Fungal Pigments: Carotenoids, Riboflavin, and Polyketides with Diverse Applications
Abstract
:1. Introduction
2. Pigment-Producing Fungi in Nature
3. Natural Colorants from Different Fungi
4. Fungal Carotenoids, Riboflavin and Polyketides
4.1. Fungal Carotenoids
4.1.1. β–Carotene
4.1.2. Lycopene
4.1.3. Canthaxanthin
4.1.4. Astaxanthin
4.1.5. Torulene
4.1.6. Torularhodin
4.2. Fugal Riboflavin
4.3. Fungal Polyketides
4.3.1. Melanins
4.3.2. Anthraquinones
4.3.3. Hydroxyanthraquinones
4.3.4. Azaphilones
4.3.5. Quinones
4.3.6. Naphthoquinones
5. Fungal Carotenoid and Polyketide Pathways
5.1. Carotenoid (β-Carotene) Biosynthesis Pathway
5.2. Polyketide Pathway
6. Potential Application of Fungal Pigments
6.1. Pigments as Food Colorants
6.1.1. Application of Anthraquinones
6.1.2. Application of Azaphilones
6.1.3. Application of Riboflavin
6.2. Pigments as Antimicrobial Agents
6.3. Pigments as Antioxidant Agents
6.4. Pigments as Anticancer Agents
6.5. Pigments Used in Pharmaceuticals
7. Mycotoxins in Fungal Pigments
8. Future Prospects
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sen, T.; Barrow, C.J.; Deshmukh, S.K. Microbial pigments in the food industry—Challenges and the way forward. Front. Nutr. 2019, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, F.C.; Ligabue-Braun, R. Agro-Industrial Residues: Eco-Friendly and Inexpensive Substrates for Microbial Pigments Production. Front. Sustain. Food Syst. 2021, 5, 65. [Google Scholar] [CrossRef]
- Lai, C.-H.; Yan, T.-Y. Characteristics and aerosol size distributions of metal-containing paint particles at a spray-painting workplace. RSC Adv. 2016, 6, 113754–113761. [Google Scholar] [CrossRef]
- Rana, B.; Bhattacharyya, M.; Patni, B.; Arya, M.; Joshi, G.K. The realm of microbial pigments in the food color market. Front Sustain. Food Syst. 2021, 5, 54. [Google Scholar]
- Ram, S.; Mitra, M.; Shah, F.; Tirkey, S.R.; Mishra, S. Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J. Funct. Food 2020, 67, 103867. [Google Scholar] [CrossRef]
- Dufossé, L. Microbial production of food grade pigments. Food Technol. Biotechnol. 2006, 44, 313–323. [Google Scholar]
- Chatragadda, R.; Dufossé, L. Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms 2021, 9, 637. [Google Scholar] [CrossRef]
- Nabi, B.G.; Mukhtar, K.; Ahmed, W.; Manzoor, M.F.; Ranjha, M.M.A.N.; Kieliszek, M.; Bhat, Z.F.; Aadil, R.M. Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as food colorants in food products. Food Biosci. 2023, 52, 102403. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S. Microbial platforms to produce commercially vital carotenoids at industrial scale: An updated review of critical issues. J. Ind. Microbiol. Biotechnol. 2018, 46, 657–674. [Google Scholar] [CrossRef]
- Downham, A.; Collins, P. Colouring our foods in the last and next millennium. Int. J. Food Sci. Technol. 2000, 35, 5–22. [Google Scholar] [CrossRef]
- Heer, K.; Sharma, S. Microbial pigments as a natural color: A review. Int. J. Pharm. Sci. Res. 2017, 8, 1913–1922. [Google Scholar]
- Ramesh, C.; Vinithkumar, N.V.; Kirubagaran, R.; Venil, C.K.; Dufossé, L. Multifaceted applications of microbial pigments: Current knowledge, challenges and future directions for public health implications. Microorganisms 2019, 7, 186. [Google Scholar] [CrossRef] [Green Version]
- Nigam, P.S.; Luke, J.S. Food additives: Production of microbial pigments and their antioxidant properties. Curr. Opin. Food Sci. 2016, 7, 93–100. [Google Scholar] [CrossRef]
- Venkatachalam, M.; Gérard, L.; Milhau, C.; Vinale, F.; Dufossé, L.; Fouillaud, M. Salinity and temperature influence growth and pigment production in the marine-derived fungal strain Talaromyces albobiverticillius 30548. Microorganisms 2019, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Venil, C.K.; Dufossé, L.; Renuka Devi, P. Bacterial pigments: Sustainable compounds with market potential for pharma and food industry. Front. Sustain. Food Syst. 2020, 4, 100. [Google Scholar] [CrossRef]
- Wang, W.; Chen, R.; Luo, Z.; Wang, W.; Chen, J. Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor. Nat. Prod. Res. 2018, 32, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Celedón, R.; Díaz, L. Natural Pigments of Bacterial Origin and Their Possible Biomedical Applications. Microorganisms 2021, 9, 739. [Google Scholar] [CrossRef] [PubMed]
- Venil, C.K.; Lakshmanaperumalsamy, P. An insightful overview on microbial pigment, Prodigiosin. Electron. J. Biol. 2009, 5, 49–61. [Google Scholar]
- Sutthiwong, N.; Fouillaud, M.; Valla, A.; Caro, Y.; Dufossé, L. Bacteria belonging to the extremely versatile genus Arthrobacter as novel source of natural pigments with extended hue range. Food Res. Int. 2014, 65, 156–162. [Google Scholar] [CrossRef]
- Rather, L.J.; Mir, S.S.; Ganie, S.A.; Islam, S.U.; Li, Q. Research progress, challenges, and perspectives in microbial pigment production for industrial applications-A review. Dyes Pigm. 2022, 210, 110989. [Google Scholar] [CrossRef]
- Meruvu, H.; dos Santos, J.C. Colors of life: A review on fungal pigments. Crit. Rev. Biotechnol. 2021, 41, 1153–1177. [Google Scholar] [CrossRef] [PubMed]
- Fouillaud, M.; Venkatachalam, M.; Girard-Valenciennes, E.; Caro, Y.; Dufossé, L. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities. Mar. Drugs 2016, 14, 64. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Nimse, S.B.; Mathew, D.E.; Dhimmar, A.; Sahastrabudhe, H.; Gajjar, A.; Ghadge, V.A.; Kumar, P.; Shinde, P.B. Microbial melanin: Recent advances in biosynthesis, extraction, characterization, and applications. Biotechnol. Adv. 2021, 53, 107773. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, S.; Aoyagi, H. Thermal and UV Degradation Kinetics of Water-Soluble Extracellular Pigment Produced by Talaromyces purpurogenus. Food Bioprocess Technol. 2022, 15, 606–619. [Google Scholar] [CrossRef]
- Lebeau, J.; Venkatachalam, M.; Fouillaud, M.; Petit, T.; Vinale, F.; Dufossé, L.; Caro, Y. Production and New Extraction Method of Polyketide Red Pigments Produced by Ascomycetous Fungi from Terrestrial and Marine Habitats. J. Fungi 2017, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, G.; Singh, S.K. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process. Biochem. 2011, 46, 188–192. [Google Scholar] [CrossRef]
- Kumari, H.M.; Naidu, K.A.; Vishwanatha, S.; Narasimhamurthy, K.; Vijayalakshmi, G. Safety evaluation of Monascus purpureus red mould rice in albino rats. Food Chem. Toxicol. 2009, 47, 1739–1746. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, S.-W.; Ku, Z.; Visbal-Onufrak, M.A.; Kim, S.-R.; Choi, K.-H.; Ko, H.; Choi, W.; Urbas, A.M.; Goo, T.-W. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 2018, 9, 452. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Shao, Y.; Chen, F. Monascus pigments. Appl. Microbiol. Biotechnol. 2012, 96, 1421–1440. [Google Scholar] [CrossRef]
- Lagashetti, A.C.; Dufossé, L.; Singh, S.K.; Singh, P.N. Fungal Pigments and Their Prospects in Different Industries. Microorganisms 2019, 7, 604. [Google Scholar] [CrossRef] [Green Version]
