Noise Reduction for Single-Shot Grating-Based Phase-Contrast Imaging at an X-ray Backlighter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grating-Based Phase-Contrast Imaging
2.2. Experimental Setup
2.3. Image Evaluation
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonse, U.; Hart, M. AN X-ray interferometer. Appl. Phys. Lett. 1965, 6, 155–156. [Google Scholar] [CrossRef]
- Momose, A. Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1995, 352, 622–628. [Google Scholar] [CrossRef]
- Olivo, A.; Arfelli, F.; Cantatore, G.; Longo, R.; Menk, R.H.; Pani, S.; Prest, M.; Poropat, P.; Rigon, L.; Tromba, G.; et al. An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field. Med. Phys. 2001, 28, 1610–1619. [Google Scholar] [CrossRef] [Green Version]
- Olivo, A.; Speller, R. A coded-aperture technique allowing X-ray phase contrast imaging with conventional sources. Appl. Phys. Lett. 2007, 91, 074106. [Google Scholar] [CrossRef] [Green Version]
- Chapman, D.; Thomlinson, W.; Johnston, R.E.; Washburn, D.; Pisano, E.; Gmür, N.; Zhong, Z.; Menk, R.; Arfelli, F.; Sayers, D. Diffraction enhanced X-ray imaging. Phys. Med. Biol. 1997, 42, 2015. [Google Scholar] [CrossRef] [Green Version]
- Schropp, A.; Hoppe, R.; Meier, V.; Patommel, J.; Seiboth, F.; Ping, Y.; Hicks, D.G.; Beckwith, M.A.; Collins, G.W.; Higginbotham, A.; et al. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Snigirev, A.; Snigireva, I.; Kohn, V.; Kuznetsov, S.; Schelokov, I. On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 1995, 66, 5486–5492. [Google Scholar] [CrossRef]
- Davis, T.J.; Gao, D.; Gureyev, T.E.; Stevenson, A.W.; Wilkins, S.W. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 1995, 373, 595–598. [Google Scholar] [CrossRef]
- Cloetens, P.; Barrett, R.; Baruchel, J.; Guigay, J.P.; Schlenker, M. Phase objects in synchrotron radiation hard X-ray imaging. J. Phys. D Appl. Phys. 1996, 29, 133. [Google Scholar] [CrossRef]
- Toth, R.; Fourmaux, S.; Ozaki, T.; Servol, M.; Kieffer, J.C.; Kincaid, R.E.; Krol, A. Evaluation of ultrafast laser-based hard X-ray sources for phase-contrast imaging. Phys. Plasmas 2007, 14, 053506. [Google Scholar] [CrossRef]
- David, C.; Nöhammer, B.; Solak, H.H.; Ziegler, E. Differential X-ray phase contrast imaging using a shearing interferometer. Appl. Phys. Lett. 2002, 81, 3287–3289. [Google Scholar] [CrossRef]
- Momose, A. Phase-sensitive imaging and phase tomography using X-ray interferometers. Opt. Express 2003, 11, 2303–2314. [Google Scholar] [CrossRef]
- Weitkamp, T.; Diaz, A.; David, C.; Pfeiffer, F.; Stampanoni, M.; Cloetens, P.; Ziegler, E. X-ray phase imaging with a grating interferometer. Opt. Express 2005, 13, 6296–6304. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Weitkamp, T.; Bunk, O.; David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys. 2006, 2, 258–261. [Google Scholar] [CrossRef]
- Michel, T.; Rieger, J.; Anton, G.; Bayer, F.; Beckmann, M.W.; Durst, J.; Fasching, P.A.; Haas, W.; Hartmann, A.; Pelzer, G.; et al. On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography. Phys. Med. Biol. 2013, 58, 2713. [Google Scholar] [CrossRef]
- Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A. Laboratory-based X-ray phase-imaging scanner using Talbot-Lau interferometer for non-destructive testing. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Ludwig, V.; Akstaller, B.; Schuster, M.; Seifert, M.; Wolf, A.; Michel, T.; Anton, G. A phase-sampling method for an X-ray Talbot-Lau scanner with continuous grating movement. J. Instrum. 2020, 15, P01010. [Google Scholar] [CrossRef]
