Experimental Investigation of Tribology-Related Topography Parameters of Hard-Turned and Ground 16MnCr5 Surfaces
Abstract
:1. Introduction
2. Material and Methods
2.1. Machining and Measurement
- Carburization at 920 °C for 14 h, then slow cooling on air.
- Quenching from 860 °C in oil.
- Tempering at 19 °C for 2 h, then slow cooling on air.
2.2. Analyzed Topography Parameters
3. Results and Discussion
3.1. Topography Parameters
3.2. Response Functions
3.3. Correlation Analysis
3.4. Analysis of the Relative Deviations
3.5. Tribology Map—Cutting Parameter Selection
4. Conclusions
- The means of Vmp, Sp, and Spk increase significantly and the deviations increase slightly in hard turning. The means and the deviations of Vmp, Sp, and Spk decrease significantly in grinding. The means of Vvv, Sv, and Svk increase slightly in hard turning. The means and deviations of Vvv, Sv, and Svk decrease significantly in grinding. No tendencies can be observed in the means and deviations of the Ssk values in the analyzed technologies. The means and deviations of Sku decrease significantly both in hard turning and grinding.
- Quadratic response functions were created for the analyzed topography parameter, and this type is suitable for predicting the topography values, which is indicated by the coefficients of determination that varied between 0.52 and 0.99.
- The correlation coefficients among Vmp, Sp, and Spk vary between 0.95 and 099 in the case of hard turning and grinding. The correlation coefficients among Vvv, Sv, and Svk vary between 0.92 and 1 in the case of grinding, and its value is 0.94 between Vvv and Sv in the case of hard turning. These findings indicate that these parameters are equivalent to each other. Ssk is not strongly equivalent to the analyzed parameters in hard turning and grinding (−0.71 < r < 0.58). Sku can be considered equivalent to Vmp, Sp, Spk, and Sv (−0.89 < r < −0.77) in hard turning and to Vmp and Vvv (0.72 < r < 0.85) in grinding. These results are confirmed by the analysis of the relative deviations carried out for the different feed rates and tool revolutions in the case of hard turning and grinding, respectively.
- Tribology maps were constructed to determine the cutting parameters of the most favorable topography parameters. The most favorable Vmp, Sp, Spk, Ssk, and Sku parameter values were obtained at 0.04 mm/rev feed rate, and the most favorable Vvv, Sv, and Svk parameter values at 0.2 mm/rev feed rate in hard turning. The most favorable Vmp, Sp, and Spk parameter values were obtained at 6000 rev/min tool rpm and 2 mm/min feed rate, and the most favorable Vvv, Sv, Svk, Ssk, and Sku at 3000 rev/min tool rpm and 8 mm/min feed rate in grinding.
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 | c9 | c10 | |
---|---|---|---|---|---|---|---|---|---|---|
Vmp | 0.013 | −0.012 | −0.0001 | −0.088 | 0.082 | 0.00000 | 1.355 | 0.0000 | −0.035 | 0.0001 |
Sp | 0.543 | 1.149 | −0.0013 | −6.942 | 0.834 | 0.00000 | 105.610 | −0.0014 | −7.304 | 0.0018 |
Spk | −0.127 | 0.058 | 0.0013 | 1.332 | 2.142 | 0.00000 | 63.518 | −0.0024 | −6.925 | −0.0077 |
Vvv | 0.021 | 0.086 | 0.0001 | −0.417 | −0.138 | 0.00000 | 2.135 | 0.0001 | −0.053 | 0.0004 |
Sv | 0.699 | 3.247 | −0.0011 | −12.460 | −4.716 | 0.00000 | 84.476 | −0.0003 | −5.307 | 0.0140 |
Svk | 0.041 | 0.866 | 0.0012 | −2.177 | −1.277 | 0.00000 | 6.853 | 0.0005 | −0.892 | 0.0046 |