- Kirti, K.; Amita, S.; Priti, S.; Kumar, A.M.; Jyoti, S. Colorful World of Microbes: Carotenoids and Their Applications. Adv. Biol. 2014, 2014, 837891. [Google Scholar] [CrossRef] [Green Version]
- Celestino, J.D.R.; de Carvalho, L.E.; Lima, M.D.P.; Lima, A.M.; Ogusku, M.M.; de Souza, J.V.B. Bioprospecting of Amazon soil fungi with the potential for pigment production. Process. Biochem. 2014, 49, 569–575. [Google Scholar] [CrossRef]
- Kalra, R.; Conlan, X.A.; Goel, M. Fungi as a Potential Source of Pigments: Harnessing Filamentous Fungi. Front. Chem. 2020, 8, 369. [Google Scholar] [CrossRef] [PubMed]
- Coker, J.A. Extremophiles and biotechnology: Current uses and prospects. F1000Research 2016, 5, 396. [Google Scholar] [CrossRef]
- Rosa, L.H. Fungi of Antarctica: Diversity, Ecology and Biotechnological Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Capon, R.J.; Stewart, M.; Ratnayake, R.; Lacey, E.; Gill, J.H. Citromycetins and Bilains A–C: New Aromatic Polyketides and Diketopiperazines from Australian Marine-Derived and Terrestrial Penicillium spp. J. Nat. Prod. 2007, 70, 1746–1752. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Lee, U.; Kang, J.S.; Choi, H.D.; Sona, B.W. A New Radical Scavenging Anthracene Glycoside, Asperflavin Ribofuranoside, and Polyketides from a Marine Isolate of the Fungus Microsporum. Chem. Pharm. Bull. 2006, 54, 882–883. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Siwarungson, N.; Punnapayak, H.; Lotrakul, P.; Prasongsuk, S.; Bankeeree, W.; Rakshit, S.K. Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in Phetchaburi province, Thailand. Pak. J. Bot. 2014, 46, 983–988. [Google Scholar]
- Kogej, T.; Wheeler, M.H.; Lanišnik Rižner, T.; Gunde-Cimerman, N. Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol. Lett. 2004, 232, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, K.; Liu, Y.; Kovacs, J.M.; Flores-Verdugo, F.; de Santiago, F.J.F. Spectral response to varying levels of leaf pigments collected from a degraded mangrove forest. J. Appl. Remote Sens. 2012, 6, 063501. [Google Scholar]
- Chintapenta, L.K.; Rath, C.C.; Maringinti, B.; Ozbay, G. Pigment production from a mangrove Penicillium. Afr. J. Biotechnol. 2014, 13, 26. [Google Scholar]
- Hamzah, T.N.T.; Lee, S.Y.; Hidayat, A.; Terhem, R.; Faridah-Hanum, I.; Mohamed, R. Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Front. Microbiol. 2018, 9, 1707. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-H.; Pan, J.-H.; Chen, B.; Yu, M.; Huang, H.-B.; Zhu, X.; Lu, Y.-J.; She, Z.-G.; Lin, Y.-C. Three Bianthraquinone Derivatives from the Mangrove Endophytic Fungus Alternaria sp. ZJ9-6B from the South China Sea. Mar. Drugs 2011, 9, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Fujitake, N.; Suzuki, T.; Fukumoto, M.; Oji, Y. Predomination of Dimers over Naturally Occurring Anthraquinones in Soil. J. Nat. Prod. 1998, 61, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Boonyapranai, K.; Tungpradit, R.; Lhieochaiphant, S.; Phutrakul, S. Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiang Mai J. Sci. 2008, 35, 457–466. [Google Scholar]
- Pandey, N.; Jain, R.; Pandey, A.; Tamta, S. Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp.(GBPI_P155) isolated from mountain ecosystem. Mycology 2018, 9, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Aggarwal, S. Novel Bio-colorants for textile application from fungi. J. Text. Assoc. 2014, 74, 282–287. [Google Scholar]
- Mukherjee, G.; Mishra, T.; Deshmukh, S.K. Fungal pigments: An overview. In Developments in Fungal Biology and Applied Mycology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 525–541. [Google Scholar]
- Atalla, M.M.; El-Khrisy, E.A.M.; Youssef, Y.A.; Mohamed, A.A. Production of textile reddish brown dyes by fungi. Malays. J. Microbiol. 2011, 7, 33–40. [Google Scholar]
- Babula, P.; Adam, V.; Havel, L.; Kizek, R. Noteworthy secondary metabolites naphthoquinones-their occurrence, pharmacological properties and analysis. Curr. Pharm. Anal. 2009, 5, 47–68. [Google Scholar] [CrossRef]
- Dufossé, L. Red colourants from filamentous fungi: Are they ready for the food industry? J. Food Compost. Anal. 2018, 69, 156–161. [Google Scholar] [CrossRef]
- Moharram, A.M.; Mostafa, M.E.; Ismail, M.A. Chemical profile of Monascus ruber strains. Food Technol. Biotechnol. 2012, 50, 490–499. [Google Scholar]
- Dufossé, L. Pigments, Microbial; Reference Module in Life Sciences; University of Reunion Island: Saint-Denis, France, 2016. [Google Scholar]
- Gessler, N.N.; Egorova, A.S.; Belozerskaya, T.A. Fungal anthraquinones. Appl. Biochem. Microbiol. 2013, 49, 85–99. [Google Scholar] [CrossRef]
- Cuthill, I.C.; Allen, W.L.; Arbuckle, K.; Caspers, B.; Chaplin, G.; Hauber, M.E.; Hill, G.E.; Jablonski, N.G.; Jiggins, C.D.; Kelber, A. The biology of color. J. Sci. 2017, 357, eaan0221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akilandeswari, P.; Pradeep, B. Exploration of industrially important pigments from soil fungi. Appl. Microbiol. Biotechnol. 2016, 100, 1631–1643. [Google Scholar] [CrossRef] [PubMed]
- Toma, M.A.; Nazir, K.; Mahmud, M.; Mishra, P.; Ali, M.; Kabir, A.; Shahid, M.; Haque, A.; Siddique, M.P.; Alim, M. Isolation and identification of natural colorant producing soil-borne Aspergillus niger from Bangladesh and extraction of the pigment. Foods 2021, 10, 1280. [Google Scholar] [CrossRef]
- Ray, A.C.; Eakin, R. Studies on the biosynthesis of aspergillin by Aspergillus niger. J. Appl. Microbiol. 1975, 30, 909–915. [Google Scholar] [CrossRef]
- Gurupavithra, S.; Rajalakshmi, A.; Jayachitra, A. Optimization of fermentation conditions for red pigment production from Aspergillus flavus under submerged cultivation and analyse its antioxidant properties. Indo Am. J. Pharm. Sci. 2017, 4, 2185–2194. [Google Scholar]
- Teixeira, M.F.; Martins, M.S.; Da Silva, J.C.; Kirsch, L.S.; Fernandes, O.C.; Carneiro, A.L.; Da Conti, R.; Durán, N. Amazonian biodiversity: Pigments from Aspergillus and Penicillium-characterizations, antibacterial activities and their toxicities. Curr. Trends Biotechnol. Pharm. 2012, 6, 300–311. [Google Scholar]
- Miao, F.-P.; Li, X.-D.; Liu, X.-H.; Cichewicz, R.H.; Ji, N.-Y. Secondary Metabolites from an Algicolous Aspergillus versicolor Strain. Mar. Drugs 2012, 10, 131–139. [Google Scholar] [CrossRef]
- Malik, K.; Tokkas, J.; Goyal, S. Microbial pigments: A review. Int. J. Microbial. Res. Technol. 2012, 1, 361–365. [Google Scholar]
- Dufossé, L. Current carotenoid production using microorganisms. In Bio-Pigmentation Biotechnological Implementations; Wiley: Hoboken, NJ, USA, 2017; pp. 87–106. [Google Scholar]
- Kaur, P.; Ghoshal, G.; Jain, A. Bio-utilization of fruits and vegetables waste to produce β-carotene in solid-state fermentation: Characterization and antioxidant activity. Process Biochem. 2019, 76, 155–164. [Google Scholar] [CrossRef]