- Ludwig, V.; Seifert, M.; Niepold, T.; Pelzer, G.; Rieger, J.; Ziegler, J.; Michel, T.; Anton, G. Non-Destructive Testing of Archaeological Findings by Grating-Based X-ray Phase-Contrast and Dark-Field Imaging. J. Imaging 2018, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Ress, D.; DaSilva, L.B.; London, R.A.; Trebes, J.E.; Mrowka, S.; Procassini, R.J.; Barbee, T.W.; Lehr, D.E. Measurement of Laser-Plasma Electron Density with a Soft X-ray Laser Deflectometer. Science 1994, 265, 514–517. [Google Scholar] [CrossRef]
- Barbato, F.; Atzeni, S.; Batani, D.; Bleiner, D.; Boutoux, G.; Brabetz, C.; Bradford, P.; Mancelli, D.; Neumayer, P.; Schiavi, A.; et al. Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, M.P.; Stutman, D.; Stoeckl, C.; Mileham, C.; Zou, J.; Muller, S.; Kaiser, K.; Sorce, C.; Keiter, P.A.; Fein, J.R.; et al. Implementation of a Talbot–Lau X-ray deflectometer diagnostic platform for the OMEGA EP laser. Rev. Sci. Instrum. 2020, 91, 023511. [Google Scholar] [CrossRef]
- Bouffetier, V.; Ceurvorst, L.; Valdivia, M.P.; Dorchies, F.; Hulin, S.; Goudal, T.; Stutman, D.; Casner, A. Proof-of-concept Talbot–Lau X-ray interferometry with a high-intensity, high-repetition-rate, laser-driven K-alpha source. Appl. Opt. 2020, 59, 8380–8387. [Google Scholar] [CrossRef]
- Barbato, F.; Batani, D.; Mancelli, D.; Trela, J.; Zeraouli, G.; Boutoux, G.; Neumayer, P.; Atzeni, S.; Schiavi, A.; Volpe, L.; et al. Propagation-based imaging phase-contrast enhanced imaging setup for single shot acquisition using laser-generated X-ray sources. J. Instrum. 2019, 14, C03005. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, L.; Barbato, F.; Mancelli, D.; Trela, J.; Zeraouli, G.; Boutoux, G.; Neumayer, P.; Atzeni, S.; Schiavi, A.; Volpe, L.; et al. X-ray phase-contrast imaging for laser-induced shock waves. EPL Europhys. Lett. 2019, 125, 35002. [Google Scholar] [CrossRef] [Green Version]
- Stutman, D.; Finkenthal, M. Talbot-Lau X-ray interferometry for high energy density plasma diagnostic. Rev. Sci. Instrum. 2011, 82, 113508. [Google Scholar] [CrossRef]
- Akstaller, B.; Schreiner, S.; Hofmann, F.; Meyer, P.; Neumayer, P.; Schuster, M.; Wolf, A.; Zielbauer, B.; Ludwig, V.; Michel, T.; et al. Single-shot grating-based phase-contrast imaging of a micrometer sample at a laser-driven X-ray backlighter source. J. Instrum. 2021, 16, P06021. [Google Scholar] [CrossRef]
- Stutman, D.; Valdivia, M.P.; Finkenthal, M. X-ray Moiré deflectometry using synthetic reference images. Appl. Opt. 2015, 54, 5956–5961. [Google Scholar] [CrossRef]
- Schuster, M.; Ludwig, V.; Akstaller, B.; Seifert, M.; Wolf, A.; Michel, T.; Neumayer, P.; Funk, S.; Anton, G. A fast alignment method for grating-based X-ray phase-contrast imaging systems. J. Instrum. 2019, 14, P08003. [Google Scholar] [CrossRef]
- Suleski, T.J. Generation of Lohmann images from binary-phase Talbot array illuminators. Appl. Opt. 1997, 36, 4686–4691. [Google Scholar] [CrossRef]
- Arrizón, V.; López-Olazagasti, E. Binary phase grating for array generation at 1/16 of Talbot length. J. Opt. Soc. Am. A 1995, 12, 801–804. [Google Scholar] [CrossRef]
- Amidror, I. The Theory of the Moiré Phenomenon; Springer: London, UK, 2009. [Google Scholar]
- Bevins, N.; Zambelli, J.; Li, K.; Qi, Z.; Chen, G.H. Multicontrast X-ray computed tomography imaging using Talbot-Lau interferometry withoutphase stepping. Med. Phys. 2012, 39, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Ina, H.; Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 1982, 72, 156–160. [Google Scholar] [CrossRef]
- Bennett, E.; Kopace, R.; Stein, A.; Wen, H. A grating-based single-shot X-ray phase contrast and diffraction method for in vivo imaging. Med. Phys. 2010, 37, 6047–6054. [Google Scholar] [CrossRef] [Green Version]
- Seifert, M.; Gallersdörfer, M.; Ludwig, V.; Schuster, M.; Horn, F.; Pelzer, G.; Rieger, J.; Michel, T.; Anton, G. Improved Reconstruction Technique for Moiré Imaging Using an X-ray Phase-Contrast Talbot–Lau Interferometer. J. Imaging 2018, 4, 62. [Google Scholar] [CrossRef] [Green Version]
