Multimodal Approach for Enhancing Biometric Authentication
Abstract
:1. Introduction
- We propose an end-to-end deep learning model for a multimodal biometric method using image transformers.
- The proposed method employs a channel-wise fusion approach which improves performance compared to the typical stacking approach.
2. Materials and Methods
2.1. Fingerprint Block
2.2. Heartprint Block
2.3. Feature-Concatenation-Based Fusion Module
2.4. Channel-Wise Fusion Module
2.5. Feature Extraction Module
3. Results
3.1. Dataset Description
3.2. Experimental Setup and Performance Metrics
3.3. Results and Discussions
- A.
- Sensitivity Analysis of the Number of Training Subjects
- B.
- Sensitivity of the heartprint feature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oloyede, M.O.; Hancke, G.P. Unimodal and Multimodal Biometric Sensing Systems: A Review. IEEE Access 2016, 4, 7532–7555. [Google Scholar] [CrossRef]
- Mordini, E.; Tzovaras, D. (Eds.) Second Generation Biometrics: The Ethical, Legal and Social Context; The International Library of Ethics, Law and Technology; Springer: Dordrecht, The Netherlands, 2012; Volume 11, ISBN 978-94-007-3891-1. [Google Scholar]
- González-Soler, L.J.; Gomez-Barrero, M.; Chang, L.; Suárez, A.P.; Busch, C. On the Impact of Different Fabrication Materials on Fingerprint Presentation Attack Detection. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019. [Google Scholar]
- ISO/IEC 30107-1:2016; Information Technology—Biometric Presentation Attack Detection—Part 1: Framework. ISO: Geneva, Switzerland, 2016.
- Chugh, T.; Jain, A.K. Fingerprint Spoof Generalization. arXiv 2019, arXiv:1912.02710. [Google Scholar]
- Orrù, G.; Casula, R.; Tuveri, P.; Bazzoni, C.; Dessalvi, G.; Micheletto, M.; Ghiani, L.; Marcialis, G.L. LivDet in Action-Fingerprint Liveness Detection Competition 2019. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019. [Google Scholar]
- Ghiani, L.; Yambay, D.A.; Mura, V.; Marcialis, G.L.; Roli, F.; Schuckers, S.A. Review of the Fingerprint Liveness Detection (LivDet) Competition Series: 2009 to 2015. Image Vis. Comput. 2017, 58, 110–128. [Google Scholar] [CrossRef]
- Husseis, A.; Liu-Jimenez, J.; Goicoechea-Telleria, I.; Sanchez-Reillo, R. A Survey in Presentation Attack and Presentation Attack Detection. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India, 1–3 October 2019; pp. 1–13. [Google Scholar] [CrossRef]
- Micheletto, M.; Orrù, G.; Casula, R.; Yambay, D.; Marcialis, G.L.; Schuckers, S. Review of the Fingerprint Liveness Detection (LivDet) Competition Series: From 2009 to 2021. In Handbook of Biometric Anti-Spoofing: Presentation Attack Detection and Vulnerability Assessment; Marcel, S., Fierrez, J., Evans, N., Eds.; Springer: Singapore, 2023; pp. 57–76. [Google Scholar] [CrossRef]
- Javier, G.; Fernando, A.F.; Julian, F.; Javier, O.G. A high performance fingerprint liveness detection method based on quality related features. Future Gener. Comput. Syst. 2012, 28, 311–321. [Google Scholar] [CrossRef]
- Coli, P.; Marcialis, G.L.; Roli, F. Vitality Detection from Fingerprint Images: A Critical Survey. In Proceedings of the Advances in Biometrics; Lee, S.-W., Li, S.Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 722–731. [Google Scholar]
- Islam, M.S.; Alhichri, H.; Bazi, Y.; Ammour, N.; Alajlan, N.; Jomaa, R.M. Heartprint: A Dataset of Multisession ECG Signal with Long Interval Captured from Fingers for Biometric Recognition. Data 2022, 7, 141. [Google Scholar] [CrossRef]
- Odinaka, I.; Lai, P.-H.; Kaplan, A.D.; O’Sullivan, J.A.; Sirevaag, E.J.; Rohrbaugh, J.W. ECG Biometric Recognition: A Comparative Analysis. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1812–1824. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Zeng, X. HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human Identification in Smart Health Applications. IEEE Access 2017, 5, 11805–11816. [Google Scholar] [CrossRef]
- Abo-Zahhad, M.; Ahmed, S.M.; Abbas, S.N. Biometric Authentication Based on PCG and ECG Signals: Present Status and Future Directions. SIViP 2014, 8, 739–751. [Google Scholar] [CrossRef]
- Li, M.; Narayanan, S. Robust ECG Biometrics by Fusing Temporal and Cepstral Information. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Los Alamitos, CA, USA, 23–26 August 2010; pp. 1326–1329. [Google Scholar]
