An Approach for Simulating Soil Loss from an Agro-Ecosystem Using Multi-Agent Simulation: A Case Study for Semi-Arid Ghana
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Household Agricultural Land Use Choice
Sub-Category/Description | Code | |
---|---|---|
1 | Traditional cereals culture, where Guinea corn (GC) is main crop | GC_CULT |
2 | Traditional cereals culture, where Late millet (LM) is main crop | LM_CULT |
3 | Traditional cereals culture, where there is an equal ratio of GC and LM | MIX_TRAD_CULT |
4 | Groundnut in a mixture of other crops | MIX_GNUT |
5 | Groundnut in a mono culture | MONOGNUT |
6 | Rice is the main crop. | RICE |
7 | Maize is the main crop. | MAIZE |
2.3. Model Description: Vea-LUDAS
2.3.1. Key Sub-Model Adapted for This Study: Soil Loss Sub-Model
2.3.2. Variable Specification for Soil Loss Estimation
Rainfall Erosivity Factor (R)
Soil Erodibility (K-value)
Slope Length and Steepness Factor (LS)
C- and P-Factor
Cover Type | Cover and Management Factor (C) |
---|---|
Millet and sorghum | 0.3–0.9 |
Cotton | 0.5–0.7 |
Groundnuts | 0.4–0.8 |
Cowpea | 0.2–0.4 |
Maize | 0.4–0.7 |
Rice (paddy) | 0.3–0.5 |
Bare land | 0.8–1.0 |
2.4. Scenario Exploration
3. Results
3.1. Soil Loss Estimation Parameters
3.2. Agricultural Land-Use Change
3.3. Soil Loss
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
ODD Protocol for Vea-LUDAS
A1. Overview (O)
A2. Design Concepts (D)
A3. Details (D)
References
- Darwin, R. A farmer’s view of the Ricardian approach to measuring agricultural effects of climatic change. Clim. Change 1999, 41, 371–411. [Google Scholar] [CrossRef]
- Fischer, G.; Shah, M.; van Velthuizen, H. Climate change and agricultural vulnerability. A Special Report Prepared by the International Institute for Applied Systems Analysis (IIASA) under United Nations Institutional Contract Agreement No. 1113 on “Climate Change and Agricultural Vulnerability”. In Proceedings of World Summit on Sustainable Development, Johannesburg, South Africa, 26 August–4 September 2002.
- Vincent, K.; Joubert, A.; Cull, T.; Magrath, J.; Johnston, P. Overcoming the barriers: How to ensure future food production under climate change in Southern Africa. Oxfam Policy Pract.: Agric. Food Land 2011, 11, 183–242. [Google Scholar]
- Gyasi, E.A.; Karikari, O.; Kranjac-Berisavljevic, G.; Vordzogbe, V.V. Study of Climate Change Vulnerability and Adaptation Assessment Relative to Land Management in Ghana; University of Ghana, Legon: Accra, Ghana, 2006. [Google Scholar]
- Laube, W.; Awo, M.; Schraven, B. Erratic Rains and Erratic Markets: Environmental Change, Economic Globalisation and the Expansion of Shallow Groundwater Irrigation in West Africa (No. 30); ZEF Working Paper Series; University of Bonn: Bonn, Germany, 2008. [Google Scholar]
- Stanturf, J.A.; Warren, M.L.; Charnley, S., Jr.; Polasky, S.C.; Goodrick, S.L.; Armah, F.; Nyako, Y.A. Ghana Climate Change Vulnerability and Adaptation Assessment; United States Agency for International Development: Washington, DC, USA, 2011. [Google Scholar]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Erosion rates and nutrient losses affected by composted cattle manure application in vineyard soils of NE Spain. Catena 2006, 68, 177–185. [Google Scholar] [CrossRef]
- Gitas, I.Z.; Douros, K.; Minakou, C.; Silleos, G.N.; Karydas, C.G. Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified usle raster model. EARSeL eProc. 2009, 8, 40–52. [Google Scholar]
- Reusing, M.; Schneider, T.; Ammer, U. Modelling soil loss rates in the Ethiopian Highlands by integration of high resolution MOMS-02/D2-stereo-data in a GIS. Int. J. Remote Sens. 2000, 21, 1885–1896. [Google Scholar] [CrossRef]
- Stocking, M. Erosion and crop yield. In Encyclopedia of Soil Science; Dekker: New York, NY, USA, 2003; pp. 1–4. [Google Scholar]
- Nyakatawa, E.Z.; Reddy, K.C.; Lemunyon, J.L. Predicting soil erosion in conservation tillage cotton production systems using the revised universal soil loss equation (RUSLE). Soil Tillage Res. 2001, 57, 213–224. [Google Scholar] [CrossRef]
- Sthiannopkao, S.; Takizawa, S.; Homewong, J.; Wirojanagud, W. Soil erosion and its impacts on water treatment in the northeastern provinces of Thailand. Environ. Int. 2007, 33, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Ontl, T.A.; Schulte, L.A. Soil carbon storage. Nat. Educ. Knowl. 2012, 3, 35. [Google Scholar]
- Eswaran, H.; Lal, R.; Reich, P.F. Land degradation: An overview. In Responses to Land Degradation, Proceedings of the 2nd International Conference on Land Degradation and Desertification, Khon Kaen, Thailand, 25–29 January 1999.
