PET Radiopharmaceuticals for Specific Bacteria Imaging: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Search Methods for Identificationof Studies
2.4. Data Extraction and Management
2.5. Risk Assessment of Bias in Included Studies
3. Results
3.1. Data Synthesis
3.2. Gram-Positive
3.2.1. Fluorine-18 (18F)-Labelled Radiopharmaceuticals
3.2.2. Gallium-68 (68Ga)-Labelled Radiopharmaceuticals
3.2.3. Zirconium-89 (89Zr)-Labelled Radiopharmaceuticals
3.2.4. Copper-64 (64Cu)-Labelled Radiopharmaceuticals
3.2.5. Iodine-124 (124I)-Labelled Radiopharmaceuticals
3.3. Gram-Negative
3.3.1. Carbon-11 (11C)-Labelled Radiopharmaceuticals
3.3.2. Fluorine-18 (18F)-Labelled Radiopharmaceuticals
3.3.3. Copper-64 (64Cu)-Labelled Radiopharmaceuticals
3.3.4. Gallium-68 (68Ga)-Labelled Radiopharmaceuticals
3.3.5. Gram-Positive and Negative
3.4. Other Pathogens
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. QUADAS questionnaire for preclinical studies (top) and human studies (bottom).
Domain | Animals Selection | Index Test | Reference Standard | Flow and Timing |
Signaling question (yes, no or unclear) | Does the origin of animals come from company? | Is the origin of bacterial cells certified ATCC? | Is the used reference standard appropriated for the study? | Is the imaging time appropriated for the study? |
Is it a standardized infection model? | ||||
Can the radiopharmaceutical synthesis be a source of bias? (QCs, AS) | Could the difference interval time between bacteria injection and radiopharmaceutical administration be a source of bias? | |||
Were further in vitro, in vivo, ex-vivo tests performed to support main results? | ||||
Risk of bias (high, low or unclear) | Could the selection of animals have introduced bias? | Could the methodology of experiments have introduced bias? | Could the reference standard or its interpretation have introduced bias? | Could the study flow have introduced bias? |
Concerns about applicability (high, low, or unclear) | Are there concerns that the included animals do not match the review question? | Are there concerns that the index test or its interpretation differ from the review question? | Are there concerns that the target condition as defined by the reference standard does not match the review question? | - |
Domain | Patients Selection | Index Test | Reference Standard | Flow and Timing |
Signaling question (yes, no or unclear) | Was a consecutive or random sample of patients enrolled? | Were the index test results interpreted without knowledge of the results of the reference standard? | Is the reference standard likely to correctly classify the target condition? | Was there an appropriate interval between index tests and reference standard? |
Did all patients receive a reference standard? | ||||
Did the study avoid inappropriate exclusions? | Were the reference standard results interpreted without knowledge of the results of the index test? | Did all patients receive the same reference standard? | ||
Risk of bias (high, low or unclear) | Could the selection of patients have introduced bias? | Could the conduct or interpretation of the index test have introduced bias? | Could the reference standard or its interpretation have introduced bias? | Could the study flow have introduced bias? |
Concerns about applicability (high, low, or unclear) | Are there concerns that the included patients do not match the review question? | Are there concerns that the index test or its interpretation differ from the review question? | Are there concerns that the target condition as defined by the reference standard does not match the review question? | - |
References
- Jamar, F.; Buscombe, J.; Chiti, A.; Christian, P.E.; Delbeke, D.; Donohoe, K.J.; Israel, O.; Martin-Comin, J.; Signore, A. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J. Nucl. Med. 2013, 54, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Hess, S.; Alavi, A.; Basu, S. PET-based personalized management of infectious and inflammatory disorders. PET Clin. 2016, 11, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Auletta, S.; Galli, F.; Lauri, C.; Martinelli, D.; Santino, I.; Signore, A. Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: A systematic review. Clin. Transl. Imaging 2016, 4, 229–252. [Google Scholar] [CrossRef] [PubMed]
- Larson, S.M. Cancer or inflammation? A holy grail for nuclear medicine. J. Nucl. Med. 1994, 35, 1653–1655. [Google Scholar] [PubMed]
