenia: A cross-sectional and meta-analysis study. Brain. Behav. Immun. 2018, 71, 28–36. [Google Scholar] [CrossRef]
- Ouyang, W.; O’Garra, A. IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity 2019, 50, 871–891. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Satta, M.; Berna-Erro, A.; Carrasco-Garcia, E.; Alberro, A.; Saenz-Antoñanzas, A.; Vergara, I.; Otaegui, D.; Matheu, A. Relevance of oxidative stress and inflammation in frailty based on human studies and mouse models. Aging 2020, 12, 9982–9999. [Google Scholar] [CrossRef] [PubMed]
- Kaplanski, G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev. 2018, 281, 138–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraguas, D.; Díaz-Caneja, C.M.; Rodríguez-Quiroga, A.; Arango, C. Oxidative Stress and Inflammation in Early Onset First Episode Psychosis: A Systematic Review and Meta-Analysis. Int. J. Neuropsychopharmacol. 2017, 20, 435–444. [Google Scholar] [CrossRef]
- Wedervang-Resell, K.; Friis, S.; Lonning, V.; Smelror, R.E.; Johannessen, C.; Reponen, E.J.; Lyngstad, S.H.; Lekva, T.; Aukrust, P.; Ueland, T.; et al. Increased interleukin 18 activity in adolescents with early-onset psychosis is associated with cortisol and depressive symptoms. Psychoneuroendocrinology 2020, 112, 104513. [Google Scholar] [CrossRef]
- Luo, Y.; He, H.; Zhang, J.; Ou, Y.; Fan, N. Changes in serum TNF-α, IL-18, and IL-6 concentrations in patients with chronic schizophrenia at admission and at discharge. Compr. Psychiatry 2019, 90, 82–87. [Google Scholar] [CrossRef]
- Probert, L. TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience 2015, 302, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, V.; Sahebkar, A.; Atkin, S.L.; Pirro, M. The Regulation and Importance of Monocyte Chemoattractant Protein-1. Curr. Opin. Hematol. 2018, 25, 44–51. [Google Scholar] [CrossRef]
- Ganju, R.K.; Brubaker, S.A.; Chernock, R.D.; Avraham, S.; Groopman, J.E. β-Chemokine Receptor CCR5 Signals through SHP1, SHP2, and Syk. J. Biol. Chem. 2000, 275, 17263–17268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatara, Y.; Ohishi, M.; Yamamoto, K.; Shiota, A.; Hayashi, N.; Iwamoto, Y.; Takeda, M.; Takagi, T.; Katsuya, T.; Ogihara, T.; et al. Macrophage Inflammatory Protein-1β Induced Cell Adhesion with Increased Intracellular Reactive Oxygen Species. J. Mol. Cell. Cardiol. 2009, 47, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Kitaura, M.; Nakajima, T.; Imai, T.; Harada, S.; Combadiere, C.; Tiffany, H.L.; Murphy, P.M.; Yoshie, O. Molecular Cloning of Human Eotaxin, an Eosinophil-Selective CC Chemokine, and Identification of a Specific Eosinophil Eotaxin Receptor, CC Chemokine Receptor 3. J. Biol. Chem. 1996, 271, 7725–7730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, A.L.; Gama, C.S.; Rocha, N.P.; Teixeira, M.M. Revisiting the Role of Eotaxin-1/CCL11 in Psychiatric Disorders. Front. Psychiatry 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Pouget, J.G. The emerging immunogenetic architecture of schizophrenia. Schizophr. Bull. 2018, 44, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Butler, M.G.; McGuire, A.B.; Masoud, H.; Manzardo, A.M. Currently recognized genes for schizophrenia: High-resolution chromosome ideogram representation. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016, 171, 181–202. [Google Scholar] [CrossRef]
- Frydecka, D.; Misiak, B.; Pawlak-Adamska, E.; Karabon, L.; Tomkiewicz, A.; Sedlaczek, P.; Kiejna, A.; Beszłej, J.A. Interleukin-6: The missing element of the neurocognitive deterioration in schizophrenia? The focus on genetic underpinnings, cognitive impairment and clinical manifestation. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Sanders, A.R.; Drigalenko, E.I.; Duan, J.; Moy, W.; Freda, J.; Göring, H.H.H.; Gejman, P.V.; Levinson, D.F.; Shi, J.; Buccola, N.G.; et al. Transcriptome sequencing study implicates immune-related genes differentially expressed in schizophrenia: New data and a meta-analysis. Transl. Psychiatry 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mak, M.; Misiak, B.; Frydecka, D.; Pełka-Wysiecka, J.; Kucharska-Mazur, J.; Samochowiec, A.; Bieńkowski, P.; Pawlak-Adamska, E.; Karabon, L.; Szmida, E.; et al. Polymorphisms in immune-inflammatory response genes and the risk of deficit schizophrenia. Schizophr. Res. 2018, 193, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Suchanek-Raif, R.; Raif, P.; Kowalczyk, M.; Paul-Samojedny, M.; Kucia, K.; Merk, W.; Kowalski, J. Polymorphic Variants of TNFR2 Gene in Schizophrenia and Its Interaction with -308G/A TNF-α Gene Polymorphism. Mediators Inflamm. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartwell, K.J.; Maria, M.M.M.; Twal, W.O.; Shaftman, S.; Desantis, S.M.; Mcrae-clark, A.L.; Pharm, D.; Brady, K.T. Association of Elevated Cytokines with Childhood Adversity in a Sample of Healthy Adults. J. Psychiatr. Res. 2013, 47, 604–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hostinar, C.E.; Davidson, R.J.; Graham, E.K.; Mroczek, D.K.; Lachman, M.E.; Seeman, T.E.; van Reekum, C.M.; Miller, G.E. Frontal brain asymmetry, childhood maltreatment, and low-grade inflammation at midlife. Psychoneuroendocrinology 2017, 75, 152–163. [Google Scholar] [CrossRef] [Green Version]
- Renna, M.E.; Peng, J.; Shrout, M.R.; Madison, A.A.; Andridge, R.; Alfano, C.M.; Povoski, S.P.; Lipari, A.M.; Malarkey, W.B.; Kiecolt-Glaser, J.K. Childhood abuse histories predict steeper inflammatory trajectories across time. Brain. Behav. Immun. 2021, 91, 541–545. [Google Scholar] [CrossRef]
- Holland, J.F.; Khandaker, G.M.; Dauvermann, M.R.; Morris, D.; Zammit, S.; Donohoe, G. Effects of early life adversity on immune function and cognitive performance: Results from the ALSPAC cohort. Soc. Psychiatry Psychiatr. Epidemiol. 2020, 55, 723–733. [Google Scholar] [CrossRef]
- Baumeister, D.; Akhtar, R.; Ciufolini, S.; Pariante, C.M.; Mondelli, V. Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 2016, 21, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Lacey, R.E.; Bartley, M.; Kelly-Irving, M.; Bevilacqua, L.; Iob, E.; Kelly, Y.; Howe, L.D. Adverse childhood experiences and early life inflammation in the Avon longitudinal study of parents and children. Psychoneuroendocrinology 2020, 122, 104914. [Google Scholar] [CrossRef]
- Nguyen, J.K.; Thurston, R.C. Association of Childhood Trauma Exposure with Inflammatory Biomarkers among Midlife Women. J. Women’s Health 2020, 29, 1540–1546. [Google Scholar] [CrossRef]
- Dennison, U.; McKernan, D.; Cryan, J.; Dinan, T. Schizophrenia patients with a history of childhood trauma have a pro-inflammatory phenotype. Psychol. Med. 2012, 42, 1865–1871. [Google Scholar] [CrossRef] [Green Version]
- Di Nicola, M.; Cattaneo, A.; Hepgul, N.; Di Forti, M.; Aitchison, K.J.; Janiri, L.; Murray, R.M.; Dazzan, P.; Pariante, C.M.; Mondelli, V. Serum and gene expression profile of cytokines in first-episode psychosis. Brain. Behav. Immun. 2013, 31, 90–95. [Google Scholar] [CrossRef]
- Chase, K.A.; Melbourne, J.K.; Rosen, C.; McCarthy-Jones, S.; Jones, N.; Feiner, B.M.; Sharma, R.P. Traumagenics: At the intersect of childhood trauma, immunity and psychosis. Psychiatry Res. 2019, 273, 369–377. [Google Scholar] [CrossRef]
- Corsi-Zuelli, F.; Loureiro, C.M.; Shuhama, R.; Fachim, H.A.; Menezes, P.R.; Louzada-Junior, P.; Mondelli, V.; Del-Ben, C.M. Cytokine profile in first-episode psychosis, unaffected siblings and community-based controls: The effects of familial liability and childhood maltreatment. Psychol. Med. 2020, 50, 1139–1147. [Google Scholar] [CrossRef]
- Quidé, Y.; Bortolasci, C.C.; Spolding, B.; Kidnapillai, S.; Watkeys, O.J.; Cohen-Woods, S.; Carr, V.J.; Berk, M.; Walder, K.; Green, M.J. Systemic inflammation and grey matter volume in schizophrenia and bipolar disorder: Moderation by childhood trauma severity. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 105, 110013. [Google Scholar] [CrossRef]