- Unagul, P.; Wongsa, P.; Kittakoop, P.; Intamas, S.; Srikitikulchai, P.; Tanticharoen, M. Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BCC 1869. J. Ind. Microbiol. Biotechnol. 2005, 32, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, A.; Aminimoghadamfarouj, N.; Wiart, C. Reviews on 1, 4-naphthoquinones from Diospyros L. J. Asian Nat. Prod. Res. 2012, 14, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Cai, Y.; Zhou, L.; Huang, P.; Ren, X.; Zuo, A.; Meng, X.; Xu, M.; Liao, X. Benzoquinone from Fusarium pigment inhibits the proliferation of estrogen receptor-positive MCF-7 cells through the NF-κB pathway via estrogen receptor signaling. Int. J. Mol. Med. 2017, 39, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; Hohn, T.; Leathers, T. Genetically modified strains of Fusarium sporotrichioides for production of lycopene and β-carotene. In Proceedings of the Society of Industrial Microbiology Annual Meeting, San Diego, CA, USA, 29 July 2004. [Google Scholar]
- Enrique, A.; Papp, T.; Breum, J.; Arnau, J.; Arturo, P. Strain and culture conditions improvement for β-carotene production with Mucor. In Microbial Processes and Products; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Daud, N.F.S.; Said, F.M.; Ramu, M.; Yasin, N.M.H. Evaluation of Bio-red Pigment Extraction from Monascus purpureus FTC5357. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 022084. [Google Scholar] [CrossRef]
- Oliveira, C.; Costa, J.; Vendruscolo, F. Maltose syrup residue as the substrate for Monascus pigments production. Biocatal. Agric. Biotechnol. 2019, 18, 101101. [Google Scholar] [CrossRef]
- Jůzlová, P.; Martínková, L.; Křen, V. Secondary metabolites of the fungus Monascus: A review. J. Ind. Microbiol. Biotechnol. 1996, 16, 163–170. [Google Scholar]
- Knecht, A.; Humpf, H.U. Cytotoxic and antimitotic effects of N-containing Monascus metabolites studied using immortalized human kidney epithelial cells. Mol. Nutr. Food. Res. 2006, 50, 406–412. [Google Scholar] [CrossRef]
- Caro, Y.; Anamale, L.; Fouillaud, M.; Laurent, P.; Petit, T.; Dufossé, L. Natural hydroxyanthraquinoid pigments as potent food grade colorants: An overview. Nat. Prod. Bioprospecting 2012, 2, 174–193. [Google Scholar] [CrossRef]
- Hausmann, A.; Sandmann, G. A Single Five-Step Desaturase Is Involved in the Carotenoid Biosynthesis Pathway to β-Carotene and Torulene in Neurospora crassa. Fungal Genet. Biol. 2000, 30, 147–153. [Google Scholar] [CrossRef]
- Mapari, S.A.; Nielsen, K.F.; Larsen, T.O.; Frisvad, J.C.; Meyer, A.S.; Thrane, U. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr. Opin. Biotechnol. 2005, 16, 231–238. [Google Scholar] [CrossRef]
- Sardaryan, E.; Zihlova, H.; Strnad, R.; Cermakova, Z. Arpink Red–meet a new natural red food colorant of microbial origin. In Pigments in Food, More than Colours; Université de Bretagne Occidentale: Quimper, France, 2004; pp. 207–208. [Google Scholar]
- Caro, Y.; Venkatachalam, M.; Lebeau, J.; Fouillaud, M.; Dufossé, L. Pigments and colorants from filamentous fungi. In Fungal Metabolites; Springer: Berlin/Heidelberg, Germany, 2017; pp. 499–568. [Google Scholar]
- Mapari, S.A.; Hansen, M.E.; Meyer, A.S.; Thrane, U. Computerized screening for novel producers of Monascus-like food pigments in Penicillium species. J. Agric. Food Chem. 2008, 56, 9981–9989. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Sivanandhan, G.; Thakare, D. Effect of physical and chemical parameters on the production of red exopigment from Penicillium purpurogenum isolated from spoilt onion and study of its antimicrobial activity. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 599–609. [Google Scholar]
- Padmapriya, C.; Murugesan, R. Characterization of methanolic extract of red pigment from Penicillium purpurogenum and its antioxidant activity. J. Pure Appl. Microbiol. 2016, 10, 1505–1511. [Google Scholar]
- Lucas, E.; Machado, Y.; Ferreira, A.; Dolabella, L.; Takahashi, J. Improved production of pharmacologically-active sclerotiorin by Penicillium sclerotiorum. Trop. J. Pharm. Res. 2010, 9, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Cerdá-Olmedo, E. Phycomyces and the biology of light and color. FEMS Microbiol. Rev. 2001, 25, 503–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-S.; Hayashi, M.; Shibata, Y.; Wataya, Y.; Mitamura, T.; Horii, T.; Kawauchi, K.; Hirata, H.; Tsuboi, S.; Moriyama, Y. Cycloprodigiosin Hydrochloride Obtained from Pseudoalteromonas denitrificans Is a Potent Antimalarial Agent. Biol. Pharm. Bull. 1999, 22, 532–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Xue, F.; Yu, X. GC–MS, FTIR and Raman Analysis of Antioxidant Components of Red Pigments from Stemphylium lycopersici. Curr. Microbiol. 2017, 74, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, N.; Houbraken, J.; Hoekstra, E.; Frisvad, J.C.; Visagie, C.; Samson, R. Delimitation and characterisation of Talaromyces purpurogenus and related species. Pers. Mol. Phylogeny Evol. Fungi 2012, 29, 39. [Google Scholar] [CrossRef] [Green Version]
- Kamala, T.; Devi, S.I.; Sharma, K.C.; Kennedy, K. Phylogeny and Taxonomical Investigation of Trichoderma spp. from Indian Region of Indo-Burma Biodiversity Hot Spot Region with Special Reference to Manipur. BioMed Res. Int. 2015, 2015, 285261. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Chen, A.J.; Liu, B.; Wei, Q.; Bai, J.; Hu, Y. Investigation of citrinin and monacolin K gene clusters variation among pigment producer Monascus species. Fungal Genet. Biol. 2022, 160, 103687. [Google Scholar] [CrossRef]
- Dufossé, L. Microbial and microalgal carotenoids as colourants and supplements. In Carotenoids; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Yang, Y.; Liu, B.; Du, X.; Li, P.; Liang, B.; Cheng, X.; Du, L.; Huang, D.; Wang, L.; Wang, S. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci. Rep. 2015, 5, 8331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Embaby, A.M.; Hussein, M.N.; Hussein, A. Monascus orange and red pigments production by Monascus purpureus ATCC16436 through co-solid state fermentation of corn cob and glycerol: An eco-friendly environmental low cost approach. PLoS ONE 2018, 13, e0207755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho, J.; Oishi, B.O.; Pandey, A.; Soccol, C.R. Biopigments from Monascus: Strains selection, citrinin production and color stability. Braz. Arch. Biol. Technol. 2005, 48, 885–894. [Google Scholar] [CrossRef] [Green Version]
- Fabre, C.E.; Santerre, A.L.; Loret, M.O.; Baberian, R.; Pareilleux, A.; Goma, G.; Blanc, P. Production and Food Applications of the Red Pigments of Monascus ruber. J. Food Sci. 1993, 58, 1099–1102. [Google Scholar] [CrossRef]
- El-Sayed, E.S.R.; Gach, J.; Olejniczak, T.; Boratyński, F. A new endophyte Monascus ruber SRZ112 as an efficient production platform of natural pigments using agro-industrial wastes. Sci. Rep. 2022, 12, 12611. [Google Scholar] [CrossRef]
- Mapari, S.A.; Meyer, A.S.; Thrane, U.; Frisvad, J.C. Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb. Cell Factories 2009, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Dhale, M.A.; Vijay-Raj, A.S. Pigment and amylase production in Penicillium sp NIOM-02 and its radical scavenging activity. Int. J. Food Sci. Technol. 2009, 44, 2424–2430. [Google Scholar] [CrossRef]
