The International System for Reporting Serous Fluid Cytopathology: How to Incorporate Molecular Data in Cytopathology Reports
Abstract
:1. Introduction
2. TIS—A Brief Overview
2.1. Non-Diagnostic (ND)
2.2. Negative For Malignancy (NFM)
2.3. Atypia of Undetermined Significance (AUS)
2.4. Suspicious for Malignancy (SFM)
2.5. Malignant (MAL)—Primary and Secondary
3. Molecular Techniques
3.1. Diagnostic Markers
3.1.1. Mesothelial Proliferations
3.1.2. Metastatic Neoplasms
3.1.3. Lymphoproliferative Disorders
3.2. Theranostic Markers
3.2.1. Lung Cancer
3.2.2. Breast and Ovarian Cancers and Other Malignancies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krausz, T.; McGregor, M. The Mesothelium. In Practical Pathology of Serous Membranes; Marchevsky, A., Husain, A., Galateau-Sallé, F., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 1–9. [Google Scholar]
- Farahani, S.J.; Baloch, Z. Are we ready to develop a tiered scheme for the effusion cytology? A comprehensive review and analysis of the literature. Diagn. Cytopathol. 2019, 47, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Husain, H.; Nykin, D.; Bui, N.; Quan, D.; Gomez, G.; Woodward, B.; Venkatapathy, S.; Duttagupta, R.; Fung, E.; Lippman, S.M.; et al. Cell-Free DNA from Ascites and Pleural Effusions: Molecular Insights into Genomic Aberrations and Disease Biology. Mol. Cancer Ther. 2017, 16, 948–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faquin, W.C.; Rossi, E.D.; Baloch, Z.; Barkan, G.A.; Foschini, M.P.; Kurtycz, D.F.I.; Pusztaszeri, M.; Vielh, P. The Milan System for Reporting Salivary Gland Cytopathology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Rosenthal, D.L.; Wojcik, E.M.; Kurtycz, D.F.I. The Paris System for Reporting Urinary Cytology; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Field, A.S.; Raymond, W.A.; Rickard, M.; Arnold, L.; Brachtel, E.F.; Chaiwun, B.; Chen, L.; Di Bonito, L.; Kurtycz, D.F.; Lee, A.H.; et al. The International Academy of Cytology Yokohama System for Reporting Breast Fine-Needle Aspiration Biopsy Cytopathology. Acta Cytol. 2019, 63, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Nayar, R.; Wilbur, D. The Bethesda System for Reporting Cervical Cytology: Definitions, Criteria, and Explanatory Notes; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid Off. J. Am. Thyroid Assoc. 2017, 27, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Pitman, M.B.; Layfield, L. The Papanicolaou Society of Cytopathology System for Reporting Pancreaticobiliary Cytology: Definitions, Criteria and Explanatory Notes; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Chandra, A.; Crothers, B.; Kurtycz, D.; Schmitt, F. Announcement: The International System for Reporting Serous Fluid Cytopathology. Acta Cytol. 2019, 63, 349–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crothers, B.A.; Chandra, A. Proceedings of the American Society of Cytopathology Companion Session at the 2019 United States and Canadian Academy of Pathology Meeting Part 1: Towards an International System for Reporting Serous Fluid Cytopathology. J. Am. Soc. Cytopathol. 2019, 8, 362–368. [Google Scholar] [CrossRef]