- Collins, S.M.; Kassam, Z.; Bercik, P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: Experimental evidence and clinical implications. Curr. Opin. Microbiol. 2013, 16, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Erny, D.; Hrabě de Angelis, A.L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 2015, 18, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Rothhammer, V.; Mascanfroni, I.D.; Bunse, L.; Takenaka, M.C.; Kenison, J.E.; Mayo, L.; Chao, C.-C.; Patel, B.; Yan, R.; Blain, M.; et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 2016, 22, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.T. The microbiome as a novel paradigm in studying stress and mental health. Am. Psychol. 2017, 72, 655–667. [Google Scholar] [CrossRef]
- Santos, J.; Yang, P.C.; Söderholm, J.D.; Benjamin, M.; Perdue, M.H. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut 2001, 48, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Vogel, S.C.; Brito, N.H.; Callaghan, B.L. Early Life Stress and the Development of the Infant Gut Microbiota: Implications for Mental Health and Neurocognitive Development. Curr. Psychiatry Rep. 2020, 22, 61. [Google Scholar] [CrossRef]
- Alexandrov, P.N.; Zhao, Y.; Li, W.; Lukiw, W.J. Lipopolysaccharide-stimulated, NF-kB-, miRNA-146a- And miRNA-155-mediated molecular-genetic communication between the human gastrointestinal tract microbiome and the brain. Folia Neuropathol. 2019, 57, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Castro-Nallar, E.; Bendall, M.L.; Pérez-Losada, M.; Sabuncyan, S.; Severance, E.G.; Dickerson, F.B.; Schroeder, J.R.; Yolken, R.H.; Crandall, K.A. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ 2015, 2015, 1–21. [Google Scholar] [CrossRef]
- Schwarz, E.; Maukonen, J.; Hyytiäinen, T.; Kieseppä, T.; Orešič, M.; Sabunciyan, S.; Mantere, O.; Saarela, M.; Yolken, R.; Suvisaari, J. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr. Res. 2018, 192, 398–403. [Google Scholar] [CrossRef] [Green Version]
- Pełka-Wysiecka, J.; Kaczmarczyk, M.; Bąba-Kubiś, A.; Liśkiewicz, P.; Wroński, M.; Skonieczna-Żydecka, K.; Marlicz, W.; Misiak, B.; Starzyńska, T.; Kucharska-Mazur, J.; et al. Analysis of Gut Microbiota and Their Metabolic Potential in Patients with Schizophrenia Treated with Olanzapine: Results from a Six-Week Observational Prospective Cohort Study. J. Clin. Med. 2019, 8, 1605. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Kosciolek, T.; Eyler, L.T.; Knight, R.; Jeste, D.V. Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J. Psychiatr. Res. 2018, 99, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, S.; Delisi, L.E.; Borgwardt, S. Neuroimaging of Schizophrenia and Other Primary Psychotic Disorders; Springer International Publishing: Cham, Switzerland, 2019; ISBN 9783319973067. [Google Scholar]
- Steen, R.G.; Mull, C.; McClure, R.; Hamer, R.M.; Lieberman, J.A. Brain volume in first-episode schizophrenia: Systematic review and meta-analysis of magnetic resonance imaging studies. Br. J. Psychiatry 2006, 188, 510–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, S.; Jahanshad, N.; Zalesky, A.; Kochunov, P.; Agartz, I.; Alloza, C.; Andreassen, O.A.; Arango, C.; Banaj, N.; Bouix, S.; et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA Schizophrenia DTI Working Group. Mol. Psychiatry 2018, 23, 1261–1269. [Google Scholar] [CrossRef] [Green Version]
- Najjar, S.; Pearlman, D.M.; Alper, K.; Najjar, A.; Devinsky, O. Neuroinflammation and psychiatric illness. J. Neuroinflamm. 2013, 10, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Lv, P.; Li, F.; Zhang, W.; Fu, G.; Dai, J.; Hu, N.; Liu, J.; Xiao, Y.; Li, S.; et al. Association of peripheral cytokine levels with cerebral structural abnormalities in schizophrenia. Brain Res. 2019, 1724, 146463. [Google Scholar] [CrossRef] [PubMed]
- Fillman, S.G.; Weickert, T.W.; Lenroot, R.K.; Catts, S.V.; Bruggemann, J.M.; Catts, V.S.; Weickert, C.S. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol. Psychiatry 2016, 21, 1090–1098. [Google Scholar] [CrossRef]
- Hoseth, E.Z.; Westlye, L.T.; Hope, S.; Dieset, I.; Aukrust, P.; Melle, I.; Haukvik, U.K.; Agartz, I.; Ueland, T.; Ueland, T.; et al. Association between cytokine levels, verbal memory and hippocampus volume in psychotic disorders and healthy controls. Acta Psychiatr. Scand. 2016, 133, 53–62. [Google Scholar] [CrossRef]
