A Simplified Ductile Fracture Model for Predicting Ultra-Low Cycle Fatigue of Structural Steels
Abstract
:1. Introduction
2. Simplified Ductile Fracture Model for ULCF
3. Cyclic Loading Tests of Circular Notched Specimens
4. Calibration Work of Model Parameters
4.1. Establishment of Finite Element Model
4.2. Calibration of Model Parameters
5. The Validation of the Proposed Model
5.1. Evaluation of Prediction Accuracy
5.2. Comparison with Other Models
5.2.1. Comparing with Lining Damage Model
5.2.2. Comparison with CVGM
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, D.K. Lessons learned from the Northridge earthquake. Eng. Struct. 1998, 20, 249–260. [Google Scholar] [CrossRef]
- Nakashima, M.; Inoue, K.; Tada, M. Classification of damage to steel buildings observed in the 1995, Hyogoken-Nanbu earthquake. Eng. Struct. 1998, 20, 271–281. [Google Scholar] [CrossRef]
- Amiri, H.R.; Aghakouchak, A.A.; Shahbeyk, S.; Engelhardt, M.D. Finite Element Simulation of Ultra Low Cycle Fatigue Cracking in Steel Structures. J. Constr. Steel Res. 2013, 89, 175–184. [Google Scholar] [CrossRef]
- Bleck, W.; Dahl, W.; Nonn, A.; Amlung, L.; Feldmann, M.; Schäfer, D.; Eichler, B. Numerical and Experimental Analyses of Damage Behaviour of Steel Moment Connection. Eng. Fract. Mech. 2009, 76, 1531–1547. [Google Scholar] [CrossRef]
- Kuwamura, H.; Yamamoto, K. Ductile Crack as Trigger of Brittle Fracture in Steel. J. Struct. Eng. 1997, 123, 729–735. [Google Scholar] [CrossRef]
- Xu, F.; Chan, T.; Sheehan, T.; Gardner, L. Prediction of Ductile Fracture for Circular Hollow Section Bracing Members under Extremely Low Cycle Fatigue. Eng. Struct. 2020, 214, 110579. [Google Scholar] [CrossRef]
- Gurson, A.L. Continuum Theory of ductile rupture by void nucleation and growth: Part I—Yield Criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Mear, M.E.; Hutchinson, J.W. Influence of Yield Surface Curvature on Flow Localization in Dilatant Plasticity. Mech. Mater. 1985, 4, 395–407. [Google Scholar] [CrossRef]
- Tong, L.; Huang, X.; Zhou, F.; Chen, Y. Experimental and numerical investigations on extremely-low-cycle fatigue fracture behavior of steel welded joints. J. Constr. Steel Res. 2016, 119, 98–112. [Google Scholar] [CrossRef]
- Tian, Q.; Xie, X.; Li, S. A Model for Ultra Low Cycle Fatigue Damage Prediction of Structural Steel. J. Constr. Steel Res. 2021, 187, 106956. [Google Scholar] [CrossRef]
- Coffin, L.F.J. A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 1954, 76, 931–950. [Google Scholar]
- Manson, S.S. Behavior of Materials under Conditions of Thermal Stress; National Advisory Commission on Aeronautics Report 1170; Lewis Flight Propulsion Laboratory: Cleveland, OH, USA, 1954. [Google Scholar]
- Kanvinde, A.M.; Deierlein, G.G. Cyclic Void Growth Model to Assess Ductile Fracture Initiation in Structural Steels due to Ultra Low Cycle Fatigue. J. Eng. Mech. 2007, 133, 701–712. [Google Scholar] [CrossRef]
- Kanvinde, A.M.; Fell, B.V.; Myers, A.T.; Fu, X.; Deierlein, G.G. Large Scale Tests and Micromechanics-Based Models to Characterize Ultra Low Cycle Fatigue in Welded Structural Details. In Structural Engineering Research Frontiers; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2007; pp. 1–16. [Google Scholar]
- Bai, Y. Fracture of 1045 steel under complex loading history. In Proceedings of the 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (NUMISHEET 2011), Seoul, Korea, 21–26 August 2011; pp. 758–764. [Google Scholar]
- Wen, H.; Mahmoud, H. New model for ductile fracture of metal alloys. II: Reverse loading. J. Eng. Mech. 2016, 142, 04015089. [Google Scholar] [CrossRef]
- Pereira, J.; De Jesus, A.M.; Xavier, J.; Fernandes, A.; Fernandes, A. Ultra-low cycle fatigue behaviour of a structural steel. Eng. Struct. 2014, 60, 214–222. [Google Scholar] [CrossRef]