Ssk | −0.863 | −3.343 | −0.0024 | 29.381 | 9.285 | 0.00001 | −96.741 | −0.0010 | −1.728 | −0.0036 |
Sku | 1.859 | 1.580 | 0.0200 | −8.381 | −2.790 | −0.00005 | 6.886 | 0.0004 | −0.476 | −0.0077 |
c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 | c9 | c10 | |
---|---|---|---|---|---|---|---|---|---|---|
Vmp | 0.290 | −0.0007 | −0.0001 | 0.019 | 0.00000 | 0.00000 | 0.0000 | 0.00000 | 0.0001 | 0.00000 |
Sp | 11.575 | 0.0081 | −0.0043 | 1.377 | −0.00026 | 0.00000 | 0.0005 | 0.00001 | 0.0028 | −0.00028 |
Spk | 6.434 | −0.0091 | −0.0019 | 0.282 | −0.00007 | 0.00000 | −0.0097 | 0.00000 | 0.0017 | −0.00007 |
Vvv | 0.453 | 0.0022 | −0.0003 | 0.122 | −0.00001 | 0.00000 | 0.0049 | 0.00000 | 0.0001 | −0.00003 |
Sv | 8.408 | 0.0666 | −0.0064 | 2.410 | −0.00027 | 0.00000 | 0.0644 | 0.00000 | 0.0039 | −0.00062 |
Svk | 7.147 | −0.0098 | −0.0035 | 1.266 | 0.00000 | 0.00000 | 0.0272 | 0.00000 | −0.0001 | −0.00027 |
Ssk | 1.674 | −0.0139 | 0.0001 | −0.220 | −0.00001 | 0.00000 | −0.0135 | 0.00000 | 0.0000 | 0.00007 |
Sku | 8.404 | −0.0257 | −0.0011 | −0.294 | 0.00006 | 0.00000 | 0.0253 | 0.00000 | 0.0020 | −0.00005 |
References
- Sasaki, S. Advances in Tribology Driven by Surface Science. e-J. Surf. Sci. Nanotechnol. 2023, 21, 98–104. [Google Scholar] [CrossRef]
- Mathia, T.G.; Pawlus, P.; Wieczorowski, M. Recent trends in surface metrology. Wear 2011, 271, 494–508. [Google Scholar] [CrossRef]
- Kamarthi, S.; Sultornsanee, S.; Zeid, A. Recurrence quantification analysis to estimating surface roughness in finish turning processes. Int. J. Adv. Manuf. Technol. 2016, 87, 451–460. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, A.K.; Mishra, P.C.; Das, R.K. Measurement and machinability study under environmentally conscious spray impingement cooling assisted machining. Measurement 2019, 135, 913–927. [Google Scholar] [CrossRef]
- Li, C.; Piao, Y.; Meng, B.; Hu, Y.; Li, L.; Zhang, F. Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals. Int. J. Mach. Tools Manuf. 2022, 172, 103827. [Google Scholar] [CrossRef]
- Javaroni, R.L.; Lopes, J.C.; Sato, B.K.; Sanchez, L.E.A.; Mello, H.J.; Aguiar, P.R.; Bianchi, E.C. Minimum quantity of lubrication (MQL) as an eco-friendly alternative to the cutting fluids in advanced ceramics grinding. Int. J. Adv. Manuf. Technol. 2019, 103, 2809–2819. [Google Scholar] [CrossRef]
- Kumar, P.; Chauhan, S.R.; Aggarwal, A. Effects of cutting conditions, tool geometry and material hardness on machinability of AISI H13 using CBN tool. Mater. Today Proc. 2021, 46, 9217–9222. [Google Scholar] [CrossRef]
- Dosbaeva, G.K.; El Hakim, M.A.; Shalaby, M.A.; Krzanowski, J.E.; Veldhuis, S.C. Cutting temperature effect on PCBN and CVD coated carbide tools in hard turning of D2 tool steel. Int. J. Refract. Hard Met. 2015, 50, 1–8. [Google Scholar] [CrossRef]
- Karpuschewski, B.; Schmidt, K.; Beno, J.; Mankova, I.; Prilukova, J. Measuring procedures of cutting edge preparation when hard turning with coated ceramics tool inserts. Measurement 2014, 55, 627–640. [Google Scholar] [CrossRef]
- Niaki, F.A.; Haines, E.; Dreussi, R.; Weyer, G. Machinability and surface integrity characterization in hard turning of AISI 4320 bearing steel using different CBN inserts. Proc. Manuf. 2020, 48, 598–605. [Google Scholar] [CrossRef]