- Ellman, L.M.; Deicken, R.F.; Vinogradov, S.; Kremen, W.S.; Poole, J.H.; Kern, D.M.; Tsai, W.Y.; Schaefer, C.A.; Brown, A.S. Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr. Res. 2010, 121, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Chew, L.J.; Fusar-Poli, P.; Schmitz, T. Oligodendroglial alterations and the role of microglia in white matter injury: Relevance to schizophrenia. Dev. Neurosci. 2013, 35, 102–129. [Google Scholar] [CrossRef] [Green Version]
- Podwalski, P.; Szczygieł, K.; Tyburski, E.; Sagan, L.; Misiak, B.; Samochowiec, J. Magnetic resonance diffusion tensor imaging in psychiatry: A narrative review of its potential role in diagnosis. Pharmacol. Rep. 2021, 73, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.M.; Upton, C.H.; Nimgaonkar, V.L.; Keshavan, M.S. Differential susceptibility of white matter tracts to inflammatory mediators in schizophrenia: An integrated DTI study. Schizophr. Res. 2015, 161, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Biase, M.A.; Zalesky, A.; Cetin-Karayumak, S.; Rathi, Y.; Lv, J.; Boerrigter, D.; North, H.; Tooney, P.; Pantelis, C.; Pasternak, O.; et al. Large-Scale Evidence for an Association between Peripheral Inflammation and White Matter Free Water in Schizophrenia and Healthy Individuals. Schizophr. Bull. 2021, 47, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Dietz, A.G.; Goldman, S.A.; Nedergaard, M. Glial Cells in Schizophrenia: A Unified Hypothesis. Lancet Psychiatry 2020, 7, 272–281. [Google Scholar] [CrossRef]
- Trépanier, M.O.; Hopperton, K.E.; Mizrahi, R.; Mechawar, N.; Bazinet, R.P. Postmortem Evidence of Cerebral Inflammation in Schizophrenia: A Systematic Review. Mol. Psychiatry 2016, 21, 1009–1026. [Google Scholar] [CrossRef]
- Marques, T.R.; Ashok, A.H.; Pillinger, T.; Veronese, M.; Turkheimer, F.E.; Dazzan, P.; Sommer, I.E.C.; Howes, O.D. Neuroinflammation in Schizophrenia: Meta-Analysis of in Vivo Microglial Imaging Studies. Psychol. Med. 2019, 49, 2186–2196. [Google Scholar] [CrossRef] [Green Version]
- Bobbo, V.C.D.; Jara, C.P.; Mendes, N.F.; Morari, J.; Velloso, L.A.; Araújo, E.P. Interleukin-6 Expression by Hypothalamic Microglia in Multiple Inflammatory Contexts: A Systematic Review. BioMed Res. Int. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spittau, B.; Dokalis, N.; Prinz, M. The Role of TGF β Signaling in Microglia Maturation and Activation. Trends Immunol. 2020, 41, 836–848. [Google Scholar] [CrossRef] [PubMed]
- Plitman, E.; Iwata, Y.; Caravaggio, F.; Nakajima, S.; Chung, J.K.; Gerretsen, P.; Kim, J.; Takeuchi, H.; Chakravarty, M.M.; Remington, G.; et al. Kynurenic Acid in Schizophrenia: A Systematic Review and Meta-Analysis. Schizophr. Bull. 2017, 43, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A.B. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017, 10, 1178646917691938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kindler, J.; Lim, C.K.; Weickert, C.S.; Boerrigter, D.; Galletly, C.; Liu, D.; Jacobs, K.R.; Balzan, R.; Bruggemann, J.; O’Donnell, M.; et al. Dysregulation of Kynurenine Metabolism Is Related to Proinflammatory Cytokines, Attention, and Prefrontal Cortex Volume in Schizophrenia. Mol. Psychiatry 2019, 25, 2860–2872. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.Y.; Wu, D.C.; Zhou, N. Astrocytic Regulation of Glutamate Transmission in Schizophrenia. Front. Psychiatry 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, T.L.; Sachdeva, S.; Stahl, S.M. Glutamate Neurocircuitry: Theoretical Underpinnings in: Schizophrenia. Front. Pharmacol. 2012, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Akkouh, I.A.; Ueland, T.; Hansson, L.; Inderhaug, E.; Hughes, T.; Steen, N.E.; Aukrust, P.; Andreassen, O.A.; Szabo, A.; Djurovic, S. Decreased IL-1β-Induced CCL20 Response in Human IPSC-Astrocytes in Schizophrenia: Potential Attenuating Effects on Recruitment of Regulatory T Cells. Brain Behav. Immun. 2020, 87, 634–644. [Google Scholar] [CrossRef]
- Herman, F.J.; Pasinetti, G.M. Principles of Inflammasome Priming and Inhibition: Implications for Psychiatric Disorders. Brain Behav. Immun. 2018, 73, 66–84. [Google Scholar] [CrossRef] [PubMed]