- Pandey, N.; Jain, R.; Dhakar, K.; Sharma, A.; Pandey, A. A reduction in temperature induces bioactive red pigment production in a psychrotolerant Penicillium sp. GEU_37 isolated from Himalayan soil. Fungal Biol. 2023, 127, 927–937. [Google Scholar] [CrossRef]
- Pavesi, C.; Flon, V.; Genta-Jouve, G.; Pramil, E.; Escargueil, A.; Nasir, A.; Montier, T.; Franck, X.; Prado, S. Azaphilones Pigments from the Fungus Penicillium hirayamae. Colorants 2023, 2, 31–41. [Google Scholar] [CrossRef]
- Bagy, M.M.; Nafady, N.A.; Hassan, E.A.; Reyad, M.S. Isolation and characterization of pigment producing fungi. Assiut Univ. J. Multidiscip. Sci. Res. 2023, 52, 152–176. [Google Scholar] [CrossRef]
- Gould, B.S.; Raistrick, H. Studies in the biochemistry of micro-organisms: The crystalline pigments of species in the Aspergillus glaucus series. Biochem. J. 1934, 28, 1640. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.A.D.F.; Alves, M.F.; Filho, D.F.; Takahashi, J.A.; Santos, L.S.; De Carvalho, S.A. Pigment produced from Arcopilus aureus isolated from grapevines: Promising natural yellow colorants for the food industry. Food Chem. 2022, 389, 132967. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, A.; Guzhova, I.; Bernetti, L.; Buzzini, P.; Kieliszek, M.; Kot, A.M. Carotenoids and some other pigments from fungi and yeasts. Metabolites 2021, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Chuyen, H.V.; Eun, J.-B. Marine carotenoids: Bioactivities and potential benefits to human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2600–2610. [Google Scholar] [CrossRef]
- Gmoser, R.; Ferreira, J.A.; Taherzadeh, M.J.; Lennartsson, P.R. Post-treatment of Fungal Biomass to Enhance Pigment Production. Appl. Biochem. Biotechnol. 2019, 189, 160–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arikan, E.B.; Canli, O.; Caro, Y.; Dufossé, L.; Dizge, N. Production of Bio-Based Pigments from Food Processing Industry By-Products (Apple, Pomegranate, Black Carrot, Red Beet Pulps) Using Aspergillus carbonarius. J. Fungi 2020, 6, 240. [Google Scholar] [CrossRef] [PubMed]
- Pombeiro-Sponchiado, S.R.; Sousa, G.S.; Andrade, J.C.; Lisboa, H.F.; Gonçalves, R.C. Production of melanin pigment by fungi and its biotechnological applications. In Melanin; IntechOpen: London, UK, 2017; Volume 1, pp. 47–75. [Google Scholar]
- Mussagy, C.U.; Santos-Ebinuma, V.C.; Gonzalez-Miquel, M.; Coutinho, J.A.; Pereira, J.F. Protic ionic liquids as cell-disrupting agents for the recovery of intracellular carotenoids from yeast Rhodotorula glutinis CCT-2186. ACS Sustain. Chem. Eng. 2019, 7, 16765–16776. [Google Scholar] [CrossRef]
- Xie, J.; Yao, S.; Ming, J.; Deng, L.; Zeng, K. Variations in chlorophyll and carotenoid contents and expression of genes involved in pigment metabolism response to oleocellosis in citrus fruits. Food Chem. 2019, 272, 49–57. [Google Scholar] [CrossRef]
- Dzurendova, S.; Losada, C.B.; Dupuy-Galet, B.X.; Fjær, K.; Shapaval, V. Mucoromycota fungi as powerful cell factories for modern biorefinery. Appl. Microbiol. Biotechnol. 2022, 106, 101–115. [Google Scholar] [CrossRef]
- Mapelli-Brahm, P.; Barba, F.J.; Remize, F.; Garcia, C.; Fessard, A.; Khaneghah, A.M.; Sant’Ana, A.S.; Lorenzoe, J.M.; Montesano, D.; Meléndez-Martínez, A.J. The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends Food Sci. Technol. 2020, 99, 389–401. [Google Scholar] [CrossRef]
- Lin, L.; Xu, J. Fungal Pigments and Their Roles Associated with Human Health. J. Fungi 2020, 6, 280. [Google Scholar] [CrossRef]
- Aziz, E.; Batool, R.; Akhtar, W.; Rehman, S.; Shahzad, T.; Malik, A.; Shariati, M.A.; Laishevtcev, A.; Plygun, S.; Heydari, M.; et al. Xanthophyll: Health benefits and therapeutic insights. Life Sci. 2019, 240, 117104. [Google Scholar] [CrossRef]
- Dufossé, L.; Fouillaud, M.; Caro, Y.; Mapari, S.A.; Sutthiwong, N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotechnol. 2014, 26, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Peng, Q.-Q.; Li, Y.-W.; Yan, F.; Wang, Y.-T.; Ye, C.; Shi, T.-Q. Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene. Crit. Rev. Biotechnol. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Fraser, P.D.; Ruiz-Hidalgo, M.J.; Lopez-Matas, M.A.; Alvarez, M.I.; Eslava, A.P.; Bramley, P.M. Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. J. Biochim. Et Biophys. Acta-Gen. Subj. 1996, 1289, 203–208. [Google Scholar] [CrossRef]
- Han, J.; Zhao, W.; Gao, Y.; Yuan, J. Effect of oxidative stress and exogenous β-carotene on sclerotial differentiation and carotenoid yield of Penicillium sp. PT95. Lett. Appl. Microbiol. 2005, 40, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Mehta, B.J.; Salgado, L.M.; Bejarano, E.R.; Cerda-Olmedo, E. New Mutants of Phycomyces blakesleeanus for (beta)-Carotene Production. Appl. Environ. Microbiol. 1997, 63, 3657–3661. [Google Scholar] [CrossRef] [Green Version]
- Velayos, A.; López-Matas, M.A.; Ruiz-Hidalgo, M.J.; Eslava, A.P. Complementation Analysis of Carotenogenic Mutants of Mucor circinelloides. Fungal Genet. Biol. 1997, 22, 19–27. [Google Scholar] [CrossRef]
- Navarro, E.; Lorca-Pascual, J.; Quiles-Rosillo, M.; Nicolas, F.; Garre, V.; Torres-Martínez, S.; Ruiz-Vázquez, R. A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol. Genet. Genom. 2001, 266, 463–470. [Google Scholar] [CrossRef]
- Avalos, J.; Nordzieke, S.; Parra, O.; Pardo-Medina, J.; Limon, M.C. Carotenoid production by filamentous fungi and yeasts. In Biotechnology of Yeasts and Filamentous Fungi; Springer: Berlin, Germany, 2017; pp. 225–279. [Google Scholar]
- Avalos, J.; Pardo-Medina, J.; Parra-Rivero, O.; Ruger-Herreros, M.; Rodríguez-Ortiz, R.; Hornero-Méndez, D.; Limón, M.C. Carotenoid Biosynthesis in Fusarium. J. Fungi 2017, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.D.; Hohn, T.M.; Leathers, T.D. System for the Sequential, Directional Cloning of Multiple DNA Sequences. U.S. Patent 6,184,000, 6 February 2001. [Google Scholar]
- De Oliveira, F.; Hirai, P.R.; Teixeira, M.F.S.; Pereira, J.F.; Santos-Ebinuma, V.C. Talaromyces amestolkiae cell disruption and colorant extraction using imidazolium-based ionic liquids. Sep. Purif. Technol. 2021, 257, 117759. [Google Scholar] [CrossRef]
- Saikawa, Y.; Watanabe, T.; Hashimoto, K.; Nakata, M. Absolute configuration and tautomeric structure of xylindein, a blue–green pigment of Chlorociboria species. Phytochemistry 2000, 55, 237–240. [Google Scholar] [CrossRef]
- Klostermeyer, D.; Knops, L.; Sindlinger, T.; Polborn, K.; Steglich, W. Novel benzotropolone and 2H-Furo [3, 2-b] benzopyran-2-one pigments from Tricholoma aurantium (Agaricales). Eur. J. Org. Chem. 2000, 2000, 603–609. [Google Scholar] [CrossRef]
- Haxo, F. Carotenoids of the Mushroom Cantharellus cinnabarinus. Bot. Gaz. 1950, 112, 228–232. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Pereira, J.F.; Santos-Ebinuma, V.C.; Pessoa, A., Jr.; Raghavan, V. Insights into using green and unconventional technologies to recover natural astaxanthin from microbial biomass. Crit. Rev. Food Sci. Nutr. 2022, 1–15. [Google Scholar] [CrossRef]
- Golubev, W.I. Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast 1995, 11, 101–110. [Google Scholar] [CrossRef]
