Hyperspectral Inversion of Soil Cu Content in Agricultural Land Based on Continuous Wavelet Transform and Stacking Ensemble Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Measurement
2.3. Workflow
2.4. Spectral Preprocessing
2.5. Dimensionality Reduction
2.6. Stacking Model Construction
2.7. Model Accuracy Evaluation
3. Results
3.1. Statistical Analysis of Cu Content in the Study Area
3.2. Spectral Preprocessing Based on Continuous Wavelet Transform
3.3. Analysis of PCA Reduction Results
3.4. Construction and Accuracy Evaluation of Cu Content Inversion Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bian, Z.; Sun, L.; Tian, K.; Liu, B.; Zhang, X.; Mao, Z.; Huang, B.; Wu, L. Estimation of Heavy Metals in Tailings and Soils Using Hyperspectral Technology: A Case Study in a Tin-Polymetallic Mining Area. Bull. Environ. Contam. Toxicol. 2021, 107, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lei, S.; Zhao, Y.; Cheng, W. Use of hyperspectral imagery to detect affected vegetation and heavy metal polluted areas: A coal mining area, China. Geocarto Int. 2022, 37, 2893–2912. [Google Scholar] [CrossRef]
- Yin, F.; Wu, M.; Liu, L.; Zhu, Y.; Feng, J.; Yin, D.; Yin, C.; Yin, C. Predicting the abundance of copper in soil using reflectance spectroscopy and GF5 hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102420. [Google Scholar] [CrossRef]
- Liu, Y.P.; Luo, Q.; Cheng, H.F. Application and development of hyperspectral remote sensing technology to determine the heavy metal content in soil. J. Agro-Environ. Sci. 2020, 39, 2699–2709. [Google Scholar]
- Lee, K.; Kang, S.; Jeon, E.I.; Yu, S.; Kwon, O.S. Exploring correlations between hyper-spectral signatures acquired in the laboratory and in-situ observation for heavy metal concentrations in soil. Spat. Inf. Res. 2018, 26, 497–505. [Google Scholar] [CrossRef]
- Mao, J.H.; Zhao, H.Q.; Jin, Q.; Wang, X.F.; Miao, Q.F.; Wang, P.; Li, M. Comparative study on the hyperspectral inversion methods for soil heavy metal contents in Hebei lead-zinc tailings reservoir areas. Trans. Chin. Soc. Agric. Eng. 2023, 39, 144–156. [Google Scholar]
- Yang, K.; Zhang, W.; Fu, P.; Gao, P.; Cheng, F.; Li, Y. The LH-PSD Analysis Model of Cu Contaminated Soil Spectral Characteristics and Weak Characteristic Information. Spectrosc. Spectr. Anal. 2019, 39, 2228–2236. [Google Scholar]
- Tang, C.; Xiao, R.; Ling, B.; Wang, P.; Zheng, J.; Huang, F.; Liu, W. Prediction of Cr and Ni contents in soil from hyperspectral data combined with Al-Fe minerals. Int. J. Remote Sens. 2023, 44, 2781–2797. [Google Scholar] [CrossRef]
- Fu, P.; Zhang, W.; Yang, K.; Meng, F.; Yao, G.; Liu, P. Using the Hilbert-Huang spectrum transformation to estimate soil lead concentration. Remote Sens. Lett. 2021, 12, 768–777. [Google Scholar] [CrossRef]
- Qin, X.; Lai, C.; Pan, Z.; Pan, M.; Xiang, Y.; Wang, Y. Recognition of Abnormal-Laying Hens Based on Fast Continuous Wavelet and Deep Learning Using Hyperspectral Images. Sensors 2023, 23, 3645. [Google Scholar] [CrossRef]
- Wang, X.; Yumiti, M.; Huang, X.; Li, R.; Liu, D. Estimation of Arsenic Content in Soil Based on Continuous Wavelet Transform. Spectrosc. Spectr. Anal. 2023, 43, 206–212. [Google Scholar]
- Guo, B.; Bai, H.R.; Zhang, B.; Pei, L.; Zhao, Y.H.; Lei, Y.Z.; Yuan, R.C. Inversion of soil zinc contents using hyperspectral remote sensing based on random forest and continuous wavelet transform in an opencast coal mine. Trans. Chin. Soc. Agric. Eng. 2022, 38, 138–147. [Google Scholar]