- Volk, D.W.; Moroco, A.E.; Roman, K.M.; Edelson, J.R.; Lewis, D.A. The Role of the Nuclear Factor-ΚB Transcriptional Complex in Cortical Immune Activation in Schizophrenia. Biol. Psychiatry 2019, 85, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Volk, D.W.; Chitrapu, A.; Edelson, J.R.; Roman, K.M.; Moroco, A.E.; Lewis, D.A. Molecular Mechanisms and Timing of Cortical Immune Activation in Schizophrenia. Am. J. Psychiatry 2015, 172, 1112–1121. [Google Scholar] [CrossRef]
- Hubbard, D.B.; Miller, B.J. Meta-Analysis of Blood Cortisol Levels in Individuals with First-Episode Psychosis. Psychoneuroendocrinology 2019, 104, 269–275. [Google Scholar] [CrossRef]
- Misiak, B.; Łoniewski, I.; Marlicz, W.; Frydecka, D.; Szulc, A.; Rudzki, L.; Samochowiec, J. The HPA Axis Dysregulation in Severe Mental Illness: Can We Shift the Blame to Gut Microbiota? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 102, 109951. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Postovit, L.; Cattaneo, A.; Binder, E.B.; Aitchison, K.J. Epigenetic Modifications in Stress Response Genes Associated With Childhood Trauma. Front. Psychiatry 2019, 10, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruchot, J.; Kremer, D.; Küry, P. Neural Cell Responses upon Exposure to Human Endogenous Retroviruses. Front. Genet. 2019, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Brudek, T.; Lühdorf, P.; Christensen, T.; Hansen, H.J.; Møller-Larsen, A. Activation of Endogenous Retrovirus Reverse Transcriptase in Multiple Sclerosis Patient Lymphocytes by Inactivated HSV-1, HHV-6 and VZV. J. Neuroimmunol. 2007, 187, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Mameli, G.; Madeddu, G.; Mei, A.; Uleri, E.; Poddighe, L.; Delogu, L.G.; Maida, I.; Babudieri, S.; Serra, C.; Manetti, R.; et al. Activation of MSRV-Type Endogenous Retroviruses during Infectious Mononucleosis and Epstein-Barr Virus Latency: The Missing Link with Multiple Sclerosis? PLoS ONE 2013, 8, e78474. [Google Scholar] [CrossRef]
- Khandaker, G.M.; Zimbron, J.; Lewis, G.; Jones, P.B. Prenatal Maternal Infection, Neurodevelopment and Adult Schizophrenia: A Systematic Review of Population-Based Studies. Psychol. Med. 2013, 43, 239–257. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, F.; Schroeder, J.R.; Nimgaonkar, V.; Gold, J.; Yolken, R. The Association between Exposure to Herpes Simplex Virus Type 1 (HSV-1) and Cognitive Functioning in Schizophrenia: A Meta-Analysis. Psychiatry Res. 2020, 291, 113157. [Google Scholar] [CrossRef]
- Mameli, G.; Astone, V.; Khalili, K.; Serra, C.; Sawaya, B.E.; Dolei, A. Regulation of the Syncytin-1 Promoter in Human Astrocytes by Multiple Sclerosis-Related Cytokines. Virology 2007, 362, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Manghera, M.; Ferguson-Parry, J.; Lin, R.; Douville, R.N. NF-ΚB and IRF1 Induce Endogenous Retrovirus K Expression via Interferon-Stimulated Response Elements in Its 5′ Long Terminal Repeat. J. Virol. 2016, 90, 9338–9349. [Google Scholar] [CrossRef] [Green Version]
- Hurst, T.P.; Magiorkinis, G. Epigenetic Control of Human Endogenous Retrovirus Expression: Focus on Regulation of Long-Terminal Repeats (LTRs). Viruses 2017, 9, 130. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; Li, S.; Cao, Q.; Wang, X.; Yan, Q.; Tu, X.; Zhu, Y.; Zhu, F. Human Endogenous Retrovirus W Env Increases Nitric Oxide Production and Enhances the Migration Ability of Microglia by Regulating the Expression of Inducible Nitric Oxide Synthase. Virol. Sin. 2017, 32, 216–225. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Huang, J.; Li, H.; Yan, Q.; Zhu, F. Human Endogenous Retrovirus W Family Envelope Protein (HERV-W Env) Facilitates the Production of TNF-α and IL-10 by Inhibiting MyD88s in Glial Cells. Arch. Virol. 2021, 166, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Deguine, J.; Barton, G.M. MyD88: A Central Player in Innate Immune Signaling. F1000Prime Rep. 2014, 6, 1–7. [Google Scholar] [CrossRef]