- Skoczy, A. Selected Properties of the Surface Layer of C45 Steel Parts Subjected to Laser Cutting and Ball Burnishing. Materials 2020, 13, 3429. [Google Scholar] [CrossRef] [PubMed]
- Stout, K.; Blunt, L. Three-Dimensional Surface Topography, 2nd ed.; Penton Press: London, UK, 2000; ISBN 9781857180268. [Google Scholar]
- Pawlus, P.; Reizer, R.; Zelasko, W. Prediction of parameters of equivalent sum rough surfaces. Materials 2020, 13, 4898. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Knust, S.; Schwiderek, S.; Qin, Q.; Yun, Q.; Grundmeier, G.; Keller, A. Protein adsorption at nanorough titanium oxide surfaces: The importance of surface statistical parameters beyond surface roughness. Nanomaterials 2021, 11, 357. [Google Scholar] [CrossRef] [PubMed]
- Sedlacek, M.; Podgornik, B.; Vizintin, J. Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol. Int. 2012, 48, 102–112. [Google Scholar] [CrossRef]
- Trzepiecinski, T.; Szpunar, M.; Dzierwa, A.; Zaba, K. Investigation of surface roughness in incremental sheet forming of conical drawpieces from pure titanium sheets. Materials 2022, 15, 4278. [Google Scholar] [CrossRef] [PubMed]
- Pawlus, P.; Reizer, R.; Wieczorowski, M. Functional importance of surface texture parameters. Materials 2021, 14, 5326. [Google Scholar] [CrossRef]
- Liang, G.; Schmauder, S.; Lyu, M.; Schneider, Y.; Zhang, C.; Han, Y. An investigation of the influence of initial roughness on the friction and wear behavior of ground surfaces. Materials 2018, 11, 237. [Google Scholar] [CrossRef] [Green Version]
- Dzierwa, A.; Pawlus, P.; Zelasko, W. The influence of disc surface topography after vapour blasting on friction and wear of sliding pairs under dry friction conditions. Coatings 2020, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Sedlacek, M.; Gregorcic, P.; Podgornik, B. Use of the roughness parameters Ssk and Sku to control friction—A method for designing surface texturing. Tribol. Trans. 2017, 60, 260–266. [Google Scholar] [CrossRef]
- Dzierwa, A. Influence of surface preparation on surface topography and tribological behaviours. Arch. Civ. Mech. Eng. 2017, 17, 502–510. [Google Scholar] [CrossRef]
- Gu, H.; Jiao, L.; Yan, P.; Liang, J.; Qiu, T.; Liu, Z.; Wang, X. Effect of machined surface texture on fretting crack nucleation under radial loading in conformal contact. Tribol. Int. 2021, 153, 106575. [Google Scholar] [CrossRef]
- Kovacs, Z.; Viharos, Z.J.; Kodacsy, J. The effects of machining strategies of magnetic assisted roller burnishing on the resulted surface structure. Mater. Sci. Eng. 2018, 448, 012002. [Google Scholar] [CrossRef] [Green Version]
- Etsion, I. State of the art in laser surface texturing. J. Tribol. 2005, 127, 248–253. [Google Scholar] [CrossRef]
- Zhua, Z.; Loub, S.; Majewski, C. Characterisation and correlation of areal surface texture with processing parameters and porosity of high speed sintered parts. Addit. Manuf. 2020, 36, 101402. [Google Scholar] [CrossRef]
- Orrillo, P.A.; Santalla, S.N.; Cuerno, R.; Vazquez, L.; Ribotta, S.B.; Gassa, L.M.; Mompean, F.J.; Salvarezza, R.C.; Vela, M.E. Morphological stabilization and KPZ scaling by electrochemically induced co-deposition of nanostructured NiW alloy films. Sci. Rep. 2017, 7, 17997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.; Polycarpou, A.A. Combining and contacting of two rough surfaces with asymmetric distribution of asperity heights. J. Tribol. 2004, 126, 225–232. [Google Scholar] [CrossRef]