- Tahara, T.; Ichiya, Y.; Kuwabara, Y.; Ostuka, M.; Miyake, Y.; Gunasekera, R.; Masuda, K. High [18F]-fluorodeoxyglucose uptake in abdominal abscesses: A PET study. J. Comput. Assist. Tomogr. 1989, 13, 829–831. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Alavi, A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin. Nucl. Med. 2002, 32, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Kubota, K.; Kubota, R.; Ido, T.; Tamahashi, N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J. Nucl. Med. 1995, 36, 1301–1306. [Google Scholar]
- Sugawara, Y.; Gutowski, T.D.; Fisher, S.J.; Brown, R.S.; Wahl, R.L. Uptake of positron emission tomography tracers in experimental bacterial infections: A comparative biodistribution study of radiolabeled FDG, thymidine, L-methionine, 67Ga-citrate, and 125I-HSA. Eur. J. Nucl. Med. 1999, 26, 333–341. [Google Scholar] [CrossRef]
- Heuker, M.; Sijbesma, J.W.A.; Suàrez, R.A.; de Jong, J.R.; Boersma, H.H.; Luurtsema, G.; Elsinga-Andor, P.H.; Glaudemans, W.J.M.; van Dam, G.M.; van Dijl, J.M.; et al. In vitro imaging of bacteria using 18F-fluorodeoxyglucose micro positron emission tomography. Sci. Rep. 2017, 7, 4973. [Google Scholar] [CrossRef]
- Houshmand, S.; Salavati, A.; Hess, S.; Werner, T.J.; Alavi, A.; Zaidi, H. An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clin. 2015, 10, 45–58. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Patel, C.N.; Scarsbrook, A.F.; Chowdhury, F.U. FDG PET/CT in infection and inflammation--current and emerging clinical applications. Clin. Radiol. 2015, 70, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Sollini, M.; Lauri, C.; Boni, R.; Lazzeri, E.; Erba, P.A.; Signore, A. Current status of molecular imaging in infections. Curr. Pharm. Des. 2018, 24, 754–771. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Liang, J.; Liu, D.; Zhu, F.; Wang, G.; Ding, X.; Han, C. 18F-FLT PET/CT imaging in a Wister rabbit inflammation model. Exp. Ther. Med. 2014, 8, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Wiehr, S.; Rolle, A.M.; Warnke, P.; Kohlhofer, U.; Quitanilla-Martinez, L.; Reischl, G.; Autenrieth, I.B.; Pichler, B.J.; Autenrieth, S.E. The positron emission tomography tracer 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) is not suitable to detect tissue proliferation induced by systemic yersinia enterocolitica infection in mice. PLoS ONE 2016, 11, e0164163. [Google Scholar] [CrossRef]
- Jang, S.J.; Lee, Y.J.; Lim, S.; Kim, K.I.; Lee, K.C.; An, G.I.; Lee, T.S.; Cheon, G.J.; Lim, S.M.; Kang, J.H. Imaging of a localized bacterial infection with endogenous thymidine kinase using radioisotope-labeled nucleosides. Int. J. Med. Microbiol. 2012, 302, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Nanni, C.; Errani, C.; Boriani, L.; Fantini, L.; Ambrosini, V.; Boschi, S.; Rubello, D.; Pettinato, C.; Mercuri, M.; Gasbarrini, A.; et al. 68Ga-citrate PET/CT for evaluating patients with infections of the bone: Preliminary results. J. Nucl. Med. 2010, 51, 1932–1936. [Google Scholar] [CrossRef] [PubMed]
- Salomäki, S.P.; Kemppainen, J.; Hohenthal, U.; Luoto, P.; Eskola, O.; Nuutila, P.; Seppänen, M.; Pirilä, L.; Oksi, J.; Roivainen, A. Head-to-head comparison of 68Ga-citrate and 18F-FDG PET/CT for detection of infectious foci in patients with Staphylococcus aureus bacteraemia. Contrast Media Mol. Imaging 2017, 17. [Google Scholar] [CrossRef]
- Kumar, V.; Boddeti, D.K.; Evans, S.G.; Angelides, S. (68)Ga-Citrate-PET for diagnostic imaging of infection in rats and for intra-abdominal infection in a patient. Curr. Radiopharm. 2012, 5, 71–75. [Google Scholar] [CrossRef]
- Locke, L.W.; Chordia, M.D.; Zhang, Y.; Kundu, B.; Kennedy, D.; Landseadel, J.; Xiao, L.; Fairchild, K.D.; Berr, S.S.; Linden, J.; et al. A novel neutrophil-specific PET imaging agent: CFLFLFK-PEG-64Cu. J. Nucl. Med. 2009, 50, 790–797. [Google Scholar] [CrossRef]
- Dumarey, N.; Egrise, D.; Blocklet, D.; Stallenberg, B.; Remmelink, M.; del Marmol, V.; Van Simaeys, G.; Jacobs, F.; Goldman, S. Imaging infection with 18F-FDG-labeled leukocyte PET/CT: Initial experience in 21 patients. J. Nucl. Med. 2006, 47, 625–632. [Google Scholar]
- Kim, H.; Oh, Y.K.; Park, H.C.; Park, S.; Lee, S.; Lee, H.Y.; Hwang, Y.H.; Ahn, C. Clinical experience with white blood cell-PET/CT in autosomal dominant polycystic kidney disease patients with suspected cyst infection: A prospective case series. Nephrology 2018, 23, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Bhattacharya, A.; Prakash, M.; Sharma, S.; Mittal, B.R.; Khandelwal, N.; Bhansali, A. Utility of PET/CT with fluorine-18-fluorodeoxyglucose-labeled autologous leukocytes for diagnosing diabetic foot osteomyelitis in patients with Charcot’s neuroarthropathy. Nucl. Med. Commun. 2016, 37, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Aliyev, A.; Ekmekcioglu, O.; Ozhan, M.; Uslu, L.; Vatankulu, B.; Sager, S.; Halaç, M.; Sönmezoğlu, K. Comparison of FDG and FDG-labeled leukocytes PET/CT in diagnosis of infection. Nuklearmedizin 2015, 54, 262–271. [Google Scholar] [PubMed]