- Pinto, D.; Chandra, A.; Crothers, B.A.; Kurtycz, D.F.; Schmitt, F. The international system for reporting serous fluid cytopathology-diagnostic categories and clinical management. J. Am. Soc. Cytopathol. 2020, 9, 469–477. [Google Scholar] [CrossRef]
- Pinto, D.; Schmitt, F. Current applications of molecular testing on body cavity fluids. Diagn. Cytopathol. 2020, 48, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Lobo, C.; Costa, J.; Petronilho, S.; Monteiro, P.; Leça, L.; Schmitt, F. Cytohistological correlation in serous effusions using the newly proposed International System for Reporting Serous Fluid Cytopathology: Experience of an oncological center. Diagn. Cytopathol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Rooper, L.M.; Ali, S.Z.; Olson, M.T. A minimum fluid volume of 75 mL is needed to ensure adequacy in a pleural effusion: A retrospective analysis of 2540 cases. Cancer Cytopathol. 2014, 122, 657–665. [Google Scholar] [CrossRef]
- Rooper, L.M.; Ali, S.Z.; Olson, M.T. A Minimum Volume of More Than 60 mL Is Necessary for Adequate Cytologic Diagnosis of Malignant Pericardial Effusions. Am. J. Clin. Pathol. 2016, 145, 101–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.C.; Davidson, L.R.R.; McKean, M.E. An investigation of adequate volume for the diagnosis of malignancy in pleural fluids. Cytopathol. Off. J. Br. Soc. Clin. Cytol. 2011, 22, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Swiderek, J.; Morcos, S.; Donthireddy, V.; Surapaneni, R.; Jackson-Thompson, V.; Schultz, L.; Kini, S.; Kvale, P. Prospective study to determine the volume of pleural fluid required to diagnose malignancy. Chest 2010, 137, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Abouzgheib, W.; Bartter, T.; Dagher, H.; Pratter, M.; Klump, W. A prospective study of the volume of pleural fluid required for accurate diagnosis of malignant pleural effusion. Chest 2009, 135, 999–1001. [Google Scholar] [CrossRef]
- Sallach, S.M.; Sallach, J.A.; Vasquez, E.; Schultz, L.; Kvale, P. Volume of pleural fluid required for diagnosis of pleural malignancy. Chest 2002, 122, 1913–1917. [Google Scholar] [CrossRef] [Green Version]
- Mårtensson, G.; Pettersson, K.; Thiringer, G. Differentiation between malignant and non-malignant pleural effusion. Eur. J. Respir. Dis. 1985, 67, 326–334. [Google Scholar]
- Roh, M.H. The utilization of cytologic and small biopsy samples for ancillary molecular testing. Mod. Pathol. 2019, 32, 77–85. [Google Scholar] [CrossRef]
- Altman, E.; Spiridonov, L.; Vadim, S.; Alejandro, L.; Alexei, G.; Hector, C.I. Efficacy of cytology, cell blocks and thoracoscopic pleural biopsy in malignant pleural effusion diagnosis. Eur. Respir. J. 2013, 42, P3073. [Google Scholar]
- Alì, G.; Bruno, R.; Fontanini, G. The pathological and molecular diagnosis of malignant pleural mesothelioma: A literature review. J. Thorac. Dis. 2018, 10, S276–S284. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, J.M. Malignant Mesothelioma Mortality—United States, 1999–2015. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 214. [Google Scholar] [CrossRef] [PubMed]
- Cibas, E.; Ducatman, B. Cytology: Diagnostic Principles and Clinical Correlates, 5th ed.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Fassina, A.; Fedeli, U.; Corradin, M.; Da Frè, M.; Fabbris, L. Accuracy and reproducibility of pleural effusion cytology. Leg. Med. Tokyo Jpn. 2007, 10, 20–25. [Google Scholar] [CrossRef]