- Grzesik, W.; Zak, K.; Kiszka, P. Comparison of surface textures generated in hard turning and grinding operations. Procedia CIRP 2014, 13, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Ba, E.C.T.; Dumont, M.R.; Martins, P.S.; Drumond, R.M.; Martins da Cruz, M.P.; Vieira, V.F. Investigation of the effects of skewness Rsk and kurtosis Rku on tribological behavior in a pin-on-disc test of surfaces machined by conventional milling and turning processes. Mater. Res. 2021, 24, e20200435. [Google Scholar] [CrossRef]
- Naylor, A.; Talwalkar, S.C.; Trail, I.A.; Joyce, T.J. Evaluating the surface topography of pyrolytic carbon finger prostheses through measurement of various roughness parameters. J. Funct. Biomater. 2016, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Gadelmawla, E.S.; Koura, M.M.; Maksoud, T.M.A.; Elewa, I.M.; Soliman, H.H. Roughness parameters. J. Mater. Process. Technol. 2002, 123, 133–145. [Google Scholar] [CrossRef]
- Karkalos, N.E.; Karmiris-Obratanski, P.; Kurpiel, S.; Zagorski, K.; Markopoulos, A.P. Investigation on the surface quality obtained during trochoidal milling of 6082 aluminum alloy. Machines 2021, 9, 75. [Google Scholar] [CrossRef]
- Bilek, O.; Pata, V.; Kubisova, M.; Reznicek, M. Mathematical methods of surface roughness evaluation of areas with a distinctive inclination. Manuf. Technol. 2018, 18, 363–368. [Google Scholar] [CrossRef]
- Zabala, A.; Saenz de Argandona, E.; Canizares, D.; Llavori, I.; Otegi, N.; Mendiguren, J. Numerical study of advanced friction modelling for sheet metal forming: Influence of the die local roughness. Tribol. Int. 2022, 165, 107259. [Google Scholar] [CrossRef]
- Chen, H.; Xu, C.; Xiao, G.; Yi, M.; Chen, Z.; Zhang, J. Analysis of the relationship between roughness parameters of wear surface and tribology performance of 5CB liquid crystal. J. Mol. Liq. 2022, 352, 118711. [Google Scholar] [CrossRef]
- Zhu, L.; Guan, Y.; Wang, Y.; Xie, Z.; Lin, J.; Zhai, J. Influence of process parameters of ultrasonic shot peening on surface roughness and hydrophilicity of pure titanium. Surf. Coat. Technol. 2017, 317, 38–53. [Google Scholar] [CrossRef]
- Edelbi, A.; Kumar, R.; Sahoo, A.K.; Pandey, A. Comparative machining performance investigation of dual-nozzle MQL-assisted ZnO and Al2O3 nanofluids in face milling of Ti–3Al–2.5V alloys. Arab. J. Sci. Eng. 2023, 48, 2969–2993. [Google Scholar] [CrossRef]
- Nagy, A.; Kundrak, J. Investigation of face milled surface topography on C45 workpiece assuming movement at 30° and 60° to feed direction. Cut. Tools Technol. Syst. 2023, 98, 116–127. [Google Scholar] [CrossRef]
- Sagbas, A. Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirability function. Adv. Eng. Softw. 2011, 42, 992–998. [Google Scholar] [CrossRef]
- Wdowik, R. Measurements of surface texture parameters after ultrasonic assisted and conventional grinding of carbide and ceramic samples in selected machining conditions. Procedia CIRP 2018, 78, 329–334. [Google Scholar] [CrossRef]
- Maruda, R.W.; Krolczyk, G.M.; Wojciechowski, S.; Powalka, B.; Klos, S.; Szczotkarz, N.; Matuszak, M.; Khanna, N. Evaluation of turning with different cooling-lubricating techniques in terms of surface integrity and tribologic properties. Tribol. Int. 2020, 148, 106334. [Google Scholar] [CrossRef]