- Signore, A.; Jamar, F.; Israel, O.; Buscombe, J.; Martin-Comin, J.; Lazzeri, E. Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: An EANM procedural guideline. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1816–1831. [Google Scholar] [CrossRef] [PubMed]
- Lawal, I.; Zeevaart, J.; Ebenhan, T.; Ankrah, A.; Vorster, M.; Kruger, H.G.; Govender, T.; Sathekge, M. Metabolic imaging of infection. J. Nucl. Med. 2017, 58, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Whitting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallet, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Int. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Bhatt, J.; Mukherjee, A.; Shinto, A.; Karuppusamy, K.K.; Korde, A.; Kumar, M.; Sarma, H.D.; Repaka, K.; Dash, A. Gallium-68 labeled Ubiquicidin derived octapeptide as a potential infection imaging agent. Nucl. Med. Biol 2018, 62–63, 47–53. [Google Scholar] [CrossRef]
- Nielsen, K.M.; Jorgensen, N.P.; Kyneb, M.H.; Borghammer, P.; Meyer, R.L.; Thomsen, T.R.; Bender, D.; Jensen, S.B.; Nielsen, O.L.; Alstrup, A.K.O. Preclinical evaluation of potential infection-imaging probe [68Ga]Ga-DOTA-K-A9 in sterile and infectious inflammation. J. Label. Compd. Radiopharm. 2018, 1–16. [Google Scholar] [CrossRef]
- Mutch, C.A.; Ordonez, A.A.; Qui, H.; Parker, M.; Bambarger, L.E.; Villanueva-Meyer, J.E.; Blecha, J.; Carroll, V.; Taglang, C.; Flavell, R.; et al. [11C]Para-aminobenzoic acid: A positron emission tomography tracer targeting bacteria-specific metabolism. ACS Infect. Dis. 2018, 4, 1067–1072. [Google Scholar] [CrossRef]
- Takemiya, K.; Ning, X.; Seo, W.; Wang, X.; Mohammad, R.; Joseph, G.; Titterington, J.S.; Kraft, C.S.; Nye, J.A.; Murthy, N.; et al. Novel PET and near infrared imaging probes for the specific detection of bacterial infections associated with cardiac devices. JACC: Cardiovasc. Imaging 2018. [Google Scholar] [CrossRef] [PubMed]
- Ebenhan, T.; Sathekge, M.M.; Lengana, T.; Koole, M.; Gheysens, O.; Govender, T.; Zeevaart, J.R. 68Ga-NOTA-Functionalized Ubiquicidin: Cytotoxicity, biodistribution, radiation dosimetry, and first-in-human PET/CT Imaging of Infections. J. Nucl. Med. 2018, 59, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, H.; Fodah, R.; Warawa, J.M.; Ng, C.K. Validation of 2-18F-Fluorodeoxysorbitol as a potential radiopharmaceutical for imaging bacterial infection in the lung. J. Nucl. Med. 2018, 59, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Pickett, J.E.; Thompson, J.M.; Sadowska, A.; Tkaczyk, C.; Sellman, B.R.; Minola, A.; Corti, D.; Lanzavecchia, A.; Miller, L.S.; Thorek, D.L.J. Molecularly specific detection of bacterial lipoteichoic acid for diagnosis of prosthetic joint infection of the bone. Bone Res. 2018, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Sellmyer, M.A.; Lee, I.; Hou, C.; Weng, C.C.; Li, S.; Lieberman, B.P.; Zeng, C.; Mankoff, D.A.; Mach, R.H. Bacterial infection imaging with [18F]fluoropropyl-trimethoprim. Proc. Natl. Acad. Sci. USA 2017, 114, 8372–8377. [Google Scholar] [CrossRef] [PubMed]
- Gowrishankar, G.; Hardy, J.; Wardak, M.; Namavari, M.; Reeves, R.E.; Neofytou, E.; Srinivasan, A.; Wu, J.C.; Contag, C.H.; Gambhir, S.S. Specific imaging of bacterial infection using 6′’-18f-fluoromaltotriose: A second-generation PET tracer targeting the maltodextrin transporter in bacteria. J. Nucl. Med. 2017, 58, 1679–1684. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ordonez, A.O.; Smith-Jones, P.; Wang, H.; Gogarty, K.R.; Daryaee, F.; Bambarger, L.E.; Chang, T.S.; Jain, S.K.; Tonge, P.J. The biodistribution of 5-[18F]fluoropyrazinamide in Mycobacterium tuberculosis-infected mice determined by positron emission tomography. PLoS ONE 2017, 12, e0170871. [Google Scholar] [CrossRef]
- Ebenhan, T.; Mokaleng, B.B.; Venter, J.D.; Kruger, H.G.; Zeevaart, J.R.; Sathekge, M. Preclinical assessment of a 68Ga-DOTA functionalized depsipeptide as a radiodiagnostic infection imaging agent. Molecules 2017, 22, 1403. [Google Scholar] [CrossRef]
- Ordonez, A.A.; Weinstein, E.A.; Bambarger, L.E.; Saini, V.; Chang, Y.S.; DeMarco, V.P.; Klunk, M.H.; Urbanowski, M.E.; Moulton, K.L.; Murawski, A.M.; et al. A systematic approach for developing bacteria-specific imaging tracers. J. Nucl. Med. 2017, 58, 144–150. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhang, H.H.; McLeroth, P.; Berkowitz, R.D.; Mont, M.A.; Stabin, M.G.; Siegel, B.A.; Alavi, A.; Barnett, T.M.; Gelb, J.; et al. [124I]FIAU: Human dosimetry and infection imaging in patients with suspected prosthetic joint infection. Nucl. Med. Biol. 2016, 43, 273–279. [Google Scholar] [CrossRef]