- Guo, F.; Xu, Z.; Ma, H.H.; Liu, X.J.; Yang, Z.; Tang, S. A Comparative Study of the Hyperspectral Inversion Models Based on the PCA for Retrieving the Cd Content in the Soil. Spectrosc. Spectr. Anal. 2021, 41, 1625–1630. [Google Scholar]
- Tian, S.; Wang, S.; Bai, X.; Zhou, D.; Lu, Q.; Wang, M.; Wang, J. Hyperspectral estimation model of soil Pb content and its applicability in different soil types. Acta Geochim. 2020, 39, 423–433. [Google Scholar] [CrossRef]
- Hou, L.; Li, X.; Li, F. Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas. J. Environ. Qual. 2019, 48, 57–63. [Google Scholar] [CrossRef]
- Han, L.; Chang, S.; Chen, R.; Liu, Z.; Zhao, Y.; Li, R.; Xia, L. Monitoring soil mercury content based on hyperspectral data and machine learning methods. J. Appl. Remote Sens. 2022, 16, 24518. [Google Scholar] [CrossRef]
- Guo, H.; Yang, K.; Wu, F.; Chen, Y.; Shen, J. Regional Inversion of Soil Heavy Metal Cr Content in Agricultural Land Using Zhuhai-1 Hyperspectral Images. Sensors 2023, 23, 8756. [Google Scholar] [CrossRef]
- Yuxin, T.; Zhenghai, W.; Peng, X. Quantitative Hyperspectral Inversion of Soil Heavy Metals based on Feature Screening Combined with PSO-BPNN and GA-BPNN Algorithms. Remote Sens. Technol. Appl. 2024, 39, 259–268. [Google Scholar]
- Xiaobo, G.; Zhikai, C.; Zhihui, Z.; Tian, C.; Wenlong, L.; Yadan, D. Remote Sensing Inversion of Leaf Area Index of Mulched Winter Wheat Based on Feature Downscaling and Machine Learning. Trans. Chin. Soc. Agric. Mach. 2023, 54, 148–157. [Google Scholar]
- Guo, H.; Liu, H.; Wu, S. Simulation, prediction and optimization of typical heavy metals immobilization in swine manure composting by using machine learning models and genetic algorithm. J. Environ. Manag. 2022, 323, 116266. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, J.; Shen, W.; Wang, J.; Li, X. Machine learning can identify the sources of heavy metals in agricultural soil: A case study in northern Guangdong Province, China. Ecotoxicol. Environ. Safe. 2022, 245, 114107. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Jiang, R.; Li, G.; Yang, Q.; Li, D.; Yang, X. Estimating the heavy metal contents in farmland soil from hyperspectral images based on Stacked AdaBoost ensemble learning. Ecol. Indic. 2022, 143, 109330. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, Q.; Wu, Q.; Li, M.; Zhen, J.; Yuan, D.; Zhou, M.; Xu, C.; Wang, Y.; Zhao, Y.; et al. Inversion of heavy metal content in soil using hyperspectral characteristic bands-based machine learning method. J. Environ. Manag. 2024, 355, 120503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, J.; Li, F. Spatial distributions and controlled factors of heavy metals in surface soils in Guangdong based on the regional geology. Ecol. Environ. Sci. 2011, 20, 646–651. [Google Scholar]
- Li, M.; Han, D.; Lu, D.; Lu, X.X.; Chai, C.X.; Liu, W.; Sun, K.X. Research Progress of Universal Model of Near-Infrared Spectroscopy in Agricultural Products and Foods Detection. Spectrosc. Spectr. Anal. 2022, 42, 3355–3360. [Google Scholar]
- Jiang, C.; Ren, H.; Wang, Z.; Zeng, H.; Teng, Y.; Zhang, H.; Liu, X.; Jin, D.; Wang, M.; Liu, R.; et al. Estimation of Soil-Related Parameters Using Airborne-Based Hyperspectral Imagery and Ground Data in the Fenwei Plain, China. Remote Sens. 2024, 16, 1129. [Google Scholar] [CrossRef]