- Mallick, R.; Kumar, R.; Panda, A.; Sahoo, A.K. Hard turning performance investigation of AISI D2 steel under a dual nozzle MQL environment. Lubricants 2023, 11, 16. [Google Scholar] [CrossRef]
- Sztankovics, I.; Kundrak, J. The characteristic parameters of the twist structure on cylindrical surfaces machined by turning procedures. Appl. Mech. Mater. 2014, 693, 418–423. [Google Scholar] [CrossRef]
- Sztankovics, I.; Kundrak, J. Theoretical value and experimental study of arithmetic mean deviation in rotational turning. Cut. Tools Technol. Syst. 2022, 96, 73–81. [Google Scholar] [CrossRef]
- Grzesik, W.; Rech, J.; Zak, K. High-precision finishing hard steel surfaces using cutting, abrasive and burnishing operations. Procedia Manuf. 2015, 1, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Velazquez Corral, E.; Wagner, V.; Jerez Mesa, R.; Delbe, K.; Lluma, J.; Travieso Rodriguez, J.A.; Dessein, G. Wear resistance and friction analysis of Ti6Al4V cylindrical ball burnished specimens with and without vibration assistance. Int. J. Adv. Manuf. Technol. 2023. [Google Scholar] [CrossRef]
- Szlachetka, O.; Witkowska-Dobrev, J.; Baryla, A.; Dohojda, M. Low-density polyethylene (LDPE) building films—Tensile properties and surface morphology. J. Build. Eng. 2021, 44, 103386. [Google Scholar] [CrossRef]
- Bingley, R.; Buttery, M.; Romera, R.F. The effect of surface production techniques on the tribological behaviour of fluid lubricants. In Proceedings of the 18 European Space Mechanisms and Tribology Symposium, Munich, Germany, 18–20 September 2019. [Google Scholar]
- Korkmaz, M.E.; Gupta, M.K.; Demirsoz, R. Understanding the lubrication regime phenomenon and its influence on tribological characteristics of additively manufactured 316 Steel under novel lubrication environment. Tribol. Int. 2022, 173, 107686. [Google Scholar] [CrossRef]
- Grzesik, W. Prediction of the functional performance of machined components based on surface topography: State of the art. J. Mater. Eng. 2016, 25, 4460–4468. [Google Scholar] [CrossRef] [Green Version]
- Flack, K.A.; Schultz, M.P.; Barros, J.M. Skin friction measurements of systematically-varied roughness: Probing the role of roughness amplitude and skewness. Flow. Turbul. Combust. 2020, 104, 317–329. [Google Scholar] [CrossRef]
- Korzynski, M.; Dudek, K.; Palczak, A.; Kruczek, B.; Kocurek, P. Experimental models and correlations between surface parameters after slide diamond burnishing. Meas. Sci. Rev. 2018, 18, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Deltombe, R.; Kubiak, K.J.; Bigerelle, M. How to select the most relevant 3D roughness parameters of a surface? Scanning 2014, 36, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szala, M.; Szafran, M.; Matijosius, J.; Drozd, K. Abrasive wear mechanisms of S235JR, S355J2, C45, AISI 304, and Hardox 500 steels tested using garnet, corundum and carborundum abrasives. Adv. Sci. Technol. Res. J. 2023, 17, 147–160. [Google Scholar] [CrossRef]
- Townsend, A.; Senin, N.; Blunt, L.; Leach, R.K.; Taylor, J.S. Surface texture metrology for metal additive manufacturing: A review. Precis. Eng. 2016, 46, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Krolczyk, J.B.; Maruda, R.W.; Krolczyk, G.M.; Wojciechowski, S.; Gupta, M.K.; Korkmaz, M.E. Investigations on surface induced tribological characteristics in MQCL assisted machining of duplex stainless steel. J. Mater. Res. Technol. 2022, 18, 2754–2769. [Google Scholar] [CrossRef]