- Goto, S.; Kogure, K.; Abe, K.; Kimata, Y.; Kitahama, K.; Yamashita, E.; Terada, H. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim. et Biophys. Acta (BBA)-Biomembr. 2001, 1512, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Santocono, M.; Zurria, M.; Berrettini, M.; Fedeli, D.; Falcioni, G. Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells. J. Photochem. Photobiol. B Biol. 2006, 85, 205–215. [Google Scholar] [CrossRef]
- Liu, X.; Osawa, T. Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem. Biophys. Res. Commun. 2007, 357, 187–193. [Google Scholar] [CrossRef]
- Stachowiak, B.; Szulc, P. Astaxanthin for the Food Industry. Molecules 2021, 26, 2666. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Guo, Y.; Cheng, Y.; Han, M.; Zhang, W.; Qian, H. Anti-cancer effects of torulene, isolated from Sporidiobolus pararoseus, on human prostate cancer LNCaP and PC-3 cells via a mitochondrial signal pathway and the down-regulation of AR expression. RSC Adv. 2017, 7, 2466–2474. [Google Scholar] [CrossRef] [Green Version]
- Dimitrova, S.; Pavlova, K.; Lukanov, L.; Korotkova, E.; Petrova, E.; Zagorchev, P.; Kuncheva, M. Production of metabolites with antioxidant and emulsifying properties by Antarctic strain Sporobolomyces salmonicolor AL1. Appl. Biochem. Biotechnol. 2013, 169, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Kot, A.M.; Błażejak, S.; Gientka, I.; Kieliszek, M.; Bryś, J. Torulene and torularhodin: “new” fungal carotenoids for industry? Microb. Cell Factories 2018, 17, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakaki, H.; Nochide, H.; Komemushi, S.; Miki, W. Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis No. 21. J. Biosci. Bioeng. 2002, 93, 338–340. [Google Scholar] [CrossRef]
- Sakaki, H.; Nakanishi, T.; Komemushi, S.; Namikawa, K.; Miki, W. Torularhodin as a Potent Scavenger against Peroxyl Radicals Isolated from a Soil Yeast, Rhodotorula glutinis. J. Clin. Biochem. Nutr. 2001, 30, 1–10. [Google Scholar] [CrossRef]
- Stahmann, K.-P.; Revuelta, J.; Seulberger, H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol. 2000, 53, 509–516. [Google Scholar] [CrossRef]
- Jeong, B.-Y.; Wittmann, C.; Kato, T.; Park, E.Y. Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain. J. Biosci. Bioeng. 2015, 119, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Schwechheimer, S.K.; Becker, J.; Wittmann, C. Towards better understanding of industrial cell factories: Novel approaches for 13C metabolic flux analysis in complex nutrient environments. Curr. Opin. Biotechnol. 2018, 54, 128–137. [Google Scholar] [CrossRef]
- Lin, L.; Xu, J. Production of Fungal Pigments: Molecular Processes and Their Applications. J. Fungi 2022, 9, 44. [Google Scholar] [CrossRef]
- Surwase, S.N.; Jadhav, S.B.; Phugare, S.S.; Jadhav, J.P. Optimization of melanin production by Brevundimonas sp. SGJ using response surface methodology. 3 Biotech 2013, 3, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Ghattavi, K.; Homaei, A.; Kamrani, E.; Kim, S.-K. Melanin pigment derived from marine organisms and its industrial applications. Dyes Pigm. 2022, 201, 110214. [Google Scholar] [CrossRef]
- Banerjee, A.; Supakar, S.; Banerjee, R. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: A spectroscopic characterization. PLoS ONE 2014, 9, e84574. [Google Scholar] [CrossRef] [Green Version]
- El-Gamal, M.; El-Bialy, H.; Elsayed, M.; Khalifa, M. Isolation and characterization of melanized yeast form of Aureobasidium pullulans and physiological studies on the melanization process. J. Nucl. Sci. Technol. 2017, 5, 57–72. [Google Scholar]
- El-Naggar, N.E.-A.; El-Ewasy, S.M. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Sci. Rep. 2017, 7, 42129. [Google Scholar] [CrossRef]
- Płonka, P.; Grabacka, M. Melanin synthesis in microorganisms: Biotechnological and medical aspects. Acta Biochim. Pol. 2006, 53, 429–443. [Google Scholar] [CrossRef] [Green Version]
- Langfelder, K.; Streibel, M.; Jahn, B.; Haase, G.; Brakhage, A.A. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet. Biol. 2003, 38, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Soliev, A.B.; Hosokawa, K.; Enomoto, K. Bioactive pigments from marine bacteria: Applications and physiological roles. Evid. Based Complement. Altern. Med. 2011, 2011, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.-K. RETRACTED: Marine actinobacterial metabolites: Current status and future perspectives. Microbiol. Res. 2013, 168, 311–332. [Google Scholar] [CrossRef] [PubMed]
- McCallum, N.C.; Son, F.A.; Clemons, T.D.; Weigand, S.J.; Gnanasekaran, K.; Battistella, C.; Barnes, B.E.; Abeyratne-Perera, H.; Siwicka, Z.E.; Forman, C.J.; et al. Allomelanin: A Biopolymer of Intrinsic Microporosity. J. Am. Chem. Soc. 2021, 143, 4005–4016. [Google Scholar] [CrossRef]
- Mapari, S.A.; Thrane, U.; Meyer, A.S. Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol. 2010, 28, 300–307. [Google Scholar] [CrossRef]
- Hanson, J.R. Chemistry of Fungi; Royal Society of Chemistry: London, UK, 2008. [Google Scholar]
- Durán, N.; Teixeira, M.F.S.; De Conti, R.; Esposito, E. Ecological-Friendly Pigments from Fungi. Crit. Rev. Food Sci. Nutr. 2002, 42, 53–66. [Google Scholar] [CrossRef]
- Méndez, A.; Pérez, C.; Montañéz, J.C.; Martínez, G.; Aguilar, C.N. Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J. Zhejiang Univ. Sci. 2011, 12, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Tao, H.; Chen, W.; Yang, B.; Zhou, X.; Luo, X.; Liu, Y. Recent advances in the chemistry and biology of azaphilones. RSC Adv. 2020, 10, 10197–10220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimenta, L.; Gomes, D.; Cardoso, P.; Takahashi, J. Recent Findings in Azaphilone Pigments. J. Fungi 2021, 7, 541. [Google Scholar] [CrossRef] [PubMed]
- Lagashetti, A.C.; Singh, S.K.; Dufossé, L.; Srivastava, P.; Singh, P.N. Antioxidant, Antibacterial and Dyeing Potential of Crude Pigment Extract of Gonatophragmium triuniae and Its Chemical Characterization. Molecules 2022, 27, 393. [Google Scholar] [CrossRef]
- Perumal, K.; Stalin, V.; Chandrasekarenthiran, S.; Sumathi, E.; Saravanakumar, A. Extraction and characterization of pigment from Sclerotinia sp. and its use in dyeing cotton. Text. Res. J. 2009, 79, 1178–1187. [Google Scholar] [CrossRef]
- Martinkova, L. Biological activities of oligoketide pigments of Monascus purpureus. Food Addit. Contam. 1999, 16, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.Y.; Lam, C.-W.; Tam, E.W.T.; Lee, K.-C.; Yung, K.K.Y.; Leung, C.K.F.; Sze, K.-H.; Lau, S.K.P.; Yuen, K.-Y. The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in Penicillium marneffei. Sci. Rep. 2014, 4, 6728. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Shi, K.; Song, D.; Quan, L.; Wu, Z. The pigment characteristics and productivity shifting in high cell density culture of Monascus anka mycelia. BMC Biotechnol. 2015, 15, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, K.; Jadhav, S.; Kumar, A. Morphological and molecular study of different Penicillium species. Middle-East J. Sci. Res. 2011, 7, 203–210. [Google Scholar]