- Hasteh, F.; Lin, G. The Use of Immunohistochemistry to Distinguish Reactive Mesothelial Cells from Malignant Mesothelioma in Cytologic Effusions Reply. Cancer Cytopathol. 2010, 118, 225. [Google Scholar] [CrossRef]
- De Ayala Alonso, A.G.; Gutiérrez, L.; Fritsch, C.; Papp, B.; Beuchle, D.; Müller, J. A genetic screen identifies novel polycomb group genes in Drosophila. Genetics 2007, 176, 2099–2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasu, M.; Emi, M.; Pastorino, S.; Tanji, M.; Powers, A.; Luk, H.; Baumann, F.; Zhang, Y.; Gazdar, A.; Kanodia, S.; et al. High Incidence of Somatic BAP1 Alterations in Sporadic Malignant Mesothelioma. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2015, 10, 565–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bott, M.; Brevet, M.; Taylor, B.S.; Shimizu, S.; Ito, T.; Wang, L.; Creaney, J.; Lake, R.A.; Zakowski, M.F.; Reva, B.; et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat. Genet. 2011, 43, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, Y.; Sato, A.; Tsujimura, T.; Emi, M.; Morinaga, T.; Fukuoka, K.; Yamada, S.; Murakami, A.; Kondo, N.; Matsumoto, S.; et al. Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci. 2012, 103, 868–874. [Google Scholar] [CrossRef]
- Cigognetti, M.; Lonardi, S.; Fisogni, S.; Balzarini, P.; Pellegrini, V.; Tironi, A.; Bercich, L.; Bugatti, M.; De Rossi, G.; Murer, B.; et al. BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod. Pathol. 2015, 28, 1043–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinoshita, Y.; Hida, T.; Hamasaki, M.; Matsumoto, S.; Sato, A.; Tsujimura, T.; Kawahara, K.; Hiroshima, K.; Oda, Y.; Nabeshima, K. A combination of MTAP and BAP1 immunohistochemistry in pleural effusion cytology for the diagnosis of mesothelioma. Cancer Cytopathol. 2018, 126, 54–63. [Google Scholar] [CrossRef]
- Berg, K.B.; Dacic, S.; Miller, C.; Cheung, S.; Churg, A. Utility of Methylthioadenosine Phosphorylase Compared with BAP1 Immunohistochemistry, and CDKN2A and NF2 Fluorescence In Situ Hybridization in Separating Reactive Mesothelial Proliferations From Epithelioid Malignant Mesotheliomas. Arch. Pathol. Lab. Med. 2018, 142, 1549–1553. [Google Scholar] [CrossRef] [Green Version]
- Hida, T.; Hamasaki, M.; Matsumoto, S.; Sato, A.; Tsujimura, T.; Kawahara, K.; Iwasaki, A.; Okamoto, T.; Oda, Y.; Honda, H.; et al. Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: Comparison with 9p21 FISH and BAP1 immunohistochemistry. Lung Cancer Amst. Neth. 2017, 104, 98–105. [Google Scholar] [CrossRef]
- Onofre, F.B.D.M.; Onofre, A.S.C.; Pomjanski, N.; Buckstegge, B.; Grote, H.J.; Böcking, A. 9p21 Deletion in the diagnosis of malignant mesothelioma in serous effusions additional to immunocytochemistry, DNA-ICM, and AgNOR analysis. Cancer 2008, 114, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Ct, S.M.; Nabeshima, K.; Kamei, T.; Hiroshima, K.; Kawahara, K.; Hata, S.; Ct, K.M.; Matsuno, Y.; Taguchi, K.; Tsujimura, T. Morphology of 9p21 homozygous deletion-positive pleural mesothelioma cells analyzed using fluorescence in situ hybridization and virtual microscope system in effusion cytology. Cancer Cytopathol. 2013, 121, 415–422. [Google Scholar]