- Ghera, C.; Mitelea, I.; Bordeaşu, I.; Craciunescu, C.M. Effect of heat treatment on the surfaces topography tested at the cavitation erosion from steel 16MnCr5. Adv. Mat. Res. 2015, 1111, 85–90. [Google Scholar] [CrossRef]
- Bartels, D.; Klaffki, J.; Pitz, I.; Merklein, C.; Kostrewa, F.; Schmidt, M. Investigation on the case-hardening behavior of additively manufactured 16MnCr5. Metals 2020, 10, 536. [Google Scholar] [CrossRef]
- Saelzer, J.; Thimm, B.; Zabel, A. Systematic in-depth study on material constitutive parameter identification for numerical cutting simulation on 16MnCr5 comparing temperature-coupled and uncoupled Split Hopkinson pressure bars. J. Mater. Process. Technol. 2022, 302, 117478. [Google Scholar] [CrossRef]
- Dhar, N.R.; Hossain, M.; Kamruzzaman, M. MQL applications in grinding of 16MnCr5 steel: A comparison with wet and dry grinding. In Proceedings of the International Conference on Mechanical Engineering 2005, Dhaka, Bangladesh, 28–30 December 2005. [Google Scholar]
- Agarwal, S.; Suman, R.; Bahl, S.; Haleem, A.; Javaid, M.; Sharma, M.K.; Prakash, C.; Sehgal, S.; Singhal, P. Optimisation of cutting parameters during turning of 16MnCr5 steel using Taguchi technique. Int. J. Interact. Des. Manuf. 2022, 933. [Google Scholar] [CrossRef]
- Knyazeva, M.; Vasquez, J.R.; Gondecki, L.; Weibring, M.; Pöhl, F.; Kipp, M.; Tenberge, P.; Theisen, W.; Walther, F.; Biermann, D. Micro-magnetic and microstructural characterization of wear progress on case-hardened 16MnCr5 gear wheels. Materials 2018, 11, 2290. [Google Scholar] [CrossRef] [Green Version]
- da Silva Campos, P.H.; de Carvalho Paes, V.; de Carvalho Gonçalves, E.D.; Ferreira, J.R.; Balestrassi, P.P.; da Silva, J.P.D.T. Optimizing production in machining of hardened steels using response surface methodology. Acta Sci. Technol. 2019, 41, e38091. [Google Scholar] [CrossRef]
- Roy, R.; Ghosh, S.K.; Kaisar, T.I.; Ahmed, T.; Hossain, S.; Aslam, M.; Kaseem, M.; Rahman, M. Multi-response optimization of surface grinding process parameters of AISI 4140 alloy steel using response surface methodology and desirability function under dry and wet conditions. Coatings 2022, 12, 104. [Google Scholar] [CrossRef]
- Karthik, M.S.; Raju, V.R.; Reddy, K.N.; Balashanmugam, N.; Sankar, M.R. Cutting parameters optimization for surface roughness during dry hard turning of EN 31 bearing steel using CBN insert. Mater. Today Proc. 2020, 26, 1119–1125. [Google Scholar] [CrossRef]
- Neseli, S.; Asilturk, D.; Celik, L. Determining the optimum process parameter for grinding operations using robust process. J. Mech. Sci. Technol. 2012, 26, 3587–3595. [Google Scholar] [CrossRef]
Workpiece Clamping | Process Parameters |
---|---|
Hard turning Machining center: EMAG VSC 400 DDS (EGAM Salach GmbH, Salach, Germany). Tool holder: PCLNR 2020-K12; CBN Insert: NP-CNGA 120408 TA4. Cutting parameters:
| |
Grinding Machining center: EMAG VSC 400 DDS (EGAM Salach GmbH, Salach, Germany). Grinding wheel: Norton 3AS80J8VET; 01_180 × 12 × 50.8 (Abrasive: aluminum oxide, grit size: 80—fine; grade: medium; bond type: vitrified). Wheel diameter during the experiment: 120 mm. Cutting parameters:
| |