- Feng, P.; Shang, Y.; Cen, K.; Wang, C. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc. Natl. Acad. Sci. USA 2015, 112, 11365–11370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anslow, W.K.; Raistrick, H. Studies in the biochemistry of micro-organisms: Fumigatin (3-hydroxy-4-methoxy-2: 5-toluquinone), and spinulosin (3: 6-dihydroxy-4-methoxy-2: 5-toluquinone), metabolic products respectively of Aspergillus fumigatus Fresenius and Penicillium spinulosum Thom. Biochem. J. 1938, 32, 687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, P.D.; Bramley, P.M. The purification of phytoene dehydrogenase from Phycomyces blakesleeanus. Biochim. et Biophys. Acta (BBA)-Lipids Lipid Metab. 1994, 1212, 59–66. [Google Scholar] [CrossRef]
- Mercadante, A.; Egeland, E.; Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoids Handbook; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Domonkos, I.; Kis, M.; Gombos, Z.; Ughy, B. Carotenoids, versatile components of oxygenic photosynthesis. Prog. Lipid Res. 2013, 52, 539–561. [Google Scholar] [CrossRef]
- Arrach, N.; Fernandez-Martin, R.; Cerdá-Olmedo, E.; Avalos, J. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc. Natl. Acad. Sci. USA 2001, 98, 1687–1692. [Google Scholar] [CrossRef]
- Rodríguez-Sáiz, M.; Paz, B.; De La Fuente, J.; López-Nieto, M.; Cabri, W.; Barredo, J. Blakeslea trispora genes for carotene biosynthesis. Appl. Environ. Microbiol. 2004, 70, 5589–5594. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Qin, X.; Zhao, Y.; Sun, X.; Yu, X.; Feng, Y. Strategies to enhance the production efficiency of Monascus pigments and control citrinin contamination. Process Biochem. 2022, 117, 19–29. [Google Scholar] [CrossRef]
- He, J.; Jia, M.; Li, W.; Deng, J.; Ren, J.; Luo, F.; Bai, J.; Liu, J. Toward improvements for enhancement the productivity and color value of Monascus pigments: A critical review with recent updates. Crit. Rev. Food Sci. Nutr. 2021, 62, 7139–7153. [Google Scholar] [CrossRef]
- Tallapragada, P.; Dikshit, R. Microbial production of secondary metabolites as food ingredients. In Microbial Production of Food Ingredients and Additives; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Hajjaj, H.; Klaébé, A.; Goma, G.; Blanc, P.J.; Barbier, E.; François, J. Medium-Chain Fatty Acids Affect Citrinin Production in the Filamentous Fungus Monascus ruber. Appl. Environ. Microbiol. 2000, 66, 1120–1125. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Kim, C.; Kim, K.; Shin, C.S. Color characteristics of Monascus pigments derived by fermentation with various amino acids. J. Agric. Food Chem. 2003, 51, 1302–1306. [Google Scholar] [CrossRef]
- Fu, G.; Xu, Y.; Li, Y.; Tan, W. Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in Monascus aurantiacus and maintain food red pigment production. Asia Pac. J. Clin. Nutr. 2007, 16, 137–142. [Google Scholar]
- Rao, M.P.N.; Xiao, M.; Li, W.-J. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications. Front. Microbiol. 2017, 8, 1113. [Google Scholar]
- Echegaray, N.; Guzel, N.; Kumar, M.; Guzel, M.; Hassoun, A.; Lorenzo, J.M. Recent advancements in natural colorants and their application as coloring in food and in intelligent food packaging. Food Chem. 2023, 404, 134453. [Google Scholar] [CrossRef]
- Aman Mohammadi, M.; Ahangari, H.; Mousazadeh, S.; Hosseini, S.M.; Dufossé, L. Microbial pigments as an alternative to synthetic dyes and food additives: A brief review of recent studies. Bioprocess Biosyst. Eng. 2022, 45, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Chaudhary, R.; Shah, Z.; Dufossé, L.; Fouillaud, M.; Mukhtar, H.; Haq, I.U. An Overview on Industrial and Medical Applications of Bio-Pigments Synthesized by Marine Bacteria. Microorganisms 2020, 9, 11. [Google Scholar] [CrossRef]
- Mapari, S.A.; Meyer, A.S.; Thrane, U. Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J. Agric. Food Chem. 2006, 54, 7027–7035. [Google Scholar] [CrossRef]
- Simpson, B.K.; Nollet, L.M.; Toldrá, F.; Benjakul, S.; Paliyath, G.; Hui, Y. Food Biochemistry and Food Processing; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kim, D.; Ku, S. Beneficial Effects of Monascus sp. KCCM 10093 Pigments and Derivatives: A Mini Review. Molecules 2018, 23, 98. [Google Scholar] [CrossRef] [Green Version]
- Torres, F.A.E.; Zaccarim, B.R.; de Lencastre Novaes, L.C.; Jozala, A.F.; Dos Santos, C.A.; Teixeira, M.F.S.; Santos-Ebinuma, V.C. Natural colorants from filamentous fungi. Appl. Microbiol. Biotechnol. 2016, 100, 2511–2521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Raheam, H.E.; Alrumman, S.A.; Gadow, S.I.; El-Sayed, M.H.; Hikal, D.M.; Hesham, A.E.L.; Ali, M.M. Optimization of Monascus purpureus for Natural Food Pigments Production on Potato Wastes and Their Application in Ice Lolly. Front. Microbiol. 2022, 13, 862080. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Raheam, H.E.F.; Abdel-Mageed, W.S.; Abd El-Rahman, M.A.M. Optimization of production of Monascus ruber pigments on broth medium and their application in flavored yogurts. Egypt. J. Food Sci. 2019, 47, 271–283. [Google Scholar]
- Abdel-Raheam, H.E.F.; Hassan, S.H.A.; Ali, M.M.A. Production and application of natural food pigments by Monascus ruber using potato chips manufacturing wastes. Bull. Pharm. Sci. 2021, 44, 551–563. [Google Scholar] [CrossRef]
- Gomah, N.H.; Abdel-Raheam, H.E.F.; Mohamed, T.H. Production of Natural Pigments from Monascus ruber by Solid State Fermentation of Broken Rice and its Application as Colorants of Some Dairy Products. J. Food Dairy Sci. 2017, 8, 37–43. [Google Scholar] [CrossRef]
- Darwesh, O.M.; Matter, I.A.; Almoallim, H.S.; Alharbi, S.A.; Oh, Y.-K. Isolation and Optimization of Monascus ruber OMNRC45 for Red Pigment Production and Evaluation of the Pigment as a Food Colorant. Appl. Sci. 2020, 10, 8867. [Google Scholar] [CrossRef]
- Scotter, M. Overview of EU regulations and safety assessment for food colours. In Colour Additives for Foods and Beverages; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Takahashi, J.; Carvalho, S. Nutritional potential of biomass and metabolites from filamentous fungi. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 1126–1135. [Google Scholar]
- Kumar, A.; Vishwakarma, H.S.; Singh, J.; Dwivedi, S.; Kumar, M. Microbial pigments: Production and their applications in various industries. Int. J. Pharm. Chem. Biol. Sci. 2015, 5, 203–212. [Google Scholar]
- Jung, H.; Kim, C.; Shin, C.S. Enhanced photostability of Monascus pigments derived with various amino acids via fermentation. J. Agric. Food Chem. 2005, 53, 7108–7114. [Google Scholar] [CrossRef] [PubMed]
- Jeun, J.; Jung, H.; Kim, J.H.; Kim, Y.O.; Youn, S.H.; Shin, C.S. Effect of the monascus pigment threonine derivative on regulation of the cholesterol level in mice. Food Chem. 2008, 107, 1078–1085. [Google Scholar] [CrossRef]
- Yang, J.-H.; Tseng, Y.-H.; Lee, Y.-L.; Mau, J.-L. Antioxidant properties of methanolic extracts from monascal rice. LWT-Food Sci. Technol. 2006, 39, 740–747. [Google Scholar] [CrossRef]