- Wiehr, S.; Warnke, P.; Rolle, A.M.; Schutz, M.; Oberhettinger, P.; Kohlhofer, U.; Quitanilla-Martinez, L.; Maurer, A.; Thornton, C.; Boschetti, F.; et al. New pathogen-specific immunoPET/MR tracer for molecular imaging of a systemic bacterial infection. Oncotarget 2016, 7, 10990–11001. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Xing, H.; Zhu, W.; Wu, Z.; Zhang, Y.; Ma, Y.; Liu, Y.; Zhu, Z.; Li, Z.; Fang, L. Infection imaging with 18F-FDS and first-in-human evaluation. Nucl. Med. Biol. 2016, 43, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Rolle, A.M.; Hasenberg, M.; Thornton, C.R.; Solouk-Saran, D.; Männ, L.; Weski, J.; Maurer, A.; Fischer, E.; Spycher, P.R.; Schibli, R.; et al. ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo. Proc. Natl. Acad. Sci. USA 2016, 113, e1026–e1033. [Google Scholar] [CrossRef] [PubMed]
- Vilche, M.; Reyes, A.L.; Vasilskis, E.; Oliver, P.; Balter, H.; Engler, H. 68Ga-NOTA-UBI-29-41 as a PET tracer for detection of bacterial infection. J. Nucl. Med. 2016, 57, 622–627. [Google Scholar] [CrossRef]
- Mokaleng, B.B.; Ebenhan, T.; Ramesh, S.; Govender, T.; Kruger, H.G.; Parboosing, R.; Hazari, P.P.; Mishra, A.K.; Marjanovic-Painter, B.; Zeevaart, J.R.; et al. Synthesis, 68Ga-radiolabeling, and preliminary in vivo assessment of a depsipeptide-derived compound as a potential PET/CT infection imaging agent. BioMed Res. Int. 2015, 2015, 284354. [Google Scholar] [CrossRef]
- Mills, B.; Awais, R.O.; Luckett, J.; Turton, D.; Williams, P.; Perkins, A.C.; Hill, P.J. [18F]FDG-6-P as a novel in vivo tool for imaging staphylococcal infections. EJNMMI Res. 2015, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Severin, G.W.; Jørgensen, J.T.; Wiehr, S.; Rolle, A.M.; Hansen, A.E.; Maurer, A.; Hasenberg, M.; Pichler, B.; Kjær, A.; Jensen, A.I. The impact of weakly bound 89Zr on preclinical studies: Non-specific accumulation in solid tumors and aspergillus infection. Nucl. Med. Biol. 2015, 42, 360–368. [Google Scholar] [CrossRef]
- Weinstein, E.A.; Ordonez, A.A.; DeMarco, V.P.; Murawski, A.M.; Pokkali, S.; MacDonald, E.M.; Klunk, M.; Mease, R.C.; Pomper, M.G.; Jain, S.K. Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci. Transl. Med. 2014, 6, 259ra146. [Google Scholar] [CrossRef]
- Ning, X.; Seo, W.; Lee, S.; Takemiya, K.; Rafi, M.; Feng, X.; Weiss, D.; Wang, X.; Williams, L.; Camp, V.M.; et al. Fluorine-18 labeled maltohexaose images bacterial infections by PET. Angew. Chem. Int. Ed. Engl. 2014, 53, 14096–14101. [Google Scholar] [CrossRef]
- Gowrishankar, G.; Namavari, M.; Jouannot, E.B.; Hoehne, A.; Reeves, R.; Hardy, J.; Gambhir, S.S. Investigation of 6-[18F]-fluoromaltose as a novel PET tracer for imaging bacterial infection. PLoS ONE 2014, 9, e107951. [Google Scholar] [CrossRef]
- Ebenhan, T.; Zeevaart, J.R.; Venter, J.D.; Govender, T.; Kruger, G.H.; Jarvis, N.V.; Sathekge, M.M. Preclinical Evaluation of 68Ga-Labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-ubiquicidin as a radioligand for PET infection imaging. J. Nucl. Med. 2014, 55, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, E.A.; Liu, L.; Ordonez, A.A.; Wang, H.; Hooker, J.M.; Tonge, P.J.; Jain, S.K. Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in mycobacterium tuberculosis-infected mice. Antimicrob. Agents Chemother. 2012, 56, 6284–6290. [Google Scholar] [CrossRef] [PubMed]
- Petrik, M.; Franssen, G.M.; Haas, H.; Laverman, P.; Hörtnagl, C.; Schrettl, M.; Helbok, A.; Lass-Flörl, C.; Decristoforo, C. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Panizzi, P.; Nahrendorf, M.; Figueiredo, J.L.; Panizzi, J.; Marinelli, B.; Iwamoto, Y.; Keliher, E.; Maddur, A.A.; Waterman, P.; Kroh, H.K.; et al. In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat. Med. 2012, 17, 1142–1146. [Google Scholar] [CrossRef] [PubMed]
- Martìnez, M.E.; Kiyono, Y.; Noriki, S.; Inai, K.; Mandap, K.S.; Kobayashi, M.; Mori, T.; Tokunaga, Y.; Tiwari, V.N.; Okazawa, H.; et al. New radiosynthesis of 2-deoxy-2-[18F]fluoroacetamido-D-glucopyranose and its evaluation as a bacterial infections imaging agent. Nucl. Med. Biol. 2011, 38, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Boddeti, D.K.; Evans, S.G.; Roesch, F.; Howman-Giles, R. Potential use of 68Ga-apo-transferrin as a PET imaging agent for detecting Staphylococcus aureus infection. Nucl. Med. Biol. 2011, 38, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.A.; Foss, C.A.; Thornton, K.; Nimmagadda, S.; Endras, C.J.; Uzuner, O.; Seyler, T.M.; Ulrich, S.D.; Conway, J.; Bettegowda, C.; et al. Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT. PLoS ONE 2007, 2, e1007. [Google Scholar] [CrossRef]