- Janssens, S.; Burns, K.; Vercammen, E.; Tschopp, J.; Beyaert, R. MyD88S, a Splice Variant of MyD88, Differentially Modulates NF-ΚB- and AP-1-Dependent Gene Expression. FEBS Lett. 2003, 548, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, H.; Bachmann, S.; Schröder, J.; McArthur, J.; Torrey, E.F.; Yolken, R.H. Retroviral RNA Identified in the Cerebrospinal Fluids and Brains of Individuals with Schizophrenia. Proc. Natl. Acad. Sci. USA 2001, 98, 4634–4639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, O.; Giehl, M.; Zheng, C.; Hehlmann, R.; Leib-Mösch, C.; Seifarth, W. Human Endogenous Retrovirus Expression Profiles in Samples from Brains of Patients with Schizophrenia and Bipolar Disorders. J. Virol. 2005, 79, 10890–10901. [Google Scholar] [CrossRef] [Green Version]
- Mak, M.; Samochowiec, J.; Frydecka, D.; Pełka-Wysiecka, J.; Szmida, E.; Karpiński, P.; Sąsiadek, M.M.; Piotrowski, P.; Samochowiec, A.; Misiak, B. First-Episode Schizophrenia Is Associated with a Reduction of HERV-K Methylation in Peripheral Blood. Psychiatry Res. 2019, 271, 459–463. [Google Scholar] [CrossRef]
- Suntsova, M.; Gogvadze, E.V.; Salozhin, S.; Gaifullin, N.; Eroshkin, F.; Dmitriev, S.E.; Martynova, N.; Kulikov, K.; Malakhova, G.; Tukhbatova, G.; et al. Human-Specific Endogenous Retroviral Insert Serves as an Enhancer for the Schizophrenia-Linked Gene PRODH. Proc. Natl. Acad. Sci. USA 2013, 110, 19472–19477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Li, S.; Hu, Y.; Yu, H.; Luo, F.; Zhang, Q.; Zhu, F. Implication of the Env Gene of the Human Endogenous Retrovirus W Family in the Expression of BDNF and DRD3 and Development of Recent-Onset Schizophrenia. Schizophr. Bull. 2011, 37, 988–1000. [Google Scholar] [CrossRef]
- Tamouza, R.; Meyer, U.; Foiselle, M.; Richard, J.R.; Lu, C.; Boukouaci, W.; le Corvoisier, P.; Barrau, C.; Lucas, A.; Perron, H.; et al. Identification of Inflammatory Subgroups of Schizophrenia and Bipolar Disorder Patients with HERV-W ENV Antigenemia by Unsupervised Cluster Analysis. Transl. Psychiatry 2021, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Martinuzzi, E.; Barbosa, S.; Daoudlarian, D.; Bel Haj Ali, W.; Gilet, C.; Fillatre, L.; Khalfallah, O.; Troudet, R.; Jamain, S.; Fond, G.; et al. Stratification and prediction of remission in first-episode psychosis patients: The OPTiMiSE cohort study. Transl. Psychiatry 2019, 9, 20. [Google Scholar] [CrossRef]
- Carpenter, T.; Wagman, A.M.I.; Heinrichs, W.; Ph, D. Deficit and Nondeficit form of Schizophrenia: The Concept. Am. J. Psychiatry 1988, 145, 578–583. [Google Scholar] [PubMed]
- Kirkpatrick, B.; Galderisi, S. Deficit schizophrenia: An update. World Psychiatry 2008, 7, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köşger, F.; Yiğitaslan, S.; Eşsizoğlu, A.; Güleç, G.; Dağ Karataş, R.; Değirmenci, S. Inflammation and oxidative stress in deficit schizophrenia. Noropsikiyatri Ars. 2020, 57, 303–307. [Google Scholar] [CrossRef]
- Garcia-Rizo, C.; Fernandez-Egea, E.; Oliveira, C.; Justicia, A.; Bernardo, M.; Kirkpatrick, B. Inflammatory markers in antipsychotic-naïve patients with nonaffective psychosis and deficit vs. nondeficit features. Psychiatry Res. 2012, 198, 212–215. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, D.; Haroon, E.; Miller, A.; Addington, J.; Bearden, C.; Cadenhead, K.; Cannon, T.; Cornblatt, B.; Mathalon, D.; McGlashan, T.; et al. Association of baseline inflammatory markers and the development of negative symptoms in individuals at clinical high risk for psychosis. Brain. Behav. Immun. 2019, 76, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cinnamon Bidwell, L.; Norton, D. Trait vs. State Markers for Schizophrenia: Identification and Characterization Through Visual Processes. Curr. Psychiatry Rev. 2006, 2, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Insel, T.; Cuthbert, B.; Garvey, M.; Heinssen, R.; Pine, D.; Quinn, K.; Sanislow, C.; Wang, P. Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders. Am. J. Psychiatry Online 2010, 167, 748–751. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.E.; Cuthbert, B.N. Research Domain Criteria: Cognitive Systems, Neural Circuits, and Dimensions of Behavior. Dialogues Clin. Neurosci. 2012, 14, 29–37. [Google Scholar] [CrossRef]