- Illei, P.B.; Ladanyi, M.; Rusch, V.W.; Zakowski, M.F. The use of CDKN2A deletion as a diagnostic marker for malignant mesothelioma in body cavity effusions. Cancer 2003, 99, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.T.; Santos, G.D.C.; Hwang, D.M.; Ludkovski, O.; Pintilie, M.; Squire, J.A.; Tsao, M.S. FISH assay development for the detection of p16/CDKN2A deletion in malignant pleural mesothelioma. J. Clin. Pathol. 2010, 63, 630–634. [Google Scholar] [CrossRef]
- Schmitt, F.C. (Ed.) Molecular Applications in Cytology; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ladanyi, M. Implications of P16/CDKN2A deletion in pleural mesotheliomas. Lung Cancer Amst. Neth. 2005, 49 (Suppl. S1), S95–S98. [Google Scholar] [CrossRef]
- Walts, A.E.; Hiroshima, K.; McGregor, S.M.; Wu, D.; Husain, A.N.; Marchevsky, A.M. BAP1 Immunostain and CDKN2A (p16) FISH Analysis: Clinical Applicability for the Diagnosis of Malignant Mesothelioma in Effusions. Diagn. Cytopathol. 2016, 44, 599–606. [Google Scholar] [CrossRef]
- Liu, J.; Liao, X.; Gu, Y.; Fu, L.; Zhao, J.; Li, L.; Chen, Z.; Jiang, J. Role of p16 deletion and BAP1 loss in the diagnosis of malignant mesothelioma. J. Thorac. Dis. 2018, 10, 5522–5530. [Google Scholar] [CrossRef] [PubMed]
- Hida, T.; Hamasaki, M.; Matsumoto, S.; Sato, A.; Tsujimura, T.; Kawahara, K.; Iwasaki, A.; Okamoto, T.; Oda, Y.; Honda, H.; et al. BAP1 immunohistochemistry and p16 FISH results in combination provide higher confidence in malignant pleural mesothelioma diagnosis: ROC analysis of the two tests. Pathol. Int. 2016, 66, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Brandon, S.S.; Harry, C.H.; Anna, F.L.; Kim, T.; Stephanie, R.; Christopher, H.T.; Allen, M.G.; Andrew, C. BAP1 immunohistochemistry and p16 FISH to separate benign from malignant mesothelial proliferations. Am. J. Surg. Pathol. 2015, 39, 977–982. [Google Scholar]
- Bs, L.B.; Bs, T.B.; Pironi, F.; Bs, S.S.; Bs, R.B.; Fabbri, E.; Bs, G.D.C.; Rossi, G. The “Brescia panel” (Claudin-4 and BRCA-associated protein 1) in the differential diagnosis of mesotheliomas with epithelioid features versus metastatic carcinomas. Cancer Cytopathol. 2020. [Google Scholar] [CrossRef]
- Sears, D.; Hajdu, S.I. The cytologic diagnosis of malignant neoplasms in pleural and peritoneal effusions. Acta Cytol. 1987, 31, 85–97. [Google Scholar]
- Corrin, B.; Nicholson, A.G. Chapter 13—Pleura and chest wall. In Pathology of the Lungs, 3rd ed.; Corrin, B., Nicholson, A.G., Eds.; Churchill Livingstone: Edinburgh, UK, 2011; pp. 707–752. [Google Scholar]
- Werling, R.W.; Yaziji, H.; Bacchi, C.E.; Gown, A.M. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: An immunohistochemical survey of 476 primary and metastatic carcinomas. Am. J. Surg. Pathol. 2003, 27, 303–310. [Google Scholar] [CrossRef]
