A Parameter Optimized Method for InVEST Model in Sub-Pixel Scale Integrating Machine Learning Algorithm and Vegetation–Impervious Surface–Soil Model
Abstract
:1. Introduction
2. Related Work
2.1. Vegetation–Impervious Surface–Soil Model
2.2. Machine Learning Algorithm for Ecosystem Service Assessment
3. Methodology
3.1. Conceptual Steps for Model Parameter Optimization
3.2. Methods for Operationalizing Model Optimization
3.2.1. Linear Spectral Mixture Analysis (LSMA) Method for Extracting V–I–S Fractions
3.2.2. Machine Learning Algorithm for Determining the Mapping Relationship of V–I–S Fraction and LULC
3.2.3. Evaluation Metrics for an Accuracy Comparison Assessment
4. Experiments
4.1. Experimental Area and Data Preparation
- (1)
- Remote sensing datasets and preprocesses
- (2)
- Land use/cover data and preprocesses
- (3)
- Threat factors datasets and preprocesses
4.2. Habitat Quality Model Optimization Based on the V–I–S Model
4.3. Results and Analyses
4.3.1. V–I–S Fraction Results Based on the LSMA Method
4.3.2. The Mapping Relationship of the LULC and V–I–S Fractions
4.3.3. The Habitat Quality Results Based on the Sub-InVEST Model and InVEST Model
4.3.4. A Comparison of the Sub-InVEST Model and InVEST Model
5. Discussion
5.1. The Importance of Optimizing the Parameters of the InVEST Model
5.2. Mapping Relationship Between LULC and the V–I–S Fraction
5.3. Benefits of Optimized Land Use Parameters for the InVEST Model Based on V–I–S Fractions
5.4. Limitations and Future Outlook
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.; Alexander, S.; Ehrlich, P.; Lubchenco, J.; Matson, P.; Mooney, H.; Postel, S.; Schneider, S.; Tilman, D. Ecosystem Services: Benefits Supplied to Human Societies by Natural Ecosystems. ecol 1997, 1, 1. [Google Scholar]
- Almeida, B.; David, J.; Campos, F.S.; Cabral, P. Satellite-Based Machine Learning Modelling of Ecosystem Services Indicators: A Review and Meta-Analysis. Appl. Geogr. 2024, 165, 103249. [Google Scholar] [CrossRef]
- Alqadhi, S.; Mallick, J.; Talukdar, S.; Ahmed, M.; Khan, R.A.; Sarkar, S.K.; Rahman, A. Assessing the Effect of Future Landslide on Ecosystem Services in Aqabat Al-Sulbat Region, Saudi Arabia. Nat. Hazards 2022, 113, 641–671. [Google Scholar] [CrossRef]
- Olander, L.P.; Johnston, R.J.; Tallis, H.; Kagan, J.; Maguire, L.A.; Polasky, S.; Urban, D.; Boyd, J.; Wainger, L.; Palmer, M. Benefit Relevant Indicators: Ecosystem Services Measures That Link Ecological and Social Outcomes. Ecol. Indic. 2018, 85, 1262–1272. [Google Scholar] [CrossRef]
- Fernandez-Campo, M.; Rodríguez-Morales, B.; Dramstad, W.E.; Fjellstad, W.; Diaz-Varela, E.R. Ecosystem Services Mapping for Detection of Bundles, Synergies and Trade-Offs: Examples from Two Norwegian Municipalities. Ecosyst. Serv. 2017, 28, 283–297. [Google Scholar] [CrossRef]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schägner, J.P.; Grizzetti, B.; Drakou, E.G.; Notte, A.L.; Zulian, G.; et al. Mapping Ecosystem Services for Policy Support and Decision Making in the European Union. Ecosyst. Serv. 2012, 1, 31–39. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty Years of Ecosystem Services: How Far Have We Come and How Far Do We Still Need to Go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Manley, K.; Nyelele, C.; Egoh, B.N. A Review of Machine Learning and Big Data Applications in Addressing Ecosystem Service Research Gaps. Ecosyst. Serv. 2022, 57, 101478. [Google Scholar] [CrossRef]