- Green, B.N.; Johnson, C.D.; Adams, A. Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. J. Chiropr. Med. 2006, 5, 101–117. [Google Scholar] [CrossRef] [Green Version]
Marker | Miller et al. (2011) | Upthegrove et al. (2014) | Goldsmith et al. (2016) | Fang et al. (2017) | Frydecka et al. (2018) * | Pillinger et al. (2019) | Çakici et al. (2020) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alt. | nS (nP) | Alt. | nS (nP) | Alt. | nS (nP) | Alt. | nS (nP) | Alt. | nS (nP) | Alt. | nS (nP) | Alt. | nS (nP) | |
IL-1β | ↑ | 3 (151) | ↑ | 3 (99) | ↑ | 6 (333) | NA | 0 (0) | NA | 0 (0 | — | (269) | — | 9 (298) |
IL-1RA | NA | 0 (0) | NA | 0 (0) | ↑ | 2 (194) | NA | 0 (0) | NA | 0 (0 | NA | 0 (0) | NA | 0 (0) |
IL-2 | — | 4 (116) | — | 3 (26) | — | 5 (140) | NA | 0 (0) | NA | 0 (0 | — | (205) | — | 10 (249) |
sIL-2R | ↑ | 3 (30) | ↑ | 3 (58) | ↑ | 3 (30) | NA | 0 (0) | NA | 0 (0 | NA | (36) | NA | 0 (0) |
IL-4 | NA | 0 (0) | — | 2 (93) | ↓ | 4 (193) | NA | 0 (0) | NA | 0 (0 | — | (320) | — | 8 (308) |
IL-6 | ↑ | 4 (117) | ↑ | 5 (181) | ↑ | 11 (506) | NA | 0 (0) | NA | 0 (0 | ↑ | (652) | ↑ | 14 (540) |
IL-8 | NA | 0 (0) | NA | 0 (0) | ↑ | 2 (49) | NA | 0 (0) | — | 3 (99) | — | (96) | ↑ | 6 (123) |
IL-10 | NA | 0 (0) | NA | 0 (0) | ↑ | 4 (357) | NA | 0 (0) | NA | 0 (0 | — | (415) | — | 10 (567) |
IL-12 | ↑ | 2 (78) | NA | 0 (0) | — | 3 (258) | NA | 0 (0) | NA | 0 (0 | NA | 0 (0) | — | 2 (15) |
IL-17 | NA | 0 (0) | NA | 0 (0) | — | 2 (157) | — | 5 (313) | NA | 0 (0 | ↑ | (413) | NA | 0 (0) |
IL-18 | NA | 0 (0) | NA | 0 (0) | — | 3 (335) | NA | 0 (0) | NA | 0 (0 | NA | 0 (0) | NA | 0 (0) |
TNF-α | ↑ | 4 (200) | ↑ | 3 (99) | ↑ | 9 (587) | NA | 0 (0) | NA | 0 (0 | ↑ | (488) | ↑ | 11 (376) |
IFN-γ | ↑ | 2 (48) | — | 3 (103) | ↑ | 7 (452) | NA | 0 (0) | NA | 0 (0 | ↑ | (344) | — | 11 (334) |
TGF-β | ↑ | 2 (81) | NA | 0 (0) | ↑ | 3 (169) | NA | 0 (0) | NA | 0 (0) | ↑ | (133) | — | 2 (98) |
Marker | Miller et al. (2011) | Goldsmith et al. (2016) | Frydecka et al. (2018) | Park et al. (2019) | Misiak et al. (2021) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ARCh | nS (nP) | SCh | nS (nP) | ARCh | nS (nP) | SCh | nS (nP) | ARCh | nS (nP) | CHR | nS (nP) | CHR/UHR | nS (nP) | |
IL-1β | NA | 0 (0) | — | 3 (127) | ↑ | 3 (131) | ↑ | 4 (330) | NA | 0 (0) | ↓ | 2 (14) | — | 3 |
IL-1RA | ↑ | 2 (32) | NA | 0 (0) | ↑ | 2 (32) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | NA | 0 |
IL-2 | — | 2 (43) | — | 4 (132) | — | 2 (43) | — | 6 (193) | NA | 0 (0) | NA | 0 (0) | NA | 0 |
sIL-2R | — | 2 (32) | — | 3 (90) | ↑ | 3 (58) | ↑ | 3 (116) | NA | 0 (0) | NA | 0 (0) | NA | 0 |
IL-4 | NA | 0 (0) | NA | 0 (0) | ↓ | 4 (169) | — | 2 (73) | NA | 0 (0) | — | 2 (44) | NA | 2 |
IL-6 | ↑ | 6 (156) | — | 5 (164) | ↑ | 9 (279) | ↑ | 12 (711) | NA | 0 (0) | ↑ | 5 (81) | ↑ | 7 |
IL-8 | ↑ | 2 (46) | NA | 0 (0) | ↑ | 2 (46) | NA | 0 (0) | ↑ | 12 (696) | — | 3 (47) | — | 3 |
IL-10 | ↓ | 2 (46) | NA | 0 (0) | ↓ | 2 (46) | — | 4 (118) | NA | 0 (0) | — | 2 (15) | — | 2 |
IL-12 | NA | 0 (0) | — | 3 (104) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | — | 3 (47) | — | 2 |
TNF-α | ↑ | 4 (78) | — | 3 (171) | ↑ | 7 (269) | ↑ | 9 (508) | NA | 0 (0) | — | 2 (44) | — | 4 |
TNF-β | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | — | 2 (15) | NA | 0 |
IFN-γ | ↑ | 2 (57) | — | 2 (62) | ↑ | 4 (162) | ↓ | 4 (198) | NA | 0 (0) | — | 2 (24) | — | 5 |
TGF-β | ↑ | 2 (78) | — | 2 (119) | ↑ | 6 (243) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | NA | 0 |
Marker | Miller et al. (2011) | Wang et al. (2018) | Gallego et al. (2018) | Orlovska-waast et al. (2019) | ||||
---|---|---|---|---|---|---|---|---|
Alt. | nS (nP) | Alt. | nS (nP) | Alt. | nS (nP) | Alt. | nS (nP) | |
IL-1α | NA | 0 (0) | — | 2 (70) | NA | 0 (0) | — | 3 (72) |
IL-1β | ↓ | 2 (13) | ↑ | 3 (57) | — | 4 (56) | — | 2 (40) |
IL-2 | — | 4 (100) | — | 4 (114) | — | 4 (121) | — | 3 (97) |
sIL-2R | NA | 0 (0) | ↓ | 2 (19) | NA | 0 (0) | NA | 0 (0) |
IL-6 | — | 2 (42) | ↑ | 7 (244) | ↑ | 8 (256) | ↑ | 7 (230) |
IL-8 | NA | 0 (0) | ↑ | 3 (112) | ↑ | 4 (105) | ↑ | 3 (95) |
IL-12 | — | 2 (40) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) |