- Satpati, D.; Arjun, C.; Krishnamohan, R.; Samuel, G.; Banerjee, S. 68Ga-labeled ciprofloxacin conjugates as radiotracers for targeting bacterial infection. Chem. Biol. Drug Des. 2016, 87, 680–686. [Google Scholar] [CrossRef]
- Langer, O.; Brunner, M.; Zeitlinger, M.; Ziegler, S.; Muller, U.; Dobrozemsky, G.; Lackner, E.; Joukhadar, C.; Mitterhauser, M.; Wadsak, W.; et al. In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 143–150. [Google Scholar] [CrossRef]
- Petrik, M.; Haas, H.; Laverman, P.; Schrettl, M.; Franssen, G.M.; Blatzer, M.; Decristoforo, C. 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: Uptake specificity in various microorganisms. Mol. Imaging Biol. 2014, 16, 102–108. [Google Scholar] [CrossRef]
- Rajamani, S.; Kuszpit, K.; Scarff, J.M.; Lundh, L.; Khan, M.; Brown, J.; Stafford, R.; Cazares, L.H.; Panchal, R.G.; Bocan, T. Bioengineering of bacterial pathogens for noninvasive imaging and in vivo evaluation of therapeutics. Sci. Rep. 2018, 8, 12618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ordonez, A.A.; Wang, H.; Li, Y.; Gogarty, K.R.; Weinstein, E.A.; Daryaee, F.; Merino, J.; Yoon, G.E.; Kalinda, A.S.; et al. Positron emission tomography imaging with 2-[18F]F-p-aminobenzoic acid detects Staphylococcus aureus infections and monitors drug response. ACS Infect. Dis. 2018, 4, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Lee, S.; Wang, Z.; Kim, D.; Stubblefield, B.; Gilbert, E.; Murthy, N. Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat. Mater. 2011, 10, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Gopal, S.; Berg, D.; Hagen, N.; Schriefer, E.-M.; Stoll, R.; Goebel, W.; Kreft, J. Maltose and maltodextrin utilization by Listeria monocytogenes depend on an inducible ABC transporter which is repressed by glucose. PLoS ONE 2010, 5, e10349. [Google Scholar] [CrossRef]
- Auletta, S.; Baldoni, D.; Varani, M.; Galli, F.; Hajar, I.A.; Duatti, A.; Ferro-Flores, G.; Trampuz, A.; Signore, A. Comparison of 99mTc-UBI 29-41, 99mTc-ciprofloxacin, 99mTc-ciprofloxacin dithiocarbamate and 111In-biotin for targeting experimental Staphylococcus aureus and Escherichia coli foreign-body infections: An ex-vivo study. Q. J. Nucl. Med. Mol. Imaging 2017. [Google Scholar] [CrossRef]
- Weinberg, E.D. Acquisition of iron and other nutrients in vivo. In Virulence Mechanisms of Bacterial Pathogens, 2nd ed.; Roth, J.A., Bolin, C.A., Brogden, K.A., Minion, F.C., Wannemuehler, M.J., Editor Roth, J.A., Eds.; American Society for Microbiology: Washington, DC, USA, 1995; pp. 79–88. [Google Scholar]
- Trivier, D.; Courcol, R.J. Iron depletion and virulence in Staphylococcus aureus. FEMS Microbial. Lett. 1996, 141, 117–127. [Google Scholar] [CrossRef]
- Cascini, G.L.; Niccoli Asabella, A.; Notaristefano, A.; Restuccia, A.; Ferrari, C.; Rubini, D.; Altini, C.; Rubini, G. 124Iodine: A longer-life positron emitter isotope—New opportunities in molecular imaging. BioMed Res. Int. 2014, 672094. [Google Scholar] [CrossRef]
- Jain, S.K. The promise of molecular imaging in the study and treatment of infectious diseases. Mol. Imaging Biol. 2017, 19, 341–347. [Google Scholar] [CrossRef]
- Signore, A.; Artiko, V. Hybrid fusion images in diagnostic and therapeutic procedures. Q. J. Nucl. Med. Mol. Imaging 2018, 62, 1–2. [Google Scholar]
- Glaudemans, A.W.; Prandini, N.; di Girolamo, M.; Argento, G.; Lauri, C.; Lazzeri, E.; Muto, M.; Sconfienza, L.M.; Signore, A. Hybrid imaging of musculoskeletal infections. Q. J. Nucl. Med. Mol. Imaging 2018, 62, 3–13. [Google Scholar]
- Baldoni, D.; Waibel, R.; Blauenstein, P.; Galli, F.; Iodice, V.; Signore, A.; Schibli, R.; Trampuz, A. Evaluation of a novel Tc-99m labelled vitamin B12 derivative for targeting Escherichia coli and Staphylococcus aureus in vitro and in an experimental foreign-body infection model. Mol. Imaging Biol. 2015, 17, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Waldvogel, F.A.; Vaudaux, P.; Nydegger, U.E. Pathogenesis of foreign body infection: Description and characteristics of an animal model. J. Infect. Dis. 1982, 146, 487–497. [Google Scholar] [CrossRef] [PubMed]
First Author [ref] | Pathogen | Compound | Radiolabeling Method | Isotope | Specific Activity | Stability | Model of Study | Metabolic Route | Amount (CFU) and Infection site | Max Target-to-non Target (T/NT) Ratio | Control Experiment | Other | Comments by Authors |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bhatt J [28] | S. aureus | UBI-31-38 | 1,4,7-triazacyclononane-N,N′,N″-triacetic acid (NOTA) chelator | 68Ga | 2.1 × 106 MBq/mmol | both in saline and serum up to 2 h | BALB/c mice | kidneys | 107, right thigh | 3.24 ± 0.7 | 107 heat killed, left thigh | imaging in 2 patients and 1 negative control | good localization of infection site, high T/NT ratio and promising results in humans |