- Xie, B.; Chen, B.; Ma, J.; Chen, J.; Zhou, Y.; Han, X.; Xiong, Z.; Yu, Z.; Huang, F. Rapid Identification of Choy Sum Seeds Infected with Penicillium decumbens Based on Hyperspectral Imaging and Stacking Ensemble Learning. Food Anal. Methods 2024, 17, 416–425. [Google Scholar] [CrossRef]
- Zhang, H.M.; Chen, L.J.; Liu, W.; Han, W.T.; Zhang, S.Y.; Zhang, F. Estimation of Summer Corn Fractional Vegetation Coverage Based on Stacking Ensemble Learning. Trans. Chin. Soc. Agric. Mach. 2021, 52, 195–202. [Google Scholar]
- Wang, Y.; Niu, R.; Hao, M.; Lin, G.; Xiao, Y.; Zhang, H.; Fu, B. A method for heavy metal estimation in mining regions based on SMA-PCC-RF and reflectance spectroscopy. Ecol. Indic. 2023, 154, 110476. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, R.; Lin, G.; Xiao, Y.; Ma, H.; Zhao, L. Estimate of soil heavy metal in a mining region using PCC-SVM-RFECV-AdaBoost combined with reflectance spectroscopy. Environ. Geochem. Health 2023, 45, 9103–9121. [Google Scholar] [CrossRef]
- Yang, N.; Han, L.; Liu, M. Inversion of soil heavy metals in metal tailings area based on different spectral transformation and modeling methods. Heliyon 2023, 9, E19782. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, X.; Ma, X. Improving the Accuracy of Soil Organic Carbon Estimation: CWT-Random Frog-XGBoost as a Prerequisite Technique for In Situ Hyperspectral Analysis. Remote Sens. 2023, 15, 5294. [Google Scholar] [CrossRef]
- Li, Y.; Yang, K.; Zhao, H. Scale transfer learning of hyperspectral prediction model of heavy metal content in maize: From laboratory to satellite. Int. J. Remote Sens. 2023, 44, 2590–2610. [Google Scholar] [CrossRef]
- Yang, L.; Bai, Z.X.; Bo, W.H.; Lin, J.; Yang, J.J.; Chen, T. Analysis and Evaluation of Heavy Metal Pollution in Farmland Soil in China: A Meta-analysis. Environ. Sci. 2024, 5, 2913–2925. [Google Scholar]
- Zhang, J.; Wang, M.; Yang, K.; Li, Y.; Li, Y.; Wu, B.; Han, Q. The New Hyperspectral Analysis Method for Distinguishing the Types of Heavy Metal Copper and Lead Pollution Elements. Int. J. Environ. Res. Public Health 2022, 19, 7755. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Q.; Nie, C.; Huang, Y.; Wang, J.; Hu, Q.; Ding, X.; Zhou, Y.; Chen, Y. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 211, 393–400. [Google Scholar] [CrossRef]
- Cheng, X.; Feng, Y.; Guo, A.; Huang, W.; Cai, Z.; Dong, Y.; Guo, J.; Qian, B.; Hao, Z.; Chen, G.; et al. Detection of Rubber Tree Powdery Mildew from Leaf Level Hyperspectral Data Using Continuous Wavelet Transform and Machine Learning. Remote Sens. 2024, 16, 105. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.; Shang, P.; Yuan, X.; Li, L.; Bai, T. Stratified diagnosis of cotton canopy spectral characteristics based on CWT-SPA and its relationship with moisture, nitrogen, and SPAD values. Int. J. Remote Sens. 2024, 45, 325–350. [Google Scholar] [CrossRef]
- Zhao, H.; Gan, S.; Yuan, X.; Hu, L.; Wang, J.; Liu, S. Prediction of low Zn concentrations in soil from mountainous areas of central Yunnan Province using a combination of continuous wavelet transform and Boruta algorithm. Int. J. Remote Sens. 2023, 44, 4753–4774. [Google Scholar] [CrossRef]
- Baisong, A.; Xuemei, W.; Xiaoyu, H.; Baishan, K. Hyperspectral Estimation of Heavy Metal Cadmium Content in Soil based on Continuous Wavelet Transform. Earth Environ. 2023, 51, 246–253. [Google Scholar]