Marker | Miller et al. (2011) | Tourjman et al. (2011) | Goldsmith et al. (2016) | Romeo et al. (2018) | ||||
---|---|---|---|---|---|---|---|---|
Effect | nS (nP) | Effect | nS (nP) | Effect | nS (nP) | Effect | nS (nP) | |
IL-1β | ↓ | 3 (127) | ↓ | 3 (127) | ↓ | 4 (189) | ↓ | 7 (241) |
IL-1RA | NA | 0 (0) | — | 5 (113) | NA | 0 (0) | — | 6 (131) |
IL-2 | — | 4 (132) | — | 6 (239) | — | 4 (132) | — | 10 (311) |
sIL-2R | ↑ | 3 (90) | ↑ | 8 (165) | ↑ | 3 (90) | ↑ | 11 (263) |
IL-4 | NA | 0 (0) | — | 2 (119) | ↓ | 2 (186) | — | 7 (399) |
IL-6 | ↓ | 4 (164) | — | 11 (350) | ↓ | 11 (500) | — | 21 (784) |
sIL-6R | NA | 0 (0) | — | 4 (84) | NA | 0 (0) | — | 4 (844) |
IL-8 | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | — | 4 (144) |
IL-10 | NA | 0 (0) | — | 2 (52) | NA | 0 (0) | — | 8 (210) |
IL-12 | ↑ | 3 (104) | ↑ | 2 (74) | ↑ | 3 (104) | — | 4 (121) |
IL-17 | NA | 0 (0) | NA | 0 (0) | — | 2 (193) | — | 3 (248) |
IL-23 | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | — | 2 (68) |
TNF-α | — | 3 (171) | — | 9 (320) | — | 6 (310) | — | 19 (579) |
sTNF-R1 | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | — | 5 (91) |
sTNF-R2 | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | ↑ | 3 (49) |
IFN-γ | — | 2 (62) | ↓ | 3 (138) | — | 4 (265) | ↓ | 8 (380) |
TGF-β | ↓ | 2 (119) | — | 3 (156) | — | 4 (286) | — | 5 (303) |
Marker | Capuzzi et al. (2016) | Romeo et al. (2018) | Marcinowicz et al. (2021) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FEAN | FEAN | ARCh | SCh | Drug Resistant | FEP | |||||||
Effect | nS (nP) | Effect | nS (nP) | Effect | nS (nP) | Effect | nS (nP) | Effect | nS (nP) | Effect | nS (nP) | |
IL-1β | — | 4 (112) | ↓ | 4 (179) | ↓ | 6 (223) | NA | 0 (0) | NA | 0 (0) | ↓ | 7 (276) |
IL-1RA | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | — | 2 (41) | — | 3 (58) | NA | 0 (0) |
IL-2 | ↓ | 2 (69) | — | 2 (35) | — | 9 (279) | NA | 0 (0) | NA | 0 (0) | — | 4 (145) |
sIL-2R | NA | 0 (0) | NA | 0 (0) | — | 6 (182) | NA | 0 (0) | ↑ | 2 (39) | NA | 0 (0) |
IL-4 | NA | 0 (0) | ↓ | 3 (167) | — | 6 (382) | NA | 0 (0) | NA | 0 (0) | ↓ | 4 (150) |
IL-6 | ↓ | 4 (253) | ↓ | 5 (226) | ↓ | 14 (643) | — | 2 (41) | ↑ | 3 (58) | ↓ | 8 (409) |
sIL-6R | NA | 0 (0) | NA | 0 (0) | ↓ | 2 (53) | NA | 0 (0) | — | 2 (31) | NA | 0 (0) |
IL-8 | NA | 0 (0) | — | 2 (49) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) |
IL-10 | NA | 0 (0) | — | 3 (104) | — | 6 (173) | NA | 0 (0) | NA | 0 (0) | ↓ | 3 (150) |
IL-12 | NA | 0 (0) | NA | 0 (0) | — | 3 (68) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) |
IL-17 | — | 2 (157) | — | 3 (203) | — | 3 (248) | NA | 0 (0) | NA | 0 (0) | — | 3 (203) |
IL-23 | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) |
TNF-α | — | 4 (214) | — | 6 (260) | ↓ | 12 (452) | NA | 0 (0) | — | 3 (51) | ↓ | 7 (328) |
sTNF-R1 | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | ↑ | 2 (39) | NA | 0 (0) |
sTNF-R2 | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) | ↑ | 2 (39) | NA | 0 (0) |
IFN-γ | — | 2 (157) | — | 3 (172) | ↓ | 7 (363) | NA | 0 (0) | NA | 0 (0) | ↓ | 5 (243) |
TGF-β | NA | 0 (0) | NA | 0 (0) | — | 4 (286) | NA | 0 (0) | NA | 0 (0) | NA | 0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawidowski, B.; Górniak, A.; Podwalski, P.; Lebiecka, Z.; Misiak, B.; Samochowiec, J. The Role of Cytokines in the Pathogenesis of Schizophrenia. J. Clin. Med. 2021, 10, 3849. https://doi.org/10.3390/jcm10173849
Dawidowski B, Górniak A, Podwalski P, Lebiecka Z, Misiak B, Samochowiec J. The Role of Cytokines in the Pathogenesis of Schizophrenia. Journal of Clinical Medicine. 2021; 10(17):3849. https://doi.org/10.3390/jcm10173849
Chicago/Turabian StyleDawidowski, Bartosz, Adrianna Górniak, Piotr Podwalski, Zofia Lebiecka, Błażej Misiak, and Jerzy Samochowiec. 2021. "The Role of Cytokines in the Pathogenesis of Schizophrenia" Journal of Clinical Medicine 10, no. 17: 3849. https://doi.org/10.3390/jcm10173849
APA StyleDawidowski, B., Górniak, A., Podwalski, P., Lebiecka, Z., Misiak, B., & Samochowiec, J. (2021). The Role of Cytokines in the Pathogenesis of Schizophrenia. Journal of Clinical Medicine, 10(17), 3849. https://doi.org/10.3390/jcm10173849