Nielsen KM [29] | S. aureus | K-A9 peptide | 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator | 68Ga | 1.4 × 104 MBq/mmol | up to 2 h | C57BL/6 mice | kidneys | 5 × 107 | 1.89 ± 0.88 | turpentine oil | comparison with 2-deoxy-2[18F]fluoro-D-glucose (FDG) | no in vivo selectivity |
Mutch CA [30] | E. coli | Para-Aminobenzoic Acid (PABA) | argon carrier gas | 11C | 820 ± 258 mCi/μmol | - | CBA/J mice | kidneys | 108, left shoulder | 2.8 vs. 1 (region of interest) | 108 killed, right shoulder | - | attractive candidate for imaging living bacteria in humans. |
Takemiya K [31] | S. aureus | Maltohexaose (FHM) | nucleophilic fluorination | 18F | - | - | Sprague-Dawley rats | feces, urine | 2.9 × 108, stainless steel implant, back | - | turpentine oil | negative controls comparison with FDG | FHM is better than FDG in differentiating non-infection inflammation from infection |
Ebenhan T [32] | only in vitro test, in vivo biodistribution in non-human primates (NHP) and humans | UBI-29-41 | NOTA chelator | 68Ga | 13.8 ± 1.9 GBq/mmol | - | vervet monkeys (NHPs) | liver, kidneys | - | 3.3 ± 0.3 maximum standard uptake value (SUVmax) at 1 h | - | human studies (2 healthy and 3 patients) | non-toxic, safe compound, identify infectious foci in humans; need further studies |
Li J [33] | K. pneumoniae | Sorbitol (FDS) | nucleophilic fluorination | 18F | - | - | C57BL/6 mice | kidneys | 105 live, lungs | 8.5 (FDS) and 1.7 (FDG) | 108 killed, lungs | comparison with FDG | FDS is better than FDG to detect lung infection from inflammation |
Pickett JE [34] | Gram-positive | SAC55 (anti-LTA) | Deferoxamine (DFO) chelator | 89Zr | 9.439–12.210 (1.7–2.2 mCi/g) | - | C57BL/6 mice | - | 4.3 × 104, femur, inoculated implant | - | 1.4 × 103, sterile implant | comparison with FDG, NaF, 89Zr-IgG (control) | potential differentiation between infection and sterile inflammation |
Sellmyer MA [35] | E. coli and P. aeruginosa S. aureus | trimethoprim | nucleophilic fluorination | 18F | 5–15 × 106 mCi/mmol | - | BALB/c mice and NHP (rhesus monkey) (biodistribution) | kidneys, liver | 106 hindlimb, 107 forelimb, 108 ear pinna | 2.7 vs. 1.3 vs. 1 (infection vs. inflammation vs. tumor) | 106, 107, 108 killed, contralateral left | comparison with inflammation and cancer performing FDG too | specific for infection imaging |
Gowrishankar G [36] | Gram-positive Gram-negative | maltotriose | nucleophilic fluorination | 18F | - | - | nude mice (E. coli), CD1 mice (P. aeruginosa, L. monocytogenes), BALB/c mice (LPS) | kidneys | 108 E. coli, 106 P. aeruginosa, 2 × 105 L. monocytogenes | - | Lipopolysaccharide (LPS) inflammation, 106,7,8 heat killed E. coli | nude rat infected with aureus to monitor antibiotic therapy efficacy | able to image bacterial infections in animals with future applications in clinics |
Zhang Z [37] | M. tuberculosis | pyrazinamide analog | halogen exchange reaction | 18F | 2.6 × 106 kBq/µmol | 60% labelling efficiency (LE) at 90′ in livers | C3HeB/FeJ | bone, lungs | lungs | - | uninfected animals | - | successful radio-synthesis, higher uptake by infected lungs |
Ebenhan T [38] | M. tuberculosis S. aureus | TBIA101 (depsidomycin derivative) | DOTA chelator | 68Ga | 13 ± 6 GBq/µmol | - | New Zealand white rabbits | kidneys | 108, thigh muscle | 2.8 ± 0.16 and 2 ± 0.31 at 1 h for M. tubercolosis thigh (MTB)/triceps and MTB/thigh | turpentine oil, contralateral or M. tubercolosis, contralateral | - | imaging inflammation with turpentine oil, but not infection. Non-specific |
Ordonez AA [39] | E. coli and P. aeruginosa S. aureus M. tubercolosis | PABA, mannitol, FDS | - | 3H for PABA and mannitol, 18F for FDS | - | - | CBA/J mice | kidneys | 106 S. aureus (PABA), 107 E. coli (mannitol and FDS), right thigh | - | heat killed bacteria, left thigh | - | have significant potential for clinical translation for the rapid diagnosis of bacterial infections |
Zhang XM [40] | S. aureus | Fialuridine (FIAU) | - | 124I | 999–1295 GBq/µmol | - | patients suspected of prosthetic joint infection (PJI) | kidneys | - | - | - | - | 124I-FIAU is well tolerated but of limited value for detection of PJI due to low image quality and low specificity |
Wiehr S [41] | Y. enterocolitica | polyclonal monoclonal Antibody (mAb) vs. Yersinia adhesin A (YadA) | 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) chelator | 64Cu | 650–730 MBq/mg | 90% up to 48 h both in saline and serum | C57BL/6 mice | spleen | 103–104, i.v. | - | PBS and blocking experiments | comparison with FDG | rapid, sensitive and specific imaging probe |