Topography measurement Equipment: AltiSurf 520 (Altimet, Thonon-les-Bains, France). Sensor: confocal chromatic, type CL2. Resolution in z direction: 0.012 µm; resolution in x and y directions: 1 µm. Evaluated area: 2 × 2 mm. Cut-off lengths: 0.08; 0.25; 0.8 mm (according to ISO 25178). |
Hard Turning | Grinding | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ap1, vc1, f1 | 10 | ap2, vc1, f1 | 19 | ap3, vc1, f1 | 1 | nW1, nT1, f1 | 10 | nW2, nT1, f1 | 19 | nW3, nT1, f1 |
2 | ap1, vc1, f2 | 11 | ap2, vc1, f2 | 20 | ap3, vc1, f2 | 2 | nW1, nT1, f2 | 11 | nW2, nT1, f2 | 20 | nW3, nT1, f2 |
3 | ap1, vc1, f3 | 12 | ap2, vc1, f3 | 21 | ap3, vc1, f3 | 3 | nW1, nT1, f3 | 12 | nW2, nT1, f3 | 21 | nW3, nT1, f3 |
4 | ap1, vc2, f1 | 13 | ap2, vc2, f1 | 22 | ap3, vc2, f1 | 4 | nW1, nT2, f1 | 13 | nW2, nT2, f1 | 22 | nW3, nT2, f1 |
5 | ap1, vc2, f2 | 14 | ap2, vc2, f2 | 23 | ap3, vc2, f2 | 5 | nW1, nT2, f2 | 14 | nW2, nT2, f2 | 23 | nW3, nT2, f2 |
6 | ap1, vc2, f3 | 15 | ap2, vc2, f3 | 24 | ap3, vc2, f3 | 6 | nW1, nT2, f3 | 15 | nW2, nT2, f3 | 24 | nW3, nT2, f3 |
7 | ap1, vc3, f1 | 16 | ap2, vc3, f1 | 25 | ap3, vc3, f1 | 7 | nW1, nT3, f1 | 16 | nW2, nT3, f1 | 25 | nW3, nT3, f1 |
8 | ap1, vc3, f2 | 17 | ap2, vc3, f2 | 26 | ap3, vc3, f1 | 8 | nW1, nT3, f2 | 17 | nW2, nT3, f2 | 26 | nW3, nT3, f2 |
9 | ap1, vc3, f3 | 18 | ap2, vc3, f3 | 27 | ap3, vc3, f3 | 9 | nW1, nT3, f3 | 18 | nW2, nT3, f3 | 27 | nW3, nT3, f3 |
ap1 = 0.05 mm, ap2 = 0.2 mm, ap3 = 0.35 mm vc1 = 120 m/min, vc2 = 180 m/min, vc3 = 240 m/min f1 = 0.04 mm/rev, f2 = 0.12 mm/rev, f3 = 0.2 mm/rev | nW1, = 100 rev/min, nW2, = 150 rev/min, nW3, = 200 rev/min nT1, = 3000 rev/min, nT2, = 4500 rev/min, nT3, = 6000 rev/min f1 =2 mm/min, f2 =5 mm/min, f3 =8 mm/min |
Vmp | Sp | Spk | Vvv | Sv | Svk | Ssk | Sku | |
---|---|---|---|---|---|---|---|---|
Hard-turned | 0.97 | 0.99 | 0.99 | 0.84 | 0.94 | 0.66 | 0.93 | 0.88 |
Ground | 0.84 | 0.89 | 0.84 | 0.92 | 0.95 | 0.84 | 0.69 | 0.52 |
Vmp | Sp | Spk | Vvv | Sv | Svk | Ssk | Sku | ||
---|---|---|---|---|---|---|---|---|---|
min | min | min | max | max | max | min | max | ||
Hard-turned surface | 0.005 | 0.319 | 0.085 | 0.077 | 2.936 | 0.449 | −0.663 | 4.065 | |
ap [mm] | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.35 | |
vc [m/min] | 120 | 120 | 120 | 240 | 240 | 240 | 180 | 180 | |
f [mm/rev] | 0.04 | 0.04 | 0.04 | 0.2 | 0.2 | 0.2 | 0.04 | 0.04 | |
Ground surface | 0.021 | 1.202 | 0.351 | 0.726 | 15.380 | 7.459 | −1.277 | 5.941 | |
nT [rev/min] | 6000 | 6000 | 6000 | 3000 | 3000 | 3000 | 3000 | 3000 | |
nW [rev/min] | 100 | 100 | 100 | 100 | 150 | 100 | 200 | 200 | |
f [mm/min] | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnar, V. Experimental Investigation of Tribology-Related Topography Parameters of Hard-Turned and Ground 16MnCr5 Surfaces. Lubricants 2023, 11, 263. https://doi.org/10.3390/lubricants11060263
Molnar V. Experimental Investigation of Tribology-Related Topography Parameters of Hard-Turned and Ground 16MnCr5 Surfaces. Lubricants. 2023; 11(6):263. https://doi.org/10.3390/lubricants11060263
Chicago/Turabian StyleMolnar, Viktor. 2023. "Experimental Investigation of Tribology-Related Topography Parameters of Hard-Turned and Ground 16MnCr5 Surfaces" Lubricants 11, no. 6: 263. https://doi.org/10.3390/lubricants11060263
APA StyleMolnar, V. (2023). Experimental Investigation of Tribology-Related Topography Parameters of Hard-Turned and Ground 16MnCr5 Surfaces. Lubricants, 11(6), 263. https://doi.org/10.3390/lubricants11060263