- Jebari, S.; Berndtsson, R.; Olsson, J.; Bahri, A. Soil erosion estimation based on rainfall disaggregation. J. Hydrol. 2012, 436, 102–110. [Google Scholar] [CrossRef]
- EPA. National Action Programme to Combat Drought and Desertification; Environmental Protection Agency: Accra, Ghana, 2003.
- Evans, R. Mechanics of water erosion and their Spatial and Temporal controls: An Empirical view point. In Soil Erosion; Kirkby, M.J., Morgan, R.P.C., Eds.; John Wiley and Sons: Chichester, UK, 1980; pp. 88–91. [Google Scholar]
- Ghana Statistical Services. Population and Housing Census-Summary Report of Final Results; GSS: Accra, Ghana, 2012.
- Adu, S.V. Eroded savanna soils of the Navrongo-Bawku area, northern Ghana. Ghana J. Agric. Sci. 1972, 5, 3–12. [Google Scholar]
- Ghana Statistical Services. Ghana Living Standard Survey: Report of the Fourth Round (Ghana Living Standards Statistic 4); Ghana Statistical Services: Accra, Ghana, 2000.
- IFAD. Ghana: Upper East Region Land Conservation and Smallholder Rehabilitation Project (LACOSREP) Report 2007; IFAD: Rome, Italy, 2007. [Google Scholar]
- Mdemu, M.V. Water Productivity in Medium and Small Reservoirs in the Upper East Region (UER) of Ghana; Ecology and Development Series No. 59; University of Bonn: Bonn, Germany, 2008. [Google Scholar]
- Van der Geest, K.; Dietz, T. A literature survey about risk and vulnerability in drylands with a focus on the Sahel. In The Impact of Climate Change on Drylands, with a Focus on West Africa; Dietz, A.J., Ruben, R., Verhagen, A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2004; pp. 117–146. [Google Scholar]
- Badmos, B.K.; Villamor, G.B.; Agodzo, S.K.; Odai, S.N.; Guug, S.S. Examining agricultural land-use/cover change options in Rural Northern Ghana: A participatory scenario exploration exercise approach. Int. J. Interdiscip. Environ. Stud. 2014, 8, 15–35. [Google Scholar]
- Le, Q.B.; Park, S.J.; Vlek, P.L.; Cremers, A.B. Land-Use Dynamic Simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human–landscape system. I. Structure and theoretical specification. Ecol. Inform. 2008, 3, 135–153. [Google Scholar] [CrossRef]
- Schindler, J. A Multi-Agent System for Simulating Land-Use and Land-Cover Change in the Atankwidi Catchment of Upper East Ghana; Ecology and Development Series No. 68; Center for Development Research (ZEF): Bonn, Germany, 2009. [Google Scholar]
- Kaplan, M. Agent-Based Modelling of Land-Use Changes and Vulnerability Assessment in a Coupled Socio-Ecological System in the Coastal Zone of Sri Lanka; Ecology and Development Series No. 77, 2011; Center for Development Research (ZEF): Bonn, Germany, 2011. [Google Scholar]
- Villamor, G.B.; le, Q.B.; Djanibekov, U.; van Noordwijk, M.; Vlek, P.L. Biodiversity in rubber agroforests, carbon emissions, and rural livelihoods: An agent-based model of land-use dynamics in lowland Sumatra. Environ. Model. Softw. 2014, 61, 151–165. [Google Scholar] [CrossRef]
- Grimm, V.; Berger, U.; Bastiansen, F.; Eliassen, S.; Ginot, V.; Giske, J.; DeAngelis, D.L. A standard protocol for describing individual-based and agent-based models. Ecol. Model. 2006, 198, 115–126. [Google Scholar] [CrossRef]
- Grimm, V.; Berger, U.; DeAngelis, D.L.; Polhill, J.G.; Giske, J.; Railsback, S.F. The ODD protocol: A review and first update. Ecol. Model. 2010, 221, 2760–2768. [Google Scholar] [CrossRef]
- Wilensky, U. NetLogo 1999. Available online: http://ccl.northwestern.edu/netlogo/ (accessed on 24 June 2015).
