A Secure Blockchain-Enabled Remote Healthcare Monitoring System for Home Isolation
Abstract
:1. Introduction
2. Literature Reviews and Related Works
2.1. Remote Healthcare Monitoring Systems (RHMSs)
2.2. Security Issues of RHMSs
2.3. Blockchain Technology
2.4. Security Enhancement with Blockchain Technology
2.5. Related Works
2.6. Summary
3. Proposed Models
3.1. Security Model
3.2. Proposed System Architecture
Algorithm 1 sense_data(): sense precise vital signs |
round ← trial while αi ≈ 0 and round ≠ 0 do t0 ← 0 S ← ϕ while t − t0 ≤ ∆t do i ← sense() S ← S ∪ i t ← timestamp() end while αi ← LinearRegression() round ← round − 1 end while if round = 0 then return S. average() else return error |
3.2.1. Blockchain Architecture Design
3.2.2. Web APIs with an MQTT Data Broker
3.2.3. HIS Software Agent
4. Proposed S3RH Using Raspberry Pi
4.1. Hardware and Software Implementation
4.2. Sensor Calibration
5. Experiment Setup
5.1. Testbed
5.2. Transaction Fee or Gas
5.3. Scenarios
6. Experimental Results
7. Discussion
7.1. Transaction Fee
7.2. Security Issues
- Confidentiality—Encrypted Data Storage: The utilized blockchain employs advanced cryptographic techniques to secure patient health information, and this is achieved by storing it in encrypted blocks that are accessible only to authorized individuals with the corresponding private keys.
- Integrity—Immutable Record: The blockchain ensures data integrity by incorporating a chain of blocks, each containing a hash of the previous block, thus making any attempt to alter the data infeasible due to the decentralized and distributed nature of the utilized blockchain.
- Availability—Decentralized Architecture: The decentralized network architecture of blockchain ensures continuous data availability in the process of healthcare monitoring as the system remains resilient to node failures or compromises, thereby maintaining functionality in the presence of network disruptions or attacks.
- Authentication—Smart Contracts: Smart contracts provide an additional layer of authentication in the IoMT network by automatically executing predefined rules, thereby establishing and enforcing permissions, thus ensuring that only authenticated devices and users can access and update data within the system.
- Authorization—Role-Based Access Control (RBAC): The utilized blockchain, which is implemented through smart contracts, enforces role-based access control (RBAC). This aids with defining roles and permissions to restrict access within the healthcare monitoring system, thereby ensuring that only authorized personnel can access specific patient information, thus preventing unauthorized access.
- Non-Repudiation—Immutable Transaction History: The blockchain’s immutable and timestamped record of every transaction ensures non-repudiation by preventing alterations or deletions, thus offering a transparent and auditable trail of all activities within the system, which is also delivered by the system, permanently recording any changes made by users or devices.
7.3. Limitations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hernández-Moreno, Y.; Sánchez-Vélez, J.A.; Cruz-Caizaluisa, M.D.L.Á.; Marcillo-Vera, F. Analysis of level compliance with the home isolation protocol in patients diagnosed with COVID-19. Cienc. Huasteca Boletín Científico Esc. Super. Huejutla 2023, 11, 1–6. [Google Scholar] [CrossRef]
- Jabeen, T.; Jabeen, I.; Ashraf, H.; Ullah, A.; Jhanjhi, N.Z.; Ghoniem, R.M.; Ray, S.K. Smart Wireless Sensor Technology for Healthcare Monitoring System Using Cognitive Radio Networks. Sensors 2023, 23, 6104. [Google Scholar] [CrossRef]
- Sowmya, V.; Dharani, K.; Sujitha, R.P. Smart Healthcare Monitoring System. J. ISMAC J. IoT Soc. Mob. Anal. Cloud 2023, 5, 65–73. [Google Scholar] [CrossRef]
- Kishore, A.S.; Chinni, G.R.; JayaLakshmi, G.; Reddy, K.S.K. Smart Healthcare Monitoring System Using IoT Technology. In Proceedings of the 2023 11th International Conference on Internet of Everything, Microwave Engineering, Communication and Networks (IEMECON), Jaipur, India, 10–11 February 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Malathi, M.; Muniappan, A.; Misra, P.K.; Rajagopal, B.R.; Borah, P. A Smart Healthcare Monitoring System for Patients Using IoT and Cloud Computing. AIP Conf. Proc. 2023, 2603, 030012. [Google Scholar] [CrossRef]
- Ravi, P.S.; Mohd, J.; Abid, H.; Raju, V.; Shokat, A. Internet of Medical Things (IoMT) for orthopaedic in COVID-19 pandemic: Roles, challenges, and applications. J. Clin. Orthop. Trauma 2020, 11, 713–717. [Google Scholar] [CrossRef]
- Badri, S.; Jan, S.U.; Alghazzawi, D.M.; Aldhaheri, S.; Pitropakis, N. BIoMT: A Blockchain-Enabled Healthcare Architecture for Information Security in the Internet of Medical Things. Comput. Syst. Sci. Eng. 2023, 46, 3667–3684. [Google Scholar] [CrossRef]