- Tan, K.; Ma, W.; Chen, L.; Wang, H.; Du, Q.; Du, P.; Yan, B.; Liu, R.; Li, H. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 2021, 401, 123288. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, H.; Sun, M.; Liu, X.; Cao, L. A Study on Hyperspectral Soil Moisture Content Prediction by Incorporating a Hybrid Neural Network into Stacking Ensemble Learning. Agronomy 2024, 14, 2054. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, B.; Zou, B.; Wei, W.; Lei, Y.; Li, T. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China. Environ. Pollut. 2022, 300, 118981. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Xu, M.; Liu, Y.; Niu, R.; Wu, X.; Song, Y. Estimating of heavy metal concentration in agricultural soils from hyperspectral satellite sensor imagery: Considering the sources and migration pathways of pollutants. Ecol. Indic. 2024, 158, 111416. [Google Scholar] [CrossRef]
Model | Parameter | Value |
---|---|---|
SVR | Penalty parameter | 5.66 |
Gamma | 0.18 | |
PLSR | Regularization | 0.1 |
BPNN | Epochs | 800 |
Learning rate | 0.01 | |
XGBoost | Number of decision trees | 20 |
Maximum depth | 2 | |
RF | Number of decision trees | 400 |
Minimum number of samples per leaf | 2 |
Dataset | Number | Minimum (mg/kg) | Maximum (mg/kg) | Mean (mg/kg) | Standard Deviation (mg/kg) | CV (%) |
---|---|---|---|---|---|---|
Total sample | 269 | 3 | 163 | 33.92 | 24.46 | 72.11 |
Training sample | 190 | 3 | 163 | 33.91 | 26.83 | 79.12 |
Testing sample | 79 | 4 | 63 | 34.32 | 17.50 | 50.99 |
Scales | Dimension | Scales | Dimension |
---|---|---|---|
L1 | 189 | L6 | 45 |
L2 | 188 | L7 | 25 |
L3 | 189 | L8 | 14 |
L4 | 148 | L9 | 8 |
L5 | 80 | L10 | 5 |
Model | Training Set | Validation Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | |
SVR | 0.86 | 7.98 | 3.36 | 0.70 | 9.38 | 1.87 |
RF | 0.93 | 5.19 | 5.16 | 0.68 | 7.66 | 2.29 |
BPNN | 0.56 | 11.83 | 2.27 | 0.69 | 8.22 | 2.13 |
PLSR | 0.56 | 13.34 | 2.01 | 0.64 | 12.71 | 1.38 |
XGBoost | 0.82 | 7.57 | 3.54 | 0.65 | 8.64 | 2.02 |
Stacking | 0.85 | 7.82 | 3.43 | 0.77 | 7.65 | 2.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Wu, F.; Guo, H.; Chen, D.; Deng, Y.; Huang, Z.; Han, C.; Chen, Z.; Xiao, R.; Chen, P. Hyperspectral Inversion of Soil Cu Content in Agricultural Land Based on Continuous Wavelet Transform and Stacking Ensemble Learning. Land 2024, 13, 1810. https://doi.org/10.3390/land13111810
Yang K, Wu F, Guo H, Chen D, Deng Y, Huang Z, Han C, Chen Z, Xiao R, Chen P. Hyperspectral Inversion of Soil Cu Content in Agricultural Land Based on Continuous Wavelet Transform and Stacking Ensemble Learning. Land. 2024; 13(11):1810. https://doi.org/10.3390/land13111810
Chicago/Turabian StyleYang, Kai, Fan Wu, Hongxu Guo, Dongbin Chen, Yirong Deng, Zaoquan Huang, Cunliang Han, Zhiliang Chen, Rongbo Xiao, and Pengcheng Chen. 2024. "Hyperspectral Inversion of Soil Cu Content in Agricultural Land Based on Continuous Wavelet Transform and Stacking Ensemble Learning" Land 13, no. 11: 1810. https://doi.org/10.3390/land13111810
APA StyleYang, K., Wu, F., Guo, H., Chen, D., Deng, Y., Huang, Z., Han, C., Chen, Z., Xiao, R., & Chen, P. (2024). Hyperspectral Inversion of Soil Cu Content in Agricultural Land Based on Continuous Wavelet Transform and Stacking Ensemble Learning. Land, 13(11), 1810. https://doi.org/10.3390/land13111810