- Natural Capital Project; Mandle, L.; Batista, N.M. Database of Publications Using InVEST and Other Natural Capital Project Software. 2024. Available online: https://purl.stanford.edu/bb284rg5424 (accessed on 8 August 2024). [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A Methodology for Adaptable and Robust Ecosystem Services Assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Ancona, Z.H. Social Values for Ecosystem Services (SolVES): Open-Source Spatial Modeling of Cultural Services. Environ. Model. Softw. 2022, 148, 105259. [Google Scholar] [CrossRef]
- Han, B.; Ouyang, Z. The comparing and applying Intelligent Urban Ecosystem Management System(IUEMS) on ecosystem services assessment. Acta Ecol. Sin. 2021, 41, 8697–8708. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Sirén, E.; Brunner, S.H.; Weibel, B. Review of Decision Support Tools to Operationalize the Ecosystem Services Concept. Ecosyst. Serv. 2017, 26, 306–315. [Google Scholar] [CrossRef]
- Kirby, M.G.; Zawadzka, J.; Scott, A.J. Ecosystem Service Multifunctionality and Trade-Offs in English Green Belt Peri-Urban Planning. Ecosyst. Serv. 2024, 67, 101620. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model Development for the Assessment of Terrestrial and Aquatic Habitat Quality in Conservation Planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and Prediction of Carbon Sequestration Using Markov Chain and InVEST Model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.8.7. User’s Guide; Collaborative publication by The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund; Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Chen, X.; Yu, L.; Du, Z.; Liu, Z.; Qi, Y.; Liu, T.; Gong, P. Toward Sustainable Land Use in China: A Perspective on China’s National Land Surveys. Land Use Policy 2022, 123, 106428. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Wen, Q.; Zhao, X.; Liu, F.; Zuo, L.; Hu, S.; Xu, J.; Yi, L.; Liu, B. Research progress of remote sensing application in land resources. J. Remote Sens. 2016, 20, 1243–1258. [Google Scholar] [CrossRef]
- Ridd, M.K. Exploring a V-I-S (Vegetation-Impervious Surface-Soil) Model for Urban Ecosystem Analysis through Remote Sensing: Comparative Anatomy for Cities†. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Setiawan, H.; Mathieu, R.; Thompson-Fawcett, M. Assessing the Applicability of the V–I–S Model to Map Urban Land Use in the Developing World: Case Study of Yogyakarta, Indonesia. Comput. Environ. Urban Syst. 2006, 30, 503–522. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D. Landscape as a Continuum: An Examination of the Urban Landscape Structures and Dynamics of Indianapolis City, 1991–2000, by Using Satellite Images. Int. J. Remote Sens. 2009, 30, 2547–2577. [Google Scholar] [CrossRef]
- Madhavan, B.B.; Kubo, S.; Kurisaki, N.; Sivakumar, T.V.L.N. Appraising the Anatomy and Spatial Growth of the Bangkok Metropolitan Area Using a Vegetation-Impervious-Soil Model through Remote Sensing. Int. J. Remote Sens. 2001, 22, 789–806. [Google Scholar] [CrossRef]