- Vieira, M.; Velasco, G.; Carvalho, S. A Decentralized Health Data Repository for Remote Patient Monitoring Using Blockchain and FHIR. In Anais do VI Workshop em Blockchain: Teoria, Tecnologias e Aplicações; SBC: Porto Alegre, Brazil, 2023; pp. 85–98. [Google Scholar] [CrossRef]
- Mehta, K.; Gaur, S.; Maheshwari, S.; Chugh, H.; Kumar, M.A. Big Data Analytics Cloud-based Smart IoT Healthcare Network. In Proceedings of the 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 11–13 April 2023; pp. 437–443. [Google Scholar] [CrossRef]
- Kciuk, M.; Kowalik, Z.; Sciuto, G.L.; Sławski, S.; Mastrostefano, S. Intelligent medical velostat pressure Sensor Mat based on Artificial Neural Network and Arduino Embedded System. Appl. Syst. Innov. 2023, 6, 84. [Google Scholar] [CrossRef]
- Tahir, R. Framework for Health Data Security within Smart Healthcare. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Hamza, R.; Maizate, A.; Ettaoufik, A. Data Security Mechanisms, Approaches, and Challenges for e-Health Smart Systems. Int. J. Online Eng. IJOE 2023, 19, 42–66. [Google Scholar] [CrossRef]
- Shakah, G. Modeling of Healthcare Monitoring System of Smart Cities. TEM J. 2022, 11, 926–931. [Google Scholar] [CrossRef]
- Yeruva, A.R.; Durga, C.V.; Gokulavasan, B.; Pant, K.; Chaturvedi, P.; Srivastava, A.P. A Smart Healthcare Monitoring System Based on Fog Computing Architecture. In Proceedings of the 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 10–12 October 2022; pp. 904–909. [Google Scholar] [CrossRef]
- Bera, B.; Mitra, A.; Das, A.K.; Puthal, D.; Park, Y.-H. Private Blockchain-Based AI-Envisioned Home Monitoring Framework in IoMT-Enabled COVID-19 Environment. IEEE Consum. Electron. Mag. 2023, 12, 62–71. [Google Scholar] [CrossRef]
- Prasad, P.K.; Mishra, V.S.; Gajbhar, V.; Pardeshi, T. Home Appliances Controlling using IOT Technique. J. Name 2020, 7, 288–291. [Google Scholar]
- Almaiman, L.; Alqahtani, N. Security and Privacy on IoMT. In Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020), Online, 15–18 December 2020; pp. 956–963. [Google Scholar] [CrossRef]
- Seeman, N. Innovations to Address Social Isolation for Elderly Canadians Aging at Home. Healthc. Q. 2023, 26, 14–17. [Google Scholar] [CrossRef]
- Babu, S.V.; Ramya, P.; Sundar, C.; Pradeep, D. The architecture of smartness in healthcare. In Edge-of-Things in Personalized Healthcare Support Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 25–44. [Google Scholar] [CrossRef]
- Chauhan, N.; Dwivedi, R.K. A Secure Design of the Healthcare IoT System using Blockchain Technology. In Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 23–25 March 2022; pp. 704–709. [Google Scholar] [CrossRef]
- Narwal, B.; Gandhi, K.; Anand, R.; Ghalyan, R. PUASIoT: Password-Based User Authentication Scheme for IoT Services. In Proceedings of the 6th International Conference on Advance Computing and Intelligent Engineering, Odisha, India, 23–24 December 2021; Pati, B., Panigrahi, C.R., Mohapatra, P., Li, K.-C., Eds.; Springer Nature: Singapore, 2023; pp. 141–149. [Google Scholar]
- Ghodsi, M.R. Consortium Blockchain Based Anonymous and Trusted Authentication Mechanism for IoT. In Proceedings of the International Conference On Signal and Information Processing, Networking and Computers, Online, 27–29 December 2021; pp. 292–302. [Google Scholar] [CrossRef]
- Li, W.; Zhang, S.; Chen, Z.; Sen, L. Cross-Domain Authentication Scheme for IoT Devices Based on BlockChain. In Proceedings of the 2022 IEEE 13th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 21–23 October 2022; pp. 67–73. [Google Scholar] [CrossRef]
- Stranieri, A.; Balasubramanian, V. Remote Patient Monitoring for Healthcare: A Big Challenge for Big Data. In Research Anthology on Big Data Analytics, Architectures, and Applications; IGI Global, Ed.; IGI Global: Hershey, PA, USA, 2022; pp. 1054–1070. [Google Scholar] [CrossRef]
- Yue, K.B.; Sha, K.; Thamarai Selvan, J.S.; Guerra, M.; Wei, W.; Chakka, S.; Vuchuru, P.; Koduru, M.; Liu, X.; Tang, V.; et al. Confidentiality and Data Integrity in Consortium Blockchain Applications for Model Based Systems Engineering. In Proceedings of the AIAA SCITECH 2023, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar] [CrossRef]
- Shanthi, S.; Mithun, S.; Prakash, P.K.; Maharajan, K.; Kishore, C.N. A Sensor-Based Data Analytics for Patient Monitoring in Connected Healthcare Applications. In Proceedings of the 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 25–26 March 2022; pp. 2104–2107. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 26 December 2023).