- Momose, A. Recent Advances in X-ray Phase Imaging. Jpn. J. Appl. Phys. 2005, 44, 6355. [Google Scholar] [CrossRef]
- Yashiro, W.; Terui, Y.; Kawabata, K.; Momose, A. On the origin of visibility contrast in X-ray Talbot interferometry. Opt. Express 2010, 18. [Google Scholar] [CrossRef]
- Bagnoud, V.; Aurand, B.; Blazevic, A.; Borneis, S.; Bruske, C.; Ecker, B.; Eisenbarth, U.; Fils, J.; Frank, A.; Gaul, E.; et al. Commissioning and early experiments of the PHELIX facility. Appl. Phys. B 2010, 100, 137–150. [Google Scholar] [CrossRef]
- Borm, B.; Khaghani, D.; Neumayer, P. Properties of laser-driven hard X-ray sources over a wide range of laser intensities. Phys. Plasmas 2019, 26, 023109. [Google Scholar] [CrossRef]
- Seifert, M.; Weule, M.; Cipiccia, S.; Flenner, S.; Hagemann, J.; Ludwig, V.; Michel, T.; Neumayer, P.; Schuster, M.; Wolf, A.; et al. Evaluation of the Weighted Mean X-ray Energy for an Imaging System Via Propagation-Based Phase-Contrast Imaging. J. Imaging 2020, 6, 63. [Google Scholar] [CrossRef]
- Fiksel, G.; Marshall, F.J.; Mileham, C.; Stoeckl, C. Note: Spatial resolution of Fuji BAS-TR and BAS-SR imaging plates. Rev. Sci. Instrum. 2012, 83, 086103. [Google Scholar] [CrossRef]
- Maddox, B.; Park, H.; Remington, B.; Izumi, N.; Chen, S.; Chen, C.; Kimminau, G.; Ali, Z.; Haugh, M.; Ma, Q. High-energy X-ray backlighter spectrum measurements using calibrated image plates. Rev. Sci. Instrum. 2011, 82, 023111. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.; Schulz, J.; Saile, V. Deep X-ray Lithography. In Micromanufacturing Engineering and Technology, 1st ed.; Micro-Manufacturing Engineering and Technology: Karlsruhe, Germany, 2010; Chapter 13. [Google Scholar] [CrossRef]
- Meyer, P.; Schulz, J. Deep X-ray Lithography. In Micromanufacturing Engineering and Technology, 2nd ed.; William Andrew Publishing: Boston, MA, USA, 2015; Chapter 16. [Google Scholar]
- Weber, T.; Bartl, P.; Bayer, F.; Durst, J.; Haas, W.; Michel, T.; Ritter, A.; Anton, G. Noise in X-ray grating-based phase-contrast imaging. Med. Phys. 2011, 38, 4133–4140. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, G.; Anton, G.; Horn, F.; Rieger, J.; Ritter, A.; Wandner, J.; Weber, T.; Michel, T. A beam hardening and dispersion correction for X-ray dark-field radiography. Med. Phys. 2016, 43, 2774–2779. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schreiner, S.; Akstaller, B.; Dietrich, L.; Meyer, P.; Neumayer, P.; Schuster, M.; Wolf, A.; Zielbauer, B.; Ludwig, V.; Michel, T.; et al. Noise Reduction for Single-Shot Grating-Based Phase-Contrast Imaging at an X-ray Backlighter. J. Imaging 2021, 7, 178. https://doi.org/10.3390/jimaging7090178
Schreiner S, Akstaller B, Dietrich L, Meyer P, Neumayer P, Schuster M, Wolf A, Zielbauer B, Ludwig V, Michel T, et al. Noise Reduction for Single-Shot Grating-Based Phase-Contrast Imaging at an X-ray Backlighter. Journal of Imaging. 2021; 7(9):178. https://doi.org/10.3390/jimaging7090178
Chicago/Turabian StyleSchreiner, Stephan, Bernhard Akstaller, Lisa Dietrich, Pascal Meyer, Paul Neumayer, Max Schuster, Andreas Wolf, Bernhard Zielbauer, Veronika Ludwig, Thilo Michel, and et al. 2021. "Noise Reduction for Single-Shot Grating-Based Phase-Contrast Imaging at an X-ray Backlighter" Journal of Imaging 7, no. 9: 178. https://doi.org/10.3390/jimaging7090178
APA StyleSchreiner, S., Akstaller, B., Dietrich, L., Meyer, P., Neumayer, P., Schuster, M., Wolf, A., Zielbauer, B., Ludwig, V., Michel, T., Anton, G., & Funk, S. (2021). Noise Reduction for Single-Shot Grating-Based Phase-Contrast Imaging at an X-ray Backlighter. Journal of Imaging, 7(9), 178. https://doi.org/10.3390/jimaging7090178