- Aina, Y.A.; Adam, E.; Ahmed, F.; Wafer, A.; Alshuwaikhat, H.M. Using Multisource Data and the V-I-S Model in Assessing the Urban Expansion of Riyadh City, Saudi Arabia. Eur. J. Remote Sens. 2019, 52, 557–571. [Google Scholar] [CrossRef]
- Frey, U.J. Putting Machine Learning to Use in Natural Resource Management—Improving Model Performance. Ecol. Soc. 2020, 25, 45. [Google Scholar] [CrossRef]
- Rammer, W.; Seidl, R. Harnessing Deep Learning in Ecology: An Example Predicting Bark Beetle Outbreaks. Front. Plant Sci. 2019, 10, 1327. [Google Scholar] [CrossRef]
- Sun, X.; Ye, D.; Shan, R.; Peng, Q.; Zhao, Z.; Sun, J. Effect of Physical Geographic and Socioeconomic Processes on Interactions among Ecosystem Services Based on Machine Learning. J. Clean. Prod. 2022, 359, 131976. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D.; et al. A Global Map of Mangrove Forest Soil Carbon at 30 m Spatial Resolution. Environ. Res. Lett. 2018, 13, 055002. [Google Scholar] [CrossRef]
- Kundu, S.; Pal, S.; Mandal, I.; Talukdar, S. How Far Damming Induced Wetland Fragmentation and Water Richness Change Affect Wetland Ecosystem Services? Remote Sens. Appl. Soc. Environ. 2022, 27, 100777. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral Mixture Modeling: A New Analysis of Rock and Soil Types at the Viking Lander 1 Site. J. Geophys. Res. Solid Earth 1986, 91, 8098–8112. [Google Scholar] [CrossRef]
- Altman, N.; Krzywinski, M. Clustering. Nat. Methods 2017, 14, 545–546. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing Habitat Quality in Relation to the Spatial Distribution of Protected Areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiang, Z.; Liu, F.; Zhang, D. Monitoring Spatio-Temporal Dynamics of Habitat Quality in Nansihu Lake Basin, Eastern China, from 1980 to 2015. Ecol. Indic. 2019, 102, 716–723. [Google Scholar] [CrossRef]
- Berta Aneseyee, A.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of Urbanization and Landscape Pattern on Habitat Quality Using OLS and GWR Models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the Characteristic Spatiotemporal Variation in Habitat Quality Using the InVEST Model—A Case Study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Wang, X.; Liu, P.; Wei, C.; Xu, N.; Zhao, P.; Wen, D. Research on Ecological Compensation Based on Ecosystem Service Flow: A Case Study in Guangdong Province, China. J. Clean. Prod. 2024, 480, 144090. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S. Exploring the Spatial–Temporal Patterns of Urban Ecosystem Service Relationships and Their Driving Mechanisms: A Case Study of Wuhu City, China. Ecol. Indic. 2024, 167, 112726. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Multi-Criteria Framework for Identifying the Trade-Offs and Synergies Relationship of Ecosystem Services Based on Ecosystem Services Bundles. Ecol. Indic. 2022, 144, 109453. [Google Scholar] [CrossRef]
- Gong, L.; Wang, L.; Hu, R.; Lu, X.; Sun, Y.; Zhang, S.; Zhang, G.; Tan, B. Identification of Unique Ecosystem Service Bundles in Farmland—A Case Study in the Huang-Huai-Hai Plain of China. J. Environ. Manag. 2024, 370, 122516. [Google Scholar] [CrossRef]