- Wang, X.; Liu, L.; Liu, J.; Huang, X. Understanding the Determinants of Blockchain Technology Adoption in the Construction Industry. Buildings 2022, 12, 1709. [Google Scholar] [CrossRef]
- Chukleang, T.; Jandaeng, C. Security Enhancement in Smart Logistics with Blockchain Technology: A Home Delivery Use Case. Informatics 2022, 9, 70. [Google Scholar] [CrossRef]
- Liu, J.; Yan, L.; Wang, D. A Hybrid Blockchain Model for Trusted Data of Supply Chain Finance. Wirel. Pers. Commun. 2022, 127, 919–943. [Google Scholar] [CrossRef]
- Daniel, D.; Speranza, C.I. The Role of Blockchain in Documenting Land Users’ Rights: The Canonical Case of Farmers in the Vernacular Land Market. Front. Blockchain 2020, 3, 19. [Google Scholar] [CrossRef]
- Garcia, H.C.E. Blockchain Innovation Technology for Corruption Decrease in Mexico. Asian J. Innov. Policy 2021, 10, 177–194. [Google Scholar] [CrossRef]
- Gatteschi, V.; Lamberti, F.; Demartini, C.; Pranteda, C.; Santamaría, V. Blockchain and Smart Contracts for Insurance: Is the Technology Mature Enough? Future Internet 2018, 10, 20. [Google Scholar] [CrossRef]
- Dehghani, M.; Mashatan, A.; Kennedy, R.W. Innovation within networks—Patent strategies for blockchain technology. J. Bus. Ind. Mark. 2021, 36, 2113–2125. [Google Scholar] [CrossRef]
- Govardhan, R.; Jagadeesh, V.R.; Lakshminath, S.M.; Sangamad, L. A Literature Review of Blockchain Applications in Healthcare. Int. J. Sci. Technol. Eng. 2023, 11, 1338–1346. [Google Scholar]
- Husain, M.R. Blockchain Applications for Engineering Systems. Eng. Rep. 2023, 5, 1–3. [Google Scholar] [CrossRef]
- Ramzan, S.; Aqdus, A.; Ravi, V.; Koundal, D.; Amin, R.; Ghamdi, M.A.A. Healthcare Ap, plications Using Blockchain Technology: Motivations and Challenges. IEEE Trans. Eng. Manag. 2023, 70, 2874–2890. [Google Scholar] [CrossRef]
- Zia, A.S.; Sayed, M. Blockchain in Healthcare: Unlocking the Potential of Blockchain for Secure and Efficient Applications for Medical Data Management—A Presentation of Basic Concepts. Liaquat Med. Res. J. 2023, 5. [Google Scholar] [CrossRef]
- Upadrista, V.; Nazir, S.; Tianfield, H. Secure data sharing with blockchain for remote health monitoring applications: A review. J. Reliab. Intell. Environ. 2023, 9, 349–368. [Google Scholar] [CrossRef] [PubMed]
- Alruwaill, M.N.; Mohanty, S.P.; Kougianos, E. hChain: Blockchain Based Healthcare Data Sharing with Enhanced Security and Privacy Location-Based-Authentication. In Proceedings of the Great Lakes Symposium on VLSI 2023, GLSVLSI ’23, Knoxville, TN, USA, 5–7 June 2023; pp. 97–102. [Google Scholar] [CrossRef]
- Samuel, O.; Omojo, A.B.; Mohsin, S.M.; Tiwari, P.; Gupta, D.; Band, S.S. An Anonymous IoT-Based E-Health Monitoring System Using Blockchain Technology. IEEE Syst. J. 2023, 17, 2422–2433. [Google Scholar] [CrossRef]
- Hewa, T.; Ylianttila, M.; Liyanage, M. Survey on blockchain based smart contracts: Applications, opportunities and challenges. J. Netw. Comput. Appl. 2021, 177, 102857. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, Z.; Liu, J.; Liu, Y.; Yin, J.; Lu, R.; Lin, X. A comprehensive survey on smart contract construction and execution: Paradigms, tools, and systems. Patterns 2021, 2, 100179. [Google Scholar] [CrossRef]
- Namamula, L.; Chaytor, D. Enhancing the Confidentiality and Integrity of Uncertain Dynamic Data Workflows of B2C (Business-2-Consumers) Using Blockchain Technology. J. Uncertain Syst. 2022, 16, 2242009:1–2242009:17. [Google Scholar] [CrossRef]