- Kristiansen, I.; Stephan, C.; Jung, K.; Dietel, M.; Rieger, A.; Tolkach, Y.; Kristiansen, G. Sensitivity of HOXB13 as a Diagnostic Immunohistochemical Marker of Prostatic Origin in Prostate Cancer Metastases: Comparison to PSA, Prostein, Androgen Receptor, ERG, NKX3.1, PSAP, and PSMA. Int. J. Mol. Sci. 2017, 18, 1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miettinen, M.; McCue, P.A.; Sarlomo-Rikala, M.; Rys, J.; Czapiewski, P.; Wazny, K.; Langfort, R.; Waloszczyk, P.; Biernat, W.; Lasota, J.; et al. GATA3: A multispecific but potentially useful marker in surgical pathology: A systematic analysis of 2500 epithelial and nonepithelial tumors. Am. J. Surg. Pathol. 2014, 38, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Plaza, J.A.; Suster, D.; Perez-Montiel, D. Expression of immunohistochemical markers in primary and metastatic malignant melanoma: A comparative study in 70 patients using a tissue microarray technique. Appl. Immunohistochem. Mol. Morphol. AIMM 2007, 15, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.A.; Zakowski, M.F. Cytologic features of sarcomas in fluids. Cancer Cytopathol. 1998, 84, 71–76. [Google Scholar] [CrossRef]
- Schaefer, I.-M.; Agaimy, A.; Fletcher, C.D.; Hornick, J.L. Claudin-4 expression distinguishes SWI/SNF complex-deficient undifferentiated carcinomas from sarcomas. Mod. Pathol. 2017, 30, 539–548. [Google Scholar] [CrossRef]
- Chen, A.L.; Janko, E.; Pitman, M.B.; Chebib, I. Clinical, cytologic, and immunohistochemical features of sarcomas involving body cavity fluids. Cancer Cytopathol. 2019, 127, 778–784. [Google Scholar] [CrossRef]
- Bridge, J.A. The role of cytogenetics and molecular diagnostics in the diagnosis of soft-tissue tumors. Mod. Pathol. 2014, 27, S80–S97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, D.K. Serous effusions in malignant lymphomas: A review. Diagn. Cytopathol. 2006, 34, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Kalemkerian, G.P.; Narula, N.; Kennedy, E.B.; Biermann, W.A.; Donington, J.; Leighl, N.B.; Lew, M.; Pantelas, J.; Ramalingam, S.S.; Reck, M.; et al. Molecular Testing Guideline for the Selection of Patients with Lung Cancer for Treatment With Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 911–919. [Google Scholar]
- Siddiqui, M.T.; Schmitt, F.; Churg, A. Proceedings of the American Society of Cytopathology companion session at the 2019 United States and Canadian Academy of Pathology Annual meeting, part 2: Effusion cytology with focus on theranostics and diagnosis of malignant mesothelioma. J. Am. Soc. Cytopathol. 2019, 8, 352–361. [Google Scholar] [CrossRef]
- Roy-Chowdhuri, S.; Pisapia, P.; Salto-Tellez, M.; Savic, S.; Nacchio, M.; de Biase, D.; Tallini, G.; Troncone, G.; Schmitt, F. Invited review—Next-generation sequencing: A modern tool in cytopathology. Virchows Arch. 2019, 475, 3–11. [Google Scholar] [CrossRef]
- Huang, F.W.; Feng, F.Y. A Tumor-Agnostic NTRK (TRK) Inhibitor. Cell 2019, 177, 8. [Google Scholar] [CrossRef]
- Pisapia, P.; Lozano, M.D.; Vigliar, E.; Bellevicine, C.; Pepe, F.; Malapelle, U.; Troncone, G. ALK and ROS1 testing on lung cancer cytologic samples: Perspectives. Cancer Cytopathol. 2017, 125, 817–830. [Google Scholar] [CrossRef] [Green Version]
- Ladanyi, M.; Cagle, P.T.; Beasley, M.B.; Chitale, D.; Dacic, S.; Giaccone, G.; Jenkins, R.B.; Kwiatkowski, D.J.; Saldivar, J.-S.; Squire, J.; et al. The CAP-IASLC-AMP molecular testing guideline for the selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors. J. Clin. Oncol. 2013, 31, 11085. [Google Scholar] [CrossRef]
- DNA Sequencing Costs: Data. Genome.gov. Available online: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data (accessed on 16 March 2021).