- Li, Q.; Li, D.; Wang, J.; Wang, S.; Wang, R.; Fu, G.; Yuan, Y.; Zheng, Z. Spatial Heterogeneity of Ecosystem Service Bundles and the Driving Factors in the Beijing-Tianjin-Hebei Region. J. Clean. Prod. 2024, 479, 144006. [Google Scholar] [CrossRef]
- Hung, M.C.; Ridd, M.K. A Subpixel Classifier for Urban Land-Cover Mapping Based on a Maximum-Likelihood Approach and Expert System Rules. Photogramm. Eng. Remote Sens. 2002, 68, 1173–1180. [Google Scholar]
- Small, C. Estimation of Urban Vegetation Abundance by Spectral Mixture Analysis. Int. J. Remote Sens. 2001, 22, 1305–1334. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, C.; Li, M.; Chen, R. RNDSI: A Ratio Normalized Difference Soil Index for Remote Sensing of Urban/Suburban Environments. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 40–48. [Google Scholar] [CrossRef]
- Wu, C.; Murray, A.T. Estimating Impervious Surface Distribution by Spectral Mixture Analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Fan, F.; Fan, W. Understanding Spatial-Temporal Urban Expansion Pattern (1990–2009) Using Impervious Surface Data and Landscape Indexes: A Case Study in Guangzhou (China). J. Appl. Remote Sens. 2014, 8, 083609. [Google Scholar] [CrossRef]
- Tang, Y.; Shao, Z.; Huang, X.; Cai, B. Mapping Impervious Surface Areas Using Time-Series Nighttime Light and MODIS Imagery. Remote Sens. 2021, 13, 1900. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, H.; Lin, H. Annual Dynamics of Impervious Surfaces at City Level of Pearl River Delta Metropolitan. Int. J. Remote Sens. 2018, 39, 3537–3555. [Google Scholar] [CrossRef]
- Feng, S.; Fan, F. Impervious Surface Extraction Based on Different Methods from Multiple Spatial Resolution Images: A Comprehensive Comparison. Int. J. Digit. Earth 2021, 14, 1148–1174. [Google Scholar] [CrossRef]
- Kaspersen, P.S.; Fensholt, R.; Drews, M. Using Landsat Vegetation Indices to Estimate Impervious Surface Fractions for European Cities. Remote Sens. 2015, 7, 8224–8249. [Google Scholar] [CrossRef]
Year | Datasets | Acquired Time | Band | Path/Row |
---|---|---|---|---|
2000 | Landsat 5 TM | 9 December 1999 | Band 1–5, Band 7 | 122/044 |
2005 | Landsat 5 TM | 21 January 2004 | Band 1–5, Band 7 | 122/044 |
2010 | Landsat 5 TM | 2 January 2009 | Band 1–5, Band 7 | 122/044 |
2015 | Landsat 8 OLI | 18 October 2015 | Band 1–7 | 122/044 |
2020 | Landsat 8 OLI | 18 February 2020 | Band 1–7 | 122/044 |
Threat Factors | Weight | Maximum Distance | Decay Type |
---|---|---|---|
Unused land | 0.2 | 3 | linear |
Built-up areas | 1 | 10 | exponential |
Cropland | 0.68 | 8 | linear |
Railway | 0.9 | 9 | exponential |
Trunk road | 1 | 10 | exponential |
Primary road | 1 | 8 | linear |
Secondary road | 0.75 | 5 | linear |
Industrial activities | 1 | 12 | exponential |
Residential area | 0.5 | 5 | exponential |
Land Use/Cover Type | Threat Factors | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cropland | Built-Up Areas | Unused Land | Railway | Trunk Road | Primary Road | Secondary Road | Industrial Activities | Residential Areas | |
Cropland | 0 | 0.4 | 0.1 | 0.35 | 0.35 | 0.3 | 0.2 | 0.6 | 0.1 |