- Parmar, K.; Patil, S.; Patel, D.K.; Patel, V.J. Privacy-preserving Authentication Scheme for VANETs using Blockchain Technology. Procedia Comput. Sci. 2023, 220, 40–47. [Google Scholar] [CrossRef]
- Vangala, A.; Das, A.K. Privacy-Preserving Blockchain-Based Authentication in Smart Energy Systems. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Boston, MA, USA, 6 November 2022. [Google Scholar] [CrossRef]
- Hoang, S.T.; Do, Q.T.; Luc, N.-Q. Build a Blockchain-based Confidentiality and Privacy Solution Using Cryptographic Techniques. Tạp Chí Khoa Học Và Công Nghệ Việt Nam 2023, 65, 1–6. [Google Scholar] [CrossRef]
- Malsa, N.; Vyas, V.; Singh, P. Blockchain-Enabled Smart Contract Optimization for Healthcare Monitoring Systems. In Cloud Computing Enabled Big-Data Analytics in Wireless Ad-Hoc Networks; CRC Press: Boca Raton, FL, USA, 2022; pp. 229–250. [Google Scholar]
- Tamazirt, L.; Alilat, F.; Agoulmine, N. Blockchain Technology: A new secured Electronic Health Record System. In Proceedings of the 6th International Workshop on ADVANCEs in ICT Infrastructures and Services (ADVANCE 2018), Santiago, Chile, 11–12 January 2018; pp. 134–141. Available online: https://hal.science/hal-01777462 (accessed on 26 December 2023).
- Rajawat, A.S.; Rawat, R.; Barhanpurkar, K.; Shaw, R.N.; Ghosh, A. Blockchain-Based Model for Expanding IoT Device Data Security. In Advances in Applications of Data-Driven Computing; Bansal, J.C., Fung, L.C.C., Simic, M., Ghosh, A., Eds.; Advances in Intelligent Systems and Computing, 1319; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Srinivasu, P.N.; Bhoi, A.K.; Nayak, S.R.; Bhutta, M.R.; Woźniak, M. Blockchain Technology for Secured Healthcare Data Communication among the Non-Terminal Nodes in IoT Architecture in 5G Network. Electronics 2021, 10, 1437. [Google Scholar] [CrossRef]
- Egala, B.S.; Pradhan, A.K.; Badarla, V.; Mohanty, S.P. Fortified-Chain: A Blockchain-Based Framework for Security and Privacy-Assured Internet of Medical Things With Effective Access Control. IEEE Internet Things J. 2021, 8, 11717–11731. [Google Scholar] [CrossRef]
- Saxena, A. Blockchain grounded electronic record for healthcare monitoring system. Int. J. Health Sci. IJHS 2022, 6, 3414–3423. [Google Scholar] [CrossRef]
- Xu, J.; Xue, K.; Li, S.; Tian, H.; Hong, J.; Hong, P.; Yu, N. Healthchain: A Blockchain-Based Privacy Preserving Scheme for Large-Scale Health Data. IEEE Internet Things J. 2019, 6, 8770–8781. [Google Scholar] [CrossRef]
- Pawar, P.; Parolia, N.; Shinde, S.; Edoh, T.O.; Singh, M. eHealthChain—A Blockchain-based Personal Health Information Management System. Ann. Telecommun. 2022, 77, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, T.; Zafar, S. Blockchain-based Security for Internet of Medical Things Application. In Proceedings of the 2022 International Conference on Cyber Warfare and Security (ICCWS), Islamabad, Pakistan, 7–8 December 2022. [Google Scholar] [CrossRef]
- Wang, J.; Fan, S.; Alexandridis, A.; Han, K.; Jeon, G.; Zilic, Z.; Pang, Y. A Multistage Blockchain-Based Secure and Trustworthy Smart Healthcare System Using ECG Characteristic. IEEE Internet Things Mag. 2021, 4, 48–58. [Google Scholar] [CrossRef]
- Mohan, D.; Alwin, L.; Neeraja, P.; Lawrence, K.D.; Pathari, V. A Private Ethereum Blockchain Implementation for Secure Data Handling in Internet of Medical Things. J. Reliab. Intell. Environ. 2022, 8, 379–396. [Google Scholar] [CrossRef]
- Alam, T. Blockchain-Enabled Mobile Healthcare System Architecture for the Real-Time Monitoring of COVID-19 Patients. 2021. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3772643 (accessed on 26 December 2023).