- Tateishi, K.; Hanji, T.; Minami, K. A prediction model for extremely low cycle fatigue strength of structural steel. Int. J. Fatigue 2007, 29, 887–896. [Google Scholar] [CrossRef]
- Komotori, J.; Shimizu, M. Fracture Mechanism of Ferritic Ductile Cast Iron in Extremely Low Cycle Fatigue. In Low Cycle Fatigue and Elasto–Plastic Behaviour of Materials; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1998; pp. 39–44. [Google Scholar]
- Shimada, K.; Komotori, J.; Shimizu, M. The applicability of the Manson-Coffin law and Miner’s law to extremely low cycle fatigue. Trans. Jpn. Soc. Mech. Eng. 1987, 53, 1178–1185. [Google Scholar] [CrossRef] [Green Version]
- Xue, L. A Unified Expression for Low Cycle Fatigue and Extremely Low Cycle Fatigue and its Implication for Monotonic Loading. Int. J. Fatigue 2008, 30, 1691–1698. [Google Scholar] [CrossRef]
- Pereira, J.C.R.; de Jesus, A.M.P.; Fernandes, A.A. A New Ultra-Low Cycle Fatigue Model Applied to the X60 Piping Steel. Int. J. Fatigue 2016, 93, 201–213. [Google Scholar] [CrossRef]
- Li, S.; Xie, X.; Cheng, C.; Tian, Q. A Modified Coffin-Manson Model for Ultra-Low Cycle Fatigue Fracture of Structural Steels Considering the Effect of Stress Triaxiality. Eng. Fract. Mech. 2020, 237, 107223. [Google Scholar] [CrossRef]
- Rice, J.R.; Tracey, D.M. On ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 1969, 17, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Myers, A.T.; Deierlein, G.G.; Kanvinde, A.M. Testing and Probabilistic Simulation of Ductile Fracture Initiation in Structural Steel Components and Weldments; Technical Rep. 170; John A. Blume Earthquake Engineering Center, Stanford University: Stanford, CA, USA, 2009. [Google Scholar]
- Yin, F.; Yang, L.; Zong, L.; Liu, X.; Wang, Y. Ultra-Low Cycle Fatigue Fracture of High-Strength Steel Q460C and its Weld. J. Mater. Civ. Eng. 2018, 30, 04018280. [Google Scholar] [CrossRef]
- Smith, C.; Ziccarelli, A.; Terashima, M.; Kanvinde, A.; Deierlein, G. A Stress-Weighted Ductile Fracture Model for Steel Subjected to Ultra Low Cycle Fatigue. Eng. Struct. 2021, 245, 112964. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Z.; Zhu, Y.; Lu, L. A Unified Damage Factor Model for Ductile Fracture of Steels with Different Void Growth and Shrinkage Rates. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1132–1145. [Google Scholar] [CrossRef]
- Li, S.; Xie, X.; Tian, Q.; Cheng, C.; Zhang, Z. Improved Ultra-Low Cycle Fatigue Fracture Models for Structural Steels Considering the Dependence of Cyclic Damage Degradation Parameters on Stress Triaxiality. Int. J. Steel Struct. 2021, 21, 329–348. [Google Scholar] [CrossRef]
- Algarni, M.; Choi, Y.; Bai, Y. A Unified Material Model for Multiaxial Ductile Fracture and Extremely Low Cycle Fatigue of Inconel 718. Int. J. Fatigue 2017, 96, 162–177. [Google Scholar] [CrossRef]
- Jia, L.; Kuwamura, H. Ductile Fracture Model for Structural Steel under Cyclic Large Strain Loading. J. Constr. Steel Res. 2015, 106, 110–121. [Google Scholar] [CrossRef]
- Xiang, P.; Jia, L.; Shi, M.; Wu, M. Ultra-Low Cycle Fatigue Life of Aluminum Alloy and its Prediction Using Monotonic Tension Test Results. Eng. Fract. Mech. 2017, 186, 449–465. [Google Scholar] [CrossRef]
- Usami, T. Guidelines for Seismic and Damage-Control Design of Steel Bridges; Gihodo-Shuppan: Tokyo, Japan, 2006. (In Japanese) [Google Scholar]
- Ge, H.B.; Kawahito, M.; Ohashi, M. Experimental study on ductile crack initiation and its propagation in steel bridge piers of thick-walled box sections. J. Struct. Eng. JSCE 2007, 53A, 493–502. (In Japanese) [Google Scholar]