Forest | 0.3 | 0.8 | 0.2 | 0.75 | 0.75 | 0.7 | 0.6 | 0.8 | 0.8 |
Grassland | 0.35 | 0.6 | 0.1 | 0.7 | 0.7 | 0.5 | 0.35 | 0.7 | 0.6 |
Shrubland | 0.35 | 0.6 | 0.1 | 0.7 | 0.7 | 0.5 | 0.35 | 0.7 | 0.6 |
Wetland | 0.3 | 0.85 | 0.3 | 0.8 | 0.8 | 0.75 | 0.65 | 0.8 | 0.8 |
Water bodies | 0.9 | 0.9 | 0.5 | 0.5 | 0.5 | 0.45 | 0.3 | 0.9 | 0.7 |
Built-up areas | 0 | 0 | 0.3 | 0.6 | 0.6 | 0.5 | 0.5 | 0.2 | 0.1 |
Unused land | 0 | 0.5 | 0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 |
No. | The Numerical Intervals of V–I–S Fractions Rule Sets | ||||
---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | |
1 | V ≤ 0.442 | V ≤ 0.399 | V ≤ 0.428 | V ≤ 0.359 | V ≤ 0.285 |
I ≤ 0.561 | I ≤ 0.592 | I ≤ 0.545 | I ≤ 0.702 | I ≤ 0.729 | |
S ≤ 0.674 | S ≤ 0.503 | S ≤ 0.628 | S ≤ 0.494 | S ≤ 0.488 | |
2 | V ≤ 0.424 | V ≤ 0.352 | V ≤ 0.447 | V ≤ 0.388 | V ≤ 0.426 |
I ≤ 0.506 | I ≤ 0.530 | I ≤ 0.596 | I ≤ 0.667 | I ≤ 0.577 | |
0.204 ≤ S ≤ 0.894 | 0.302 ≤ S ≤ 0.761 | 0.20 ≤ S ≤ 0.945 | 0.110 ≤ S ≤ 0.870 | 0.203 ≤ S ≤ 0.820 | |
3 | V ≤ 0.564 | V ≤ 0.646 | V ≤ 0.547 | V ≤ 0.508 | V ≤ 0.438 |
0.02 ≤ I ≤ 0.612 | 0.02 ≤ I ≤ 0.475 | 0.02 ≤ I ≤ 0.655 | 0.180 ≤ I ≤ 0.780 | 0.263 ≤ I ≤ 0.816 | |
S ≤ 0.643 | S ≤ 0.537 | S ≤ 0.631 | S ≤ 0.553 | S ≤ 0.514 | |
4 | V ≤ 0.584 | V ≤ 0.588 | V ≤ 0.580 | V ≤ 0.612 | V ≤ 0.591 |
0.294 ≤ I ≤ 0.773 | 0.161 ≤ I ≤ 0.745 | 0.278 ≤ I ≤ 0.784 | 0.286 ≤ I ≤ 0.820 | 0.329 ≤ I ≤ 0.831 | |
S ≤ 0.282 | S ≤ 0.349 | S ≤ 0.278 | S ≤ 0.239 | S ≤ 0.189 | |
5 | V ≥ 0.404 | V ≥ 0.475 | V ≥ 0.400 | V ≥ 0.455 | V ≥ 0.447 |
I ≤ 0.498 | I ≤ 0.463 | I ≤ 0.490 | I ≤ 0.439 | I ≤ 0.482 | |
S ≤ 0.325 | S ≤ 0.241 | S ≤ 0.361 | S ≤ 0.158 | S ≤ 0.122 | |
6 | V ≤ 0.275 | V ≤ 0.253 | V ≤ 0.251 | V ≤ 0.176 | V ≤ 0.247 |
I ≥ 0.408 | I ≥ 0.502 | I ≥ 0.541 | I ≥ 0.729 | I ≥ 0.631 | |
S ≤ 0.305 | S ≤ 0.212 | S ≤ 0.345 | S ≤ 0.133 | S ≤ 0.177 |
The V–I–S Fraction Rule Sets | Land Use/Cover Types | ||||
---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | |
1 | - | - | - | - | - |
2 | unused land | unused land | unused land | unused land | - |
3 | grassland | - | shrubland–grassland | - | unused land |
4 | Wetland–cropland | wetland–shrubland– grassland–cropland | wetland | cropland | grassland-shrubland |
5 | shrubland–forest | forest | forest–cropland | wetland–shrubland– forest–grassland | forest–wetland– cropland |
6 | built-up areas | built-up areas | built-up areas | built-up areas | built-up areas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Fan, F. A Parameter Optimized Method for InVEST Model in Sub-Pixel Scale Integrating Machine Learning Algorithm and Vegetation–Impervious Surface–Soil Model. Land 2024, 13, 1876. https://doi.org/10.3390/land13111876
Wu L, Fan F. A Parameter Optimized Method for InVEST Model in Sub-Pixel Scale Integrating Machine Learning Algorithm and Vegetation–Impervious Surface–Soil Model. Land. 2024; 13(11):1876. https://doi.org/10.3390/land13111876
Chicago/Turabian StyleWu, Linlin, and Fenglei Fan. 2024. "A Parameter Optimized Method for InVEST Model in Sub-Pixel Scale Integrating Machine Learning Algorithm and Vegetation–Impervious Surface–Soil Model" Land 13, no. 11: 1876. https://doi.org/10.3390/land13111876