- Sangaiah, A.K.; Jeong, S.; Shen, J.-H.; Ahn, B. A Study on Smart Healthcare Monitoring Using IoT Based on Blockchain. Wirel. Commun. Mob. Comput. 2021, 2021, 9932091. [Google Scholar] [CrossRef]
- Arul, R.; Al-Otaibi, Y.D.; Alnumay, W.S.; Tariq, U.; Shoaib, U.; Piran, M.D.J. Multi-modal secure healthcare data dissemination framework using blockchain in IoMT. Ubiquit Comput. 2021. [Google Scholar] [CrossRef]
- Machado-Gamboa, K.; Gonzalez-Vargas, A. Development ofa Low-Cost Pulse Oximeter Simulator for Educational Purposes. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
Ref. | Contributions | C | I | A |
---|---|---|---|---|
[6] |
| - | - | - |
| ||||
| ||||
[48] |
| - | - | - |
| ||||
[49] |
| - | - | - |
| ||||
| ||||
| ||||
[50] |
| - | ✓ | - |
| ||||
[51] |
| - | ✓ | - |
| ||||
[52] |
| ✓ | - | - |
| ||||
[53] |
| ✓ | ✓ | - |
| ||||
[54] |
| ✓ | ✓ | - |
| ||||
[55] |
| - | - | ✓ |
|
Ref. | Contributions | C | I | A |
---|---|---|---|---|
[7] |
| ✓ | ✓ | - |
| ||||
[56] |
| ✓ | ✓ | - |
| ||||
[57] |
| ✓ | - | - |
| ||||
[58] |
| ✓ | - | - |
| ||||
[59] |
| - | - | ✓ |
| ||||
[60] |
| - | - | ✓ |
| ||||
[61] |
| - | - | ✓ |
|
Testcase | N | Mean | t | p (T ≤ t) | Error |
---|---|---|---|---|---|
Temperature (MAX90614) | 30 | 36.81 | 1.676 | 0.105 | 1.26% |
EarlyVue VS30 | 30 | 36.35 | |||
SPO2 (MAX30102) | 30 | 95.40 | −3.064 | 0.005 | −2.88% |
EarlyVue VS30 | 30 | 98.23 | |||
Heart rate (MAX30102) | 30 | 92.93 | −2.244 | 0.033 | −3.89% |
EarlyVue VS30 | 30 | 96.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kongsen, J.; Chantaradsuwan, D.; Koad, P.; Thu, M.; Jandaeng, C. A Secure Blockchain-Enabled Remote Healthcare Monitoring System for Home Isolation. J. Sens. Actuator Netw. 2024, 13, 13. https://doi.org/10.3390/jsan13010013
Kongsen J, Chantaradsuwan D, Koad P, Thu M, Jandaeng C. A Secure Blockchain-Enabled Remote Healthcare Monitoring System for Home Isolation. Journal of Sensor and Actuator Networks. 2024; 13(1):13. https://doi.org/10.3390/jsan13010013
Chicago/Turabian StyleKongsen, Jongsuk, Doungsuda Chantaradsuwan, Peeravit Koad, May Thu, and Chanankorn Jandaeng. 2024. "A Secure Blockchain-Enabled Remote Healthcare Monitoring System for Home Isolation" Journal of Sensor and Actuator Networks 13, no. 1: 13. https://doi.org/10.3390/jsan13010013
APA StyleKongsen, J., Chantaradsuwan, D., Koad, P., Thu, M., & Jandaeng, C. (2024). A Secure Blockchain-Enabled Remote Healthcare Monitoring System for Home Isolation. Journal of Sensor and Actuator Networks, 13(1), 13. https://doi.org/10.3390/jsan13010013