- Labati, R.D.; Sassi, R.; Scotti, F. ECG Biometric Recognition: Permanence Analysis of QRS Signals for 24 h Continuous Authentication. In Proceedings of the 2013 IEEE International Workshop on Information Forensics and Security (WIFS), Guangzhou, China, 18–21 November 2013; pp. 31–36. [Google Scholar]
- Ribeiro Pinto, J.; Cardoso, J.S.; Lourenço, A. Evolution, Current Challenges, and Future Possibilities in ECG Biometrics. IEEE Access 2018, 6, 34746–34776. [Google Scholar] [CrossRef]
- Raju, A.S.; Udayashankara, V. Biometric Person Authentication: A Review. In Proceedings of the 2014 International Conference on Contemporary Computing and Informatics (IC3I), Mysore, India, 27–29 November 2014; pp. 575–580. [Google Scholar]
- NS, G.R.S.; Maheswari, N.; Samraj, A.; Vijayakumar, M.V. An Efficient Score Level Multimodal Biometric System Using ECG and Fingerprint. J. Telecommun. Electron. Comput. Eng. (JTEC) 2018, 10, 31–36. [Google Scholar]
- Regouid, M.; Touahria, M.; Benouis, M.; Costen, N. Multimodal Biometric System for ECG, Ear and Iris Recognition Based on Local Descriptors. Multimed. Tools Appl. 2019, 78, 22509–22535. [Google Scholar] [CrossRef]
- El Rahman, S.A. Multimodal Biometric Systems Based on Different Fusion Levels of ECG and Fingerprint Using Different Classifiers. Soft Comput. 2020, 24, 12599–12632. [Google Scholar] [CrossRef]
- Agrafioti, F.; Gao, J.; Hatzinakos, D.; Agrafioti, F.; Gao, J.; Hatzinakos, D. Heart Biometrics: Theory, Methods and Applications; IntechOpen: London, UK, 2011; ISBN 978-953-307-618-8. [Google Scholar]
- Islam, M.S.; Alajlan, N. Biometric Template Extraction from a Heartbeat Signal Captured from Fingers. Multimed. Tools Appl. 2017, 76, 12709–12733. [Google Scholar] [CrossRef]
- Zhao, C.X.; Wysocki, T.; Agrafioti, F.; Hatzinakos, D. Securing Handheld Devices and Fingerprint Readers with ECG Biometrics. In Proceedings of the 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA, USA, 23 September 2012; IEEE: New York, NY, USA, 2012; pp. 150–155. [Google Scholar]
- Alajlan, N.; Islam, M.S.; Ammour, N. Fusion of Fingerprint and Heartbeat Biometrics Using Fuzzy Adaptive Genetic Algorithm. In Proceedings of the World Congress on Internet Security (WorldCIS-2013), London, UK, 9 December 2013; IEEE: New York, NY, USA, 2013; pp. 76–81. [Google Scholar]
- Hammad, M.; Wang, K. Parallel Score Fusion of ECG and Fingerprint for Human Authentication Based on Convolution Neural Network. Comput. Secur. 2019, 81, 107–122. [Google Scholar] [CrossRef]
- Komeili, M.; Armanfard, N.; Hatzinakos, D. Liveness Detection and Automatic Template Updating Using Fusion of ECG and Fingerprint. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1810–1822. [Google Scholar] [CrossRef]
- Jomaa, R.M.; Islam, M.S.; Mathkour, H. Enhancing the Information Content of Fingerprint Biometrics with Heartbeat Signal. In Proceedings of the 2015 World Symposium on Computer Networks and Information Security (WSCNIS), Hammamet, Tunisia, 19–21 September 2015; IEEE: New York, NY, USA, 2015; pp. 1–5. [Google Scholar]
- Jomaa, R.M.; Islam, M.S.; Mathkour, H. Improved Sequential Fusion of Heart-Signal and Fingerprint for Anti-Spoofing. In Proceedings of the 2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis (ISBA), Singapore, 11–12 January 2018; IEEE: New York, NY, USA, 2018; pp. 1–7. [Google Scholar]
- Jomaa, R.M.; Islam, M.S.; Mathkour, H.; Al-Ahmadi, S. A Multilayer System to Boost the Robustness of Fingerprint Authentication against Presentation Attacks by Fusion with Heart-Signal. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 5132–5143. [Google Scholar] [CrossRef]
- Hammad, M.; Liu, Y.; Wang, K. Multimodal Biometric Authentication Systems Using Convolution Neural Network Based on Different Level Fusion of ECG and Fingerprint. IEEE Access 2019, 7, 26527–26542. [Google Scholar] [CrossRef]
- Jomaa, R.M.; Mathkour, H.; Bazi, Y.; Islam, M.S. End-to-End Deep Learning Fusion of Fingerprint and Electrocardiogram Signals for Presentation Attack Detection. Sensors 2020, 20, 2085. [Google Scholar] [CrossRef] [PubMed]
- Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jegou, H. Training Data-Efficient Image Transformers & Distillation through Attention. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18 July 2021; Volume 139, pp. 10347–10357. [Google Scholar]
- ReadMyHeart—Handheld ECG Recording Device (Id:976240) Product Details. Available online: https://dailycare.en.ec21.com/ReadMyHeart_Handheld_ECG_Recording_Device--976239_976240.html (accessed on 2 May 2023).