Yao S [42] | E. coli | FDS | nucleophilic fluorination | 18F | 29.6 ± 6.5 GBq/μmol | 95% up to 2 h in serum | C57BL/6 mice | kidneys | 105–107, right thigh | 2.05 ± 0.07 and 13.0 ± 1.35, inflammation vs. infection | turpentine oil, left thigh | comparison with FDG, human studies | promising probe for diagnosis and monitoring therapy |
Rolle AM [43] | A. fumigatus | JF5 mAb | DOTA chelator | 64Cu | - | up to 48 h in serum | neutropenic C57BL/6 mice | lungs, liver, spleen | 4 × 106, lungs | 11.9 ± 1.3, 7.7 ± 2, 8.1 ± 0.6, 8.1 ± 1.5 (%ID/cc for A. fumigatus, PBS, S. pneumoniae, Y. enterocolitica) | 106 S. pneumoniae, 5 × 104 Y. Enterocolitica or PBS | comparison with FDG and blocking experiments | mAb localized aspergillus infection. FDG is non-specific for imaging infection |
Vilche M [44] | S. aureus | UBI-29-41 | NOTA chelator | 68Ga | 0.55 × 106 | 3 h | M. musculus Swiss mice | kidneys | 1.2 × 108, left thigh (measured in vitro 5 × 108–1.2 × 109 and as low as 2.5 × 104) | infection 5 (in vitro) 1 h inflammation 1.6 (in vitro), 1 h 4.0 (PET), 1 h Non-significance inflammation/normal | (1) 1.2 × 108 heat killed, left thig (2) healthy mice | - | clearly observed different uptake in infection vs. inflammation positively correlated with degree of infection |
Mokaleng BB [45] | E. coli | TBIA101 (depsidomycin derivative) | DOTA chelator | 68Ga | 12.4 ± 6 GBq/μmol | >97% up to 3 h in serum | BALB/c mice | liver, kidneys | 5 × 108, right thigh | 3 ± 0.8 (infection) vs. 2.3 ± 0.6 (inflammation) | healthy muscle | - | promising agent but need further studies |
Mills B [46] | S. aureus | FDG-6-P | - | 18F | injected activity 8–11 MBq (FDG and FDG-6-P) | 3 h | BALB/c mice | kidneys | 1 × 109, via catheter in right flank | ~3.0 (FDG-6-P) ~1.0 (FDG) | saline, via catheter in right flank | - | in vitro validated method, but very different behavior in vivo with high background, FDG-6-P accumulation had higher T/NT ratio than FDG = potential to differentiate infection from inflammation |
Severin GW [47] | A. fumigatus | free 89Zr (oxalate form) | direct labelling | 89Zr | 20–35 GBq/μmol | - | neutropenic C57BL/6 mice | kidneys | 4 × 106, intratracheal | 6.3 vs. 3.8 | healthy neutropenic mice | - | injection of free 89Zr (oxalate at pH < 7), routinely be performed as a control experiment |
Weinstein EA [48] | Enterobacteriaceae | FDS | nucleophilic fluorination | 18F | - | - | CBA/J mice | intestine, kidneys | 107, right thigh | - | 107 heat killed, left thigh; mixed infection with aureus; brain tumor | comparison with FDG | diagnostic tool for imaging infections due to Enterobacteriaceae |
Ning X [49] | E. coli | maltohexaose | nucleophilic fluorination | 18F | - | - | rats | spleen, kidneys | 105–7, left triceps | 8.5 at 70′ | PBS or 109 killed, right triceps | comparison with FDG | sensitive, specific radiopharmaceutical that can identify drug resistance |
Gowrishankar G [50] | E. coli | maltose | nucleophilic fluorination | 18F | - | - | nude mice and BALB/c mice | kidneys | 5 × 107, right thigh | 4.2 at 3 h | 108 heat killed, contralateral and turpentine oil in BALB/c | - | promising new radiopharmaceutical for bacterial infection imaging |
Ebenhan T [51] | S. aureus | UBI-29-41 | NOTA chelator | 68Ga | injected activity 27 ± 11/29 ± 15/29 ± 15 MBq (normal controls/thighs /lung) | 4 h | New Zealand white rabbits | kidneys | 2 × 108, right thigh | 4.35 ± 0.85 (infection/normal) 3.54 ± 0.86 (infected/inflammation) | turpentine oil, left thigh + normal controls + lung inflammation (asthma) | - | 68Ga-UBI strongly localized in infection and only minimally in inflammation. No uptake in lung inflammation either |
Weinstein EA [52] | M. tuberculosis | isonicotinic acid (INH) | nucleophilic fluorination | 18F | 7.4 to 11.1 MBq/µmol | - | C3HeB/FeJ mice and BALB/c mice | kidneys, liver | log10(6.4 ± 0.3) CFU, lungs | 1.67 ± 0.04 | non-infected controls | comparison with FDG | rapid, non-invasive approach to localize infectious foci |
Petrik M [53] | A. fumigatus | siderophores: triacetylfusarinine (TAFC) and ferrioxamineE (FOXE) | direct labelling | 68Ga | 9.2 × 104 and 3.4 × 103 GBq/mmol, TAFC and FOXE | - | BALB/c mice for biodistribution Lewis rat | kidneys | 105–109 conidia/ml, lungs | 5.81 ± 6.05 vs. 0.78 ± 0.75 (TAFC), 6.64 ± 2.91 vs. 1.0 ± 0.81 (FOXE) as SUV | non-infected controls | - | very promising agents for detection of infection with high sensitivity |