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses-A Guide to Conservation Planning; Agriculture Handbook No. 537; USDA/Science and Education Administration, US. Govt. Printing Office: Washington, DC, USA, 1978.
- Roose, E.J. Use of the universal soil loss equation to predict erosion in West Africa. In Soil Erosion: Prediction and Control, Proceedings of the National Conference on Soil Erosion; Soil Conservation Society of America: Ankeny, IA, USA, 1977; pp. 143–151. [Google Scholar]
- Fournier, F. Climate and Erosion; University Press Paris: Paris, France, 1960. [Google Scholar]
- Roose, E.J. Use of the universal soil loss equation to predict erosion in west Africa. In Soil Erosion. Prediction and Control SCSA, Special Publication; Soil Conservation Society of America: Ankeny, IA, USA, 1976; Volume 21, pp. 60–74. [Google Scholar]
- Arnoldus, H.M.J. Methodology Used to Determine the Maximum Potential Average Annual Soil Loss Due to Sheet and Rill Erosion in Morocco; FAO Soils Bulletins; FAO: Rome, Italy, 1977. [Google Scholar]
- Kassam, A.H. Agro-Ecological Land Resources Assessment for Agricultural Development Planning: A Case Study of Kenya: Resources Data Base and Land Productivity; Food Agriculture Organisation: Rome, Italy, 1991. [Google Scholar]
- Singh, G.; Babu, R.; Narain, P.; Bhushan, L.S.; Abrol, I.P. Soil erosion rates in India. J. Soil Water Conserv. 1992, 47, 97–99. [Google Scholar]
- Williams, J.R.; Jones, C.A.; Dyke, P. Modeling approach to determining the relationship between erosion and soil productivity. Trans. Am. Soc. Agric. Eng. 1984, 27, 129–144. [Google Scholar] [CrossRef]
- Shirazi, M.A.; Boersma, L. A unifying quantitative analysis of soil texture. Soil Sci. Soc. Am. J. 1984, 48, 142–147. [Google Scholar] [CrossRef]
- Zhang, K.L.; Shu, A.P.; Xu, X.L.; Yang, Q.K.; Yu, B. Soil erodibility and its estimation for agricultural soils in China. J. Arid Environ. 2008, 72, 1002–1011. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Johnson, C.B.; Cross, B.V. Soil erodibility nomograph for farmland and construction sites. J. Soil Water Conserv. 1971, 26, 189–193. [Google Scholar]
- Geleta, H.I. Watershed Sediment Yield Modeling for Data Scarce Areas. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2011. [Google Scholar]
- FAO/Unesco/ISRIC. Revised Legend of the Soil Map of the World; World Soil Resources Report; FAO: Rome, Italy, 1990. [Google Scholar]
- Borah, D.K.; Krug, E.C.; Yoder, D. Watershed sediment yield. Sediment. Eng.: Process. Meas. Model. Pract. ASCE Man. Rep. Eng. Pract. 2008, 110, 827–858. [Google Scholar]
- Moore, I.D.; Burch, G.J. Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Sci. Soc. Am. J. 1986, 50, 1294–1298. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; Davidson, D.A. Soil Erosion and Conservation; Longman Group: Harlow, UK, 1991. [Google Scholar]
- Moore, I.D.; Turner, A.K.; Wilson, J.P.; Jenson, S.K.; Band, L.E. GIS and land-surface-subsurface process modeling. In Environmental Modeling with GIS; Goodchild, M.F.R., Parks, B.O., Steyaert, L.T., Eds.; Oxford University Press, Inc.: Oxford, UK, 1993; pp. 196–230. [Google Scholar]
- Van der Knijff, J.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Italy; European Soil Bureau, European Commission: Brussels, Belgium, 1999; p. 52. [Google Scholar]
- Zhang, Y.; Liu, B.; Zhang, Q.; Xie, Y. Effect of different vegetation types on soil erosion by water. Acta Bot. Sin. 2002, 45, 1204–1209. [Google Scholar]
- Hazarika, M.K.; Honda, K. Estimation of soil erosion using remote sensing and GIS: Its valuation and economic implications on agricultural production. In Sustaining the Global Farm; Scott, D.E., Mohtar, R.H., Steinhardt, G.C., Eds.; USDA-ARS national soil erosion research laboratory: Purdue, IN, USA, 2001; pp. 1090–1093. [Google Scholar]