- Santos, M.A.; Mateos, L.; Stahmann, K.-P.; Revuelta, J.-L. Insertional mutagenesis in the vitamin B2 producer fungus Ashbya gossypii. In Microbial Processes and Products; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Wang, W.; Liao, Y.; Chen, R.; Hou, Y.; Ke, W.; Zhang, B.; Gao, M.; Shao, Z.; Chen, J.; Li, F. Chlorinated azaphilone pigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1. Mar. Drugs 2018, 16, 61. [Google Scholar] [CrossRef] [Green Version]
- Parthiban, M.; Thilagavathi, G.; Viju, S. Development of antibacterial silk sutures using natural fungal extract for healthcare applications. J. Text. Sci. Eng. 2016, 6, 249. [Google Scholar]
- Kumar, S.; Verma, U.; Sharma, H. Antibacterial activity Monascus purpureus (red pigment) isolated from rice malt. Asian J. Biol. Sci. 2012, 1, 252–255. [Google Scholar]
- Lucas, E.M.; Castro, M.C.; Takahashi, J.A. Antimicrobial properties of sclerotiorin, isochromophilone VI and pencolide, metabolites from a Brazilian cerrado isolate of Penicillium sclerotiorum Van Beyma. Braz. J. Microbiol. 2007, 38, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Petit, P.; Lucas, E.M.F.; Abreu, L.M.; Pfenning, L.H.; Takahashi, J.A. Novel antimicrobial secondary metabolites from a Penicillium sp. isolated from Brazilian cerrado soil. Electron. J. Biotechnol. 2009, 12, 8–9. [Google Scholar] [CrossRef] [Green Version]
- Poorniammal, R.; Prabhu, S.; Dufossé, L.; Kannan, J. Safety Evaluation of Fungal Pigments for Food Applications. J. Fungi 2021, 7, 692. [Google Scholar] [CrossRef] [PubMed]
- Naisi, S.; Bayat, M.; Salehi, T.Z.; Zarif, B.R.; Yahyaraeyat, R. Antimicrobial and anti-biofilm effects of carotenoid pigment extracted from Rhodotorula glutinis strain on food-borne bacteria. Iran. J. Microbiol. 2023, 15, 79–88. [Google Scholar] [CrossRef]
- Nair, S.; Abraham, J. Biosynthesis and characterization of yellow pigment from Aspergillus nidulans strain JAS3 isolated from Thirumullavaram, Indian Ocean and its therapeutic activity against clinical pathogens. Biologia 2023, 78, 1171–1185. [Google Scholar] [CrossRef]
- Poorniammal, R.; Prabhu, S. Antimicrobial and wound healing potential of fungal pigments from Thermomyces sp. and Penicillium purpurogenum in wistar rats. Ann. Phytomed. Int. J. 2022, 11, 376–382. [Google Scholar] [CrossRef]
- Vendruscolo, F.; Bühler, R.M.M.; de Carvalho, J.C.; de Oliveira, D.; Moritz, D.E.; Schmidell, W.; Ninow, J.L. Monascus: A reality on the production and application of microbial pigments. Appl. Biochem. Biotechnol. 2016, 178, 211–223. [Google Scholar] [CrossRef]
- Poorniammal, R.; Prabhu, S.; Sakthi, A. Evaluation of in vitro antioxidant activity of fungal pigments. J. Pharma. Innov. 2019, 8, 326–330. [Google Scholar]
- Zeng, H.; Qin, L.; Liu, X.; Miao, S. Increases of Lipophilic Antioxidants and Anticancer Activity of Coix Seed Fermented by Monascus purpureus. Foods 2021, 10, 566. [Google Scholar] [CrossRef]
- Fonseca, C.S.; da Silva, N.R.; Ballesteros, L.F.; Basto, B.; Abrunhosa, L.; Teixeira, J.A.; Silvério, S.C. Penicillium brevicompactum as a novel source of natural pigments with potential for food applications. Food Bioprod. Process. 2022, 132, 188–199. [Google Scholar] [CrossRef]
- Contreras-Machuca, P.I.; Avello, M.; Pastene, E.; Machuca, Á.; Aranda, M.; Hernández, V.; Fernández, M. Chemical characterization and microencapsulation of extracellular fungal pigments. Appl. Microbiol. Biotechnol. 2022, 106, 8021–8034. [Google Scholar] [CrossRef] [PubMed]
- Soumya, K.; Narasimha Murthy, K.; Sreelatha, G.; Tirumale, S. Characterization of a red pigment from Fusarium chlamydosporum exhibiting selective cytotoxicity against human breast cancer MCF-7 cell lines. J. Appl. Microbiol. 2018, 125, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Geweely, N.S. Investigation of the optimum condition and antimicrobial activities of pigments from four potent pigment-producing fungal species. J. Life Sci. 2011, 5, 201. [Google Scholar]
- Tajick, M.A.; Seid Mohammad Khani, H.; Babaeizad, V. Identification of biological secondary metabolites in three Penicillium species, P. goditanum, P. moldavicum, and P. corylophilum. Prog. Biol. Sci. 2014, 4, 53–61. [Google Scholar]
- Chen, S.; Guo, H.; Wu, Z.; Wu, Q.; Jiang, M.; Li, H.; Liu, L. Targeted Discovery of Sorbicillinoid Pigments with Anti-Inflammatory Activity from the Sponge-Derived Fungus Stagonospora sp. SYSU-MS7888 Using the PMG Strategy. J. Agric. Food Chem. 2022, 70, 15116–15125. [Google Scholar] [CrossRef]
- Hasanien, Y.A.; Nassrallah, A.A.; Zaki, A.G.; Abdelaziz, G. Optimization, purification, and structure elucidation of anthraquinone pigment derivative from Talaromyces purpureogenus as a novel promising antioxidant, anticancer, and kidney radio-imaging agent. J. Biotechnol. 2022, 356, 30–41. [Google Scholar] [CrossRef]
- Shakour, Z.T.; Farag, M.A. Diverse host-associated fungal systems as a dynamic source of novel bioactive anthraquinones in drug discovery: Current status and future perspectives. J. Adv. Res. 2022, 39, 257–273. [Google Scholar] [CrossRef]
- Hayat, R.; Din, G.; Farooqi, A.; Haleem, A.; Din, S.U.; Hasan, F.; Badshah, M.; Khan, S.; Shah, A.A. Characterization of melanin pigment from Aspergillus terreus LCM8 and its role in cadmium remediation. Int. J. Environ. Sci. Technol. 2022, 20, 3151–3160. [Google Scholar] [CrossRef]
- Wang, W.L.; Zhu, T.J.; Tao, H.W.; Lu, Z.Y.; Fang, Y.C.; Gu, Q.Q.; Zhu, W.M. Three novel, structurally unique spirocyclic alkaloids from the halotolerant B-17 fungal strain of Aspergillus variecolor. Chem. Biodivers. 2007, 4, 2913–2919. [Google Scholar] [CrossRef]
- Blanc, P.; Loret, M.; Santerre, A.; Pareilleux, A.; Prome, D.; Prome, J.; Laussac, J.; Goma, G. Pigments of Monascus. J. Food Sci. 1994, 59, 862–865. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Tseng, C.-P.; Chien, I.-L.; Wang, W.-Y.; Liaw, L.-L.; Yuan, G.-F. Exploring the distribution of citrinin biosynthesis related genes among Monascus species. J. Agric. Food Chem. 2008, 56, 11767–11772. [Google Scholar] [CrossRef]
- Xu, M.-J.; Yang, Z.-L.; Liang, Z.-Z.; Zhou, S.-N. Construction of a Monascus purpureus mutant showing lower citrinin and higher pigment production by replacement of ctnA with pks1 without using vector and resistance gene. J. Agric. Food Chem. 2009, 57, 9764–9768. [Google Scholar] [CrossRef] [PubMed]
- Krejci, M.E.; Bretz, N.S.; Koechel, D.A. Citrinin produces acute adverse changes in renal function and ultrastructure in pentobarbital-anesthetized dogs without concomitant reductions in [potassium] plasma. Toxicology 1996, 106, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Bouslimi, A.; Bouaziz, C.; Ayed-Boussema, I.; Hassen, W.; Bacha, H. Individual and combined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and on chromosome aberrations in mice bone marrow cells. Toxicology 2008, 251, 1–7. [Google Scholar] [CrossRef]
- Dönmez-Altuntas, H.; Dumlupinar, G.; Imamoglu, N.; Hamurcu, Z.; Liman, B.C. Effects of the mycotoxin citrinin on micronucleus formation in a cytokinesis-block genotoxicity assay in cultured human lymphocytes. J. Appl. Toxicol. 2007, 27, 337–341. [Google Scholar] [CrossRef]