- Islam, M.S.; Alajlan, N. Augmented-Hilbert Transform for Detecting Peaks of a Finger-ECG Signal. In Proceedings of the 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 8 December 2014; pp. 864–867. [Google Scholar]
- Gütter, J.; Kruspe, A.; Zhu, X.X.; Niebling, J. Impact of Training Set Size on the Ability of Deep Neural Networks to Deal with Omission Noise. Front. Remote Sens. 2022, 3, 932431. Available online: https://www.frontiersin.org/articles/10.3389/frsen.2022.932431 (accessed on 16 August 2023). [CrossRef]
Sensor | Model | Image Size [pixel] | Training | Testing | ||
---|---|---|---|---|---|---|
Live | Fake | Live | Fake | |||
Green Bit | DactyScan26 | 500 × 500 | 1000 | 1000 | 1000 | 1500 |
Biometrika | HiScan-PRO | 1000 × 1000 | 1000 | 1000 | 1000 | 1500 |
Digital Persona | U.are.U 5160 | 252 × 324 | 1000 | 1000 | 1000 | 1500 |
Crossmatch | L Scan Guardian | 640 × 480 | 1500 | 1500 | 1500 | 1448 |
Sensor | Training | Testing |
---|---|---|
Green Bit Biometrika Digital Persona | Ecoflex, gelatin, latex, wood glue | Ecoflex, gelatin, latex, wood glue, Liquid Ecoflex, RTV |
Crossmatch | Body Double, Ecoflex, PlayDoh | Body Double, Ecoflex, PlayDoh, OOMOO, gelatin |
Fingerprint Images | Heartbeats | ||
---|---|---|---|
Bona-Fide | Artefact | ||
# samples per subject | 10 | 12 | 10 |
Total number of samples | 700 | 840 | 700 |
Biometric Modality | CNN Architecture | Average Accuracy % | |
---|---|---|---|
Concatenation | Channel-Wise | ||
Fingerprint (No fusion) | Deit_tiny_patch16_224_fe | 97.4 | 97.4 |
Resnet18 | 98.0 | 98.0 | |
Fusion by ConcatenationFingerprint + ECG | Deit_tiny_patch16_224_fe | 95.0 | 98.8 |
Resnet18 | 98.3 | 99 | |
Resnet18d | 97.6 | 97.6 | |
Resnet50 | 98.6 | 98.3 | |
mobilenetv2_100 | 97.2 | 98.3 | |
mobilenetv2_110d | 98.3 | 98.6 | |
vit_tiny_patch16_224 | 97.1 | 98.1% |
CNN Architecture (Channel Fusion) | Percentage of Subjects Used for Training | ||||
---|---|---|---|---|---|
20% | 30% | 50% | 70% | 80% | |
Deit_tiny_patch16_224_fe | 95.05 | 95.36 | 97.4 | 97.84 | 98.8 |
Resnet18 | 96.5 | 98 | 97.4 | 98.4 | 99.3 |
Resnet50 | 97 | 96.6 | 98.8 | 99.1 | 97.2 |
Mobilenetv2_100 | 90.5 | 93.5 | 95.6 | 96.4 | 96.5 |
Number of Heartbeats | Accuracy |
---|---|
5 | 98.70 |
7 | 98.05 |
10 | 96.83 |
13 | 97.40 |
15 | 98.05 |
18 | 98.38 |
20 | 96.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammour, N.; Bazi, Y.; Alajlan, N. Multimodal Approach for Enhancing Biometric Authentication. J. Imaging 2023, 9, 168. https://doi.org/10.3390/jimaging9090168
Ammour N, Bazi Y, Alajlan N. Multimodal Approach for Enhancing Biometric Authentication. Journal of Imaging. 2023; 9(9):168. https://doi.org/10.3390/jimaging9090168
Chicago/Turabian StyleAmmour, Nassim, Yakoub Bazi, and Naif Alajlan. 2023. "Multimodal Approach for Enhancing Biometric Authentication" Journal of Imaging 9, no. 9: 168. https://doi.org/10.3390/jimaging9090168
APA StyleAmmour, N., Bazi, Y., & Alajlan, N. (2023). Multimodal Approach for Enhancing Biometric Authentication. Journal of Imaging, 9(9), 168. https://doi.org/10.3390/jimaging9090168