- Karaburun, A. Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean J. Appl. Sci. 2010, 3, 77–85. [Google Scholar]
- Henao, J.; Baanante, C.A. Estimating Rates of Nutrient Depletion in Soils of Agricultural Lands of Africa; International Fertilizer Development Center: Muscle Shoals, AL, USA, 1999; p. 76. [Google Scholar]
- Villamor, G.B.; Badmos, B.K. Grazing game: A learning tool for adaptive management in response to climate variability in semi-arid areas of Ghana. Ecol. Soc. 2015. under review. [Google Scholar]
- Angelucci, F. Analysis of Incentives and Disincentives for Maize in Ghana; Technical Notes Series; MAFAP, FAO: Rome, Italy, 2012. [Google Scholar]
- Villamor, G.B. Flexibility of Multi-agent System Models for Rubber Agroforest Landscapes and Social Response to Emerging Reward Mechanisms for Ecosystem Services in Sumatra, Indonesia; Ecology and Development Series No. 88, 2012; Center for Development Research (ZEF): Bonn, Germany, 2012. [Google Scholar]
- Villamor, G.B.; Troitzsch, K.G.; van Noordwijk, M. Validating human decision making in an agent-based land-use model. In Proceedings of the 20th International Congress on Modelling and Simulation (MODSIM): Adapting to Change: The Multiple Roles of Modelling, Adelaide, Australia, 1–6 December 2013.
- Niazi, M.; Hussain, A. Agent-based computing from multi-agent systems to agent-based models: A visual survey. Scientometrics 2011, 89, 479–499. [Google Scholar] [CrossRef]
- Villamor, G.B.; van Noordwijk, M.; Troitzsch, K.G.; Vlek, P.L.G. Human decision making in empirical agent-based models: Pitfalls and caveats for land-use/change policies. In Proceedings of the 26th European Conference on Modelling and Simulation, Koblenz, 29 May–1 June 2012.
- Villamor, G.B.; van Noordwijk, M.; Troitzsch, K.G.; Vlek, P.L.G. Human decision making for empirical agent-based models: construction and validation. In Proceedings of the 6th Biennial Meeting, International Environmental Modelling and Software, Managing Resources of a Limited Planet, Leipzig, Germany, 1–5 July 2012.
- McSweeney, C.; Lizcano, G.; New, M.; Lu, X. The UNDP Climate change country profiles: Improving the accessibility of observed and projected climate information for studies of climate change in developing countries. Bull. Am. Meteorol. Soc. 2010, 91, 157–166. [Google Scholar] [CrossRef]
- Le, Q.B.; Park, S.J.; Vlek, P.L. Land Use Dynamic Simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human–landscape system: 2. Scenario-based application for impact assessment of land-use policies. Ecol. Inform. 2010, 5, 203–221. [Google Scholar] [CrossRef]
- Le, Q.B.; Seidl, R.; Scholz, R.W. Feedback loops and types of adaptation in the modelling of land-use decisions in an agent-based simulation. Environ. Model. Softw. 2012, 27, 83–96. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badmos, B.K.; Agodzo, S.K.; Villamor, G.B.; Odai, S.N. An Approach for Simulating Soil Loss from an Agro-Ecosystem Using Multi-Agent Simulation: A Case Study for Semi-Arid Ghana. Land 2015, 4, 607-626. https://doi.org/10.3390/land4030607
Badmos BK, Agodzo SK, Villamor GB, Odai SN. An Approach for Simulating Soil Loss from an Agro-Ecosystem Using Multi-Agent Simulation: A Case Study for Semi-Arid Ghana. Land. 2015; 4(3):607-626. https://doi.org/10.3390/land4030607
Chicago/Turabian StyleBadmos, Biola K., Sampson K. Agodzo, Grace B. Villamor, and Samuel N. Odai. 2015. "An Approach for Simulating Soil Loss from an Agro-Ecosystem Using Multi-Agent Simulation: A Case Study for Semi-Arid Ghana" Land 4, no. 3: 607-626. https://doi.org/10.3390/land4030607
APA StyleBadmos, B. K., Agodzo, S. K., Villamor, G. B., & Odai, S. N. (2015). An Approach for Simulating Soil Loss from an Agro-Ecosystem Using Multi-Agent Simulation: A Case Study for Semi-Arid Ghana. Land, 4(3), 607-626. https://doi.org/10.3390/land4030607