- Arai, M.; Hibino, T. Tumorigenicity of citrinin in male F344 rats. Cancer Lett. 1983, 17, 281–287. [Google Scholar] [CrossRef]
- Su, N.-W.; Lin, Y.-L.; Lee, M.-H.; Ho, C.-Y. Ankaflavin from Monascus-Fermented Red Rice Exhibits Selective Cytotoxic Effect and Induces Cell Death on Hep G2 Cells. J. Agric. Food Chem. 2005, 53, 1949–1954. [Google Scholar] [CrossRef]
- Li, J.-J.; Shang, X.-Y.; Li, L.-L.; Liu, M.-T.; Zheng, J.-Q.; Jin, Z.-L. New cytotoxic azaphilones from Monascus purpureus-fermented rice (red yeast rice). Molecules 2010, 15, 1958–1966. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.G.; Tonso, A.; Kilikian, B.V. Effect of dissolved oxygen concentration on red pigment and citrinin production by Monascus purpureus ATCC 36928. Braz. J. Chem. Eng. 2008, 25, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.Q.; Xu, Z.N.; Zhou, L.P.; Sung, C. Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001. Metab. Eng. 2010, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Muñoz, S.; Mariano-Silva, G.; Leite, M.O.; Mura, F.B.; Verma, M.L.; da Silva, S.S.; Chandel, A.K. Production of fungal and bacterial pigments and their applications. In Biotechnological Production of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2020; pp. 327–361. [Google Scholar]
- Xu, M.; Yang, M.; Sun, H.; Gao, M.; Wang, Q.; Wu, C. Bioconversion of biowaste into renewable energy and resources: A sustainable strategy. Environ. Res. 2022, 214, 113929. [Google Scholar] [CrossRef] [PubMed]
Fungi | Color | Pigment | Molecular Formula | Applications | Status | References |
---|---|---|---|---|---|---|
Ashbya gossypi | Yellow | Riboflavin | C17H20N4O6 | Food and beverages | IP | [53] |
Aspergillus awamori and Aspergillus niger | Yellow, Brown | Asperyellone | C20H22O | Antibacterial activity | RP | [56,57] |
Aspergillus niger | Black | Aspergillin | C24H35NO4 | Antimicrobial activity | RP | [58] |
Aspergillus flavus | Red | Unknown | Unknown | Antioxidant activity | NK | [59] |
Aspergillus sclerotiorum | Yellow | Neoaspergillic acid | C12H20N2O2 | Antibacterial activity | RP | [60] |
Aspergillus versicolor | Yellow | Asperversin | C47H58O10 | Antifungal agent | RP | [61] |
Blakeslea trispora | Orange to yellow | β-carotene | C40H56 | Food colorant; anticancer and antioxidant activities | IP | [62,63,64] |
Blakeslea trispora | Red | Lycopene | C40H56 | Food colorant, anticancer | IP | [51] |
Cordyceps unilateralis | Deep, blood red | Naphtoquinone | C10H6O2 | Food colorant; anticancer and antibacterial activities | RP | [63,65,66] |
Fusarium oxyporum | Pink/violet | Anthraquinone | C14H8O2 | Antibacterial activity | IP | [54] |
Fusarium sp. | Yellow | Benzoquinone | C6H4O2 | Anticancer agent | [67] | |
Fusarium sporotrichioides | Yellow to orange/Red | β-carotene/Lycopene | C40H56 | Food colorants | RP | [51,68] |
Fusarium verticillioides | Yellow | Napthoquinone | C10H6O2 | Antibacterial activity and food colorant | RP | [45] |
Lactarius sp. | Blue | Azulenes | C10H8 | Food and beverages | RP | [53] |
Mucor circinelloides | Yellow to orange | β-carotene | C40H56 | Food colorant | DS | [69] |
Monascus purpureus FTC 5357 | Red | Monascorubramine | C28H33NO8 | Food colorant | RP | [70] |
Monascus ruber CCT 3802 | Orange, yellow, and red | Monascorubrin | C23H26O5 | Food colorant | RP | [71] |
Monascus purpureus | Yellow | Monascin | C21H26O5 | Food colorant | IP | [72] |
Monascus sp. | Yellow | Ankaflavin (Azaphilone) | C23H30O5 | Food colorant, pharmaceutical, and antitumor and antiinflamatory activities | IP | [51,63] |
Monascus sp. | Orange | Rubropuntatin | C21H22O5 | Anticancer activity and food colorant | IP | [1,52,67] |
Monascus sp. | Red | Monascorubramine | C23H27O4 | Antioxidant activity and food colorant | IP | [29,50,51] |
Monascus sp. | Red | Monascopyridine B | C23H29NO4 | Antioxidant activity | IP | [73] |
Monascus roseus | Orange, red/pink | Canthaxanthin | C40H52O2 | Antioxidant and anticancer activities | IP | [51,74] |
Neurospora crassa | Yellow to orange | β-carotene | C40H56 | Food colorant | RP | [75] |
Paecilomyces sinclairii | Red | Unknown | --------- | Food colorant | RP | [51] |
Penicillium herquei | Yellow/blue | Atrovenetin | C19H17O6 | Antioxidant and food colorant | [76] | |
Penicillium oxalicum | Arpink red and other hue | Anthraquinone | C14H8O2 | Anticancer activity in food and pharmaceuticals; antifungal and virucidal activities | IP | [15,49,67,77,78] |
Penicillium purpurogenum | Orange/Yellow to orange/Red/orange to red | Purpurogenone/Mitorubrin/Azaphilone/Mitorubrinol | C14H12O5/C21H18O7/C21H22O7/C21H18O8 | Food, antioxidant, and pharmaceuticals | DS | [63,79,80,81] |
Phycomyces Blakesleeanus | Yellow to orange | β-carotene | C40H56 | ---------- | RP | [62] |
Penicillium sclerotiorum | Yellow to orange | Sclerotiorin | C21H23ClO5 | Antibacterial and antifungal activities | NK | [82] |
Phycomyces blakesleeanus | Yellow to orange | β-carotene | C40H56 | Food colorant | RP | [83] |
Pseudoalteromonas Denitrificans | Red | Cycloprodigiosin | Antiplasmoidal and anticancer activities | DS | [84] | |
Stemphylium lycopersici | Red | Anthraquinone | C14H8O2 | Antioxidant activity | [85] | |
Talaromyces atroroseus | Red | Azaphilone | C21H22O7 | Food colorant and antioxidant and anticancer activities | DS | [14,51] |
Talaromyces sp. | Red | N-glutarylmonascorubramine | C28H33NO8 | Food colorant | IP | [86] |
Trichoderma virens | Yellow | Virone | C22H24O4 | Antifungal activity | NK | [11,87] |
Color | E-Number * | Fungal Pigments | Responsible Fungi |
---|---|---|---|
Yellow | E101 (iii) | Riboflavin | Ashbya gossypii |
Orange-yellow | E160a (ii) | Β-carotene | Blakesla trispora |
Yellow to red | E160d (iii) | Lycopene | Blakesla trispora |
Yellow/orange/red | E161g | Canthaxanthin | ------------- |
Sample (Food Products) | Anthraquinone (Amount mg/kg) |
---|---|
Milk products | 150 |
Ice cream | 150 |
Meat and meat products | 100 |
Nonalcoholic drinks | 100 |
Alcoholic drinks | 200 |
Confectionary products | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afroz Toma, M.; Rahman, M.H.; Rahman, M.S.; Arif, M.; Nazir, K.H.M.N.H.; Dufossé, L. Fungal Pigments: Carotenoids, Riboflavin, and Polyketides with Diverse Applications. J. Fungi 2023, 9, 454. https://doi.org/10.3390/jof9040454
Afroz Toma M, Rahman MH, Rahman MS, Arif M, Nazir KHMNH, Dufossé L. Fungal Pigments: Carotenoids, Riboflavin, and Polyketides with Diverse Applications. Journal of Fungi. 2023; 9(4):454. https://doi.org/10.3390/jof9040454
Chicago/Turabian StyleAfroz Toma, Maria, Md. Hasibur Rahman, Md. Saydar Rahman, Mohammad Arif, K. H. M. Nazmul Hussain Nazir, and Laurent Dufossé. 2023. "Fungal Pigments: Carotenoids, Riboflavin, and Polyketides with Diverse Applications" Journal of Fungi 9, no. 4: 454. https://doi.org/10.3390/jof9040454
APA StyleAfroz Toma, M., Rahman, M. H., Rahman, M. S., Arif, M., Nazir, K. H. M. N. H., & Dufossé, L. (2023). Fungal Pigments: Carotenoids, Riboflavin, and Polyketides with Diverse Applications. Journal of Fungi, 9(4), 454. https://doi.org/10.3390/jof9040454