Panizzi P [54] | S. aureus | prothrombin (ProT) | Diethylene triamine pentaacetic acid (DTPA) | 64Cu | Injected doses 0.92–1.62 mCi | - | C57BL/6 mice | - | 1 × 106/µL, aortic valve | Only visual assessment | Non-infected controls | - | non-invasive detection of S. aureus induces endocarditis is feasible with an engineered analog of prothrombin |
Martínez ME [55] | E. coli | fluoroacetamido-D-glucopyranose (FAG) | microwave irradation | 18F | 18.09 ± 2.9 GBq/μmol | - | Sprague-Dawley rats | kidneys | 107, right thigh | 0.54 ± 0.21 vs. 0.19 ± 0.07 | turpentine oil | comparison with FDG | promising infection agent |
Kumar V [56] | S. aureus | Transferrin (TF) | apo | 68Ga | Injected dose:10–15 MBq | 6 h | Wistar rats | - | 5 × 105, right thigh | 2.2-7.5 | - | - | 68Ga-TF is capable of detecting S. aureus infection |
Diaz Jr. LA [57] | S. aureus | FIAU | - | 124I | 318 × 106 (8.596–13.979 Ci/mmol) | - | patients suspected of musculoskeletal infections (n=8) | kidneys | various locations | - | 1 control patient | surgery as gold standard | promising new method, but preliminary data |
Satpati D [58] | S. aureus | ciprofloxacin | DOTA and NOTA chelators | 68Ga | 6.2 ± 0.4 MBq/nmol | both in saline and serum up to 4 h | Wistar rats | kidneys | 5 × 107, right thigh | 1.5 for DOTA, 5 for NOTA | turpentine oil, left thigh | - | need further investigations |
Langer O [59] | Gram-positive Gram-negative | ciprofloxacin | nucleophilic fluorination | 18F | 342 ± 94 MBq/µmol | - | 4 patients with proven soft tissue infections | - | - | at peak uptake SUV = 5.5 | - | not suitable as specific agent | |
Petrik M [60] | A. fumigatus | TAFC and FOXE | direct labelling | 68Ga | 3.4 × 106 (FOXE) MBq/mmol | 80% (TAFC) and 90% (FOXE) at 2 h in serum | rats | lungs | n.a./left calf | - | turpentine oil and 109 CFU of S. aureus (i.m.) | comparison with FDG | high selective accumulation in infected lungs |
Rajamani S [61] | engineered E. coli and P. aeruginosa | FIAU | nucleophilic fluorination | 18F | - | - | CD1 mice and BALB/c mice | gastrointestinal tract | 105, 107, 109, thigh | - | P. aeruginosa infection | therapy with ciprofloxacin | engineered pathogens for evaluating experimental therapeutics |
Zhang Z [62] | S. aureus | PABA | Radio-synthesis box | 18F | 240.5 ± 77.7 GBq/µmol | - | Sprague-Dawley rats | kidneys | 108, left triceps | 5 at 1 h | heat killed, contralateral | comparison with FDG | novel, non-invasive diagnostic tool for detecting, localizing, and monitoring S. aureus infections |
Risk of Bias | Applicability Concerns | ||||||
---|---|---|---|---|---|---|---|
First Author [ref] | Animal Selection | Index Test | Reference Standard | Flow and Timing | Animal Selection | Index Test | Reference Standard |
Gram-positive | |||||||
Bhatt J [28] | |||||||
Nielsen KM [29] | |||||||
Takemiya K [31] | |||||||
Ebenhan T [32] | |||||||
Pickett JE [34] | |||||||
Zhang XM [40] | |||||||
Vilche M [44] | |||||||
Mills B [46] | |||||||
Ebenhan T [51] | |||||||
Panizzi P [54] | |||||||
Kumar V [56] | |||||||
Diaz Jr. LA [57] | |||||||
Satpati D [58] | |||||||
Langer O [59] | |||||||
Zhang Z [62] | |||||||
Gram-Negative | |||||||
Mutch CA [30] | |||||||
Li J [33] | |||||||
Wierhr S [41] | |||||||
Yao S [42] | |||||||
Mokaleng BB [45] | |||||||
Weinstein EA [48] | |||||||
Ning X [49] | |||||||
Gowrishankar G [50] | |||||||
Martìnez ME [55] | |||||||
Rajamani S [61] | |||||||
Gram-Positive and Negative | |||||||
Sellmyer MA [35] | |||||||
Gowrishankar G [36] | |||||||
Ebenhan T [38] | |||||||
Ordonez AA [39] | |||||||
Others | |||||||
Zhang Z [37] | |||||||
Rolle AM [43] | |||||||
Severin GW [47] | |||||||
Weinstein EA [52] | |||||||
Petrik M [53] | |||||||
Petrik M [60] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auletta, S.; Varani, M.; Horvat, R.; Galli, F.; Signore, A.; Hess, S. PET Radiopharmaceuticals for Specific Bacteria Imaging: A Systematic Review. J. Clin. Med. 2019, 8, 197. https://doi.org/10.3390/jcm8020197
Auletta S, Varani M, Horvat R, Galli F, Signore A, Hess S. PET Radiopharmaceuticals for Specific Bacteria Imaging: A Systematic Review. Journal of Clinical Medicine. 2019; 8(2):197. https://doi.org/10.3390/jcm8020197
Chicago/Turabian StyleAuletta, Sveva, Michela Varani, Rika Horvat, Filippo Galli, Alberto Signore, and Søren Hess. 2019. "PET Radiopharmaceuticals for Specific Bacteria Imaging: A Systematic Review" Journal of Clinical Medicine 8, no. 2: 197. https://doi.org/10.3390/jcm8020197
APA StyleAuletta, S., Varani, M., Horvat, R., Galli, F., Signore, A., & Hess, S. (2019). PET Radiopharmaceuticals for Specific Bacteria Imaging: A Systematic Review. Journal of Clinical Medicine, 8(2), 197. https://doi.org/10.3390/jcm8020197