- Yoshizaki, K.; Usami, T.; Honma, D. Pseudodynamic tests of steel bridge piers with purpose of reducing residual displacements. J. Struct. Eng. JSCE 1999, 45A, 1017–1026. (In Japanese) [Google Scholar]
- Wen, H.; Mahmoud, H. New Model for Ductile Fracture of Metal Alloys. I: Monotonic Loading. J. Eng. Mech. 2016, 142, 04015088. [Google Scholar] [CrossRef]
- Bai, Y.; Wierzbicki, T. Application of Extended Mohr–Coulomb Criterion to Ductile Fracture. Int. J. Fract. 2010, 161, 1. [Google Scholar] [CrossRef]
- Bao, Y.; Wierzbicki, T. On the Cut-Off Value of Negative Triaxiality for Fracture. Eng. Fract. Mech. 2005, 72, 1049–1069. [Google Scholar] [CrossRef]
- Lou, Y.; Huh, H. Extension of a Shear-Controlled Ductile Fracture Model Considering the Stress Triaxiality and the Lode Parameter. Int. J. Solids Struct. 2013, 50, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.S.; Liu, H. A New Approach for Ductile Fracture Prediction on Al 2024-T351 Alloy. Int. J. Plast. 2012, 35, 1–12. [Google Scholar] [CrossRef]
- Cockcroft, M.G.; Latham, D.J. Ductility and the workability of metals. J. Inst. Met. 1968, 96, 33–39. [Google Scholar]
- Oh, S.; Chen, C.C.; Kobayashi, S. Ductile failure in axisymmetric extrusion and drawing, Part 2, workability in extrusion and drawing. J. Eng. Ind. 1979, 101, 36–44. [Google Scholar] [CrossRef]
- Lou, Y.; Yoon, J.W.; Huh, H. Modeling of Shear Ductile Fracture Considering a Changeable Cut-Off Value for Stress Triaxiality. Int. J. Plast. 2014, 54, 56–80. [Google Scholar] [CrossRef]
- Kanvinde, A.M.; Deierlein, G.G. The Void Growth Model and the Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels. J. Struct. Eng. 2006, 132, 1907–1918. [Google Scholar] [CrossRef]
- Li, S.; Xie, X.; Liao, Y. Improvement of Cyclic Void Growth Model for Ultra-Low Cycle Fatigue Prediction of Steel Bridge Piers. Materials 2019, 12, 1615. [Google Scholar] [CrossRef] [Green Version]
- Liu, X. Research on Fracture Performance of High-Strength Steel Structure Materials and Joints Based on Micro-Mechanism. Ph.D. Thesis, Tsinghua University, Beijing, China, 2015. [Google Scholar]
- Liao, Y.H. Research on Ultra Low Cycle Fatigue Properties and Fracture Mechanism of Steel Bridge Welded Joint. Master’s Thesis, Zhejiang University, Hangzhou, China, 2018. (In Chinese). [Google Scholar]
- Chaboche, J.L.; Rousselier, G. On the plastic and viscoplastic constitutive equations—Part II: Application of internal variable concepts to the 316 stainless steel. J. Press. Vessel Technol. 1983, 105, 159–164. [Google Scholar] [CrossRef]
- Chaboche, J.-L. Time-independent constitutive theories for cyclic plasticity. Int. J. Plast. 1986, 2, 149–188. [Google Scholar] [CrossRef]
- Li, S.; Xie, X.; Tian, Q.; Zhang, Z.; Cheng, C. A Proposal on Ultra-Low Cycle Fatigue Damage Evaluation of Structural Steels. Theor. Appl. Fract. Mech. 2021, 114, 102973. [Google Scholar] [CrossRef]
Al (%) | |||||
---|---|---|---|---|---|
198,221 | 351.1 | 508.57 | 1.14 | 1104.57 | 40.6 |
Group No./Parameters | A | B | C |
---|---|---|---|
1 | −6 | 0.18 | −1.65 |
2 | −6 | 0.19 | −1.66 |
3 | −6 | 0.12 | −1.7 |
4 | −6 | 0.22 | −1.55 |
5 | −6 | 0.21 | −1.53 |
6 | −6 | 0.15 | −1.56 |
7 | −6 | 0.16 | −1.7 |
8 | −6 | 0.17 | −1.54 |
Average | −6 | 0.175 | −1.61 |
COV | 0 | 0.173 | 0.042 |
Notch Radius (mm) | No. | d1 (mm) | d2 (mm) | Loading Strain | Cycles to Fracture Initiation (Nexp) |
---|---|---|---|---|---|
3.75 | BM-1 | 15 | 7.5 | [0,1.60%] | 7 |
BM-2 | 15 | 7.5 | [0,1.60%] | 8 | |
4.5 | BM-3 | 15 | 7.5 | [0,1.35%] | 14 |
BM-4 | 15 | 7.5 | [0,1.35%] | 13 | |
10 | BM-5 | 15 | 7.5 | [0,2.50%] | 7 |
BM-6 | 15 | 7.5 | [0,2.50%] | 8 | |
15 | BM-7 | 15 | 7.5 | [0,3.00%] | 7 |
BM-8 | 15 | 7.5 | [0,3.00%] | 9 | |
30 | BM-9 | 15 | 7.5 | [0,3.00%] | 14 |
BM-10 | 15 | 7.5 | [0,3.00%] | 14 |
Notch Radius (mm) | Loading Strain | Cycles to Fracture