- McCombie, W.R.; McPherson, J.D.; Mardis, E.R. Next-Generation Sequencing Technologies. Cold Spring Harb. Perspect. Med. 2019, 9, a036798. [Google Scholar] [CrossRef] [PubMed]
- Schwarze, K.; Buchanan, J.; Taylor, J.C.; Wordsworth, S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet. Med. Off. J. Am. Coll. Med. Genet. 2018, 20, 1122–1130. [Google Scholar]
- Horn, L. Pulmonary Adenocarcinoma: Approaches to Treatment; Elsevier: St. Louis, MO, USA, 2019. [Google Scholar]
- Jacobi, E.M.; Landon, G.; Broaddus, R.R.; Roy-Chowdhuri, S. Evaluating Mismatch Repair/Microsatellite Instability Status Using Cytology Effusion Specimens to Determine Eligibility for Immunotherapy. Arch. Pathol. Lab. Med. 2021, 145, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Diagnosis | Ancillary Tests |
---|---|
Reactive mesothelial cells vs. Carcinomas | Epithelial markers—IHC: Claudin-4 BerEP4 CEA Mesothelial markers—IHC: Calretinin WT1 D2-40 |
“Brescia Panel”—HC: Claudin-4 (epithelial) + BAP-1 (Claudin-4 stains almost all carcinomas; BAP-1 is almost never lost in carcinomas, lost in malignant mesothelioma) | |
Reactive mesothelial cells vs. Malignant Mesothelioma | |
At least two used in conjunction—most useful for epithelioid MMs IHC: BAP1, MTAP FISH: CDKN2A | |
Hematolymphoid neoplasms | IHC: CD3, CD5, CD20, CD21, CD23, CD 45, CD5, CD10, Bcl-2, Bcl-6, MUM1, Ki-67, Κ and λ light chain etc. ISH: EBER, Κ and λ light chain FISH: ALK, MYC, BCL-2, BCL-6, CCND1, etc. |
Epithelial neoplasms | IHC: CK7, CK20, PAX-8 (kidney/gyn tract), GATA-3 (urothelium, breast), TTF-1 (lung, thyroid), PSA, ERG and NKX3.1 (prostate), etc. |
Malignant melanoma | IHC: S100, Melan-A, HMB-45, MITF |
Soft tissue sarcomas | IHC: CD10 (endometrial stromal neoplasms), CD31, CD34, D2-40 (vascular sarcomas), CD99 (Ewing, synovial sarcomas, others), Desmin, SMA (leiomyosarcomas), MyoD1 (rhabdomyosarcomas), MDM1 (liposarcomas), S100 (malignant peripheral nerve sheath tumors, clear cell sarcoma, others), etc. FISH/Molecular tests: for specific translocations |
Diagnosis | Genes | IHC | Molecular Tests |
---|---|---|---|
NSCLC | EGFR | No | Simple sequencing, RT-PCR, NGS (DNA) |
ALK1 | Yes | FISH, NGS (DNA, RNA) | |
ROS1 | Yes Confirmatory molecular test required | FISH, NGS (DNA, RNA) | |
BRAF | Yes For V600E mutation | Simple sequencing, RT-PCR, NGS (DNA) | |
TRK family | Yes Confirmatory molecular test required | FISH, NGS (DNA, RNA) | |
KRAS, NRAS, BRAF, RET, MET, PIK3CA, etc. | No | NGS (DNA, RNA) Preferred, as it enables multiplexing, including genes above | |
PD-L1 | Yes | No | |
Breast and ovarian cancer | Hormonal receptors (ER, PR) | Yes | No |
No | |||
HER2 | Yes May require confirmation by FISH | FISH | |
KI67 | Yes | No | |
BRCA1/2 | No | Simple sequencing, NGS (DNA) | |
Other neoplasms (colon, endometrium, etc.) | MMR | Yes | RT-PCR (for microsatellite instability), direct sequencing of MMR proteins |
Other genes | Varies, mostly no | Varies, NGS is preferred |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, D.; Chandra, A.; Schmitt, F. The International System for Reporting Serous Fluid Cytopathology: How to Incorporate Molecular Data in Cytopathology Reports. J. Mol. Pathol. 2021, 2, 66-76. https://doi.org/10.3390/jmp2020007
Pinto D, Chandra A, Schmitt F. The International System for Reporting Serous Fluid Cytopathology: How to Incorporate Molecular Data in Cytopathology Reports. Journal of Molecular Pathology. 2021; 2(2):66-76. https://doi.org/10.3390/jmp2020007
Chicago/Turabian StylePinto, Daniel, Ashish Chandra, and Fernando Schmitt. 2021. "The International System for Reporting Serous Fluid Cytopathology: How to Incorporate Molecular Data in Cytopathology Reports" Journal of Molecular Pathology 2, no. 2: 66-76. https://doi.org/10.3390/jmp2020007
APA StylePinto, D., Chandra, A., & Schmitt, F. (2021). The International System for Reporting Serous Fluid Cytopathology: How to Incorporate Molecular Data in Cytopathology Reports. Journal of Molecular Pathology, 2(2), 66-76. https://doi.org/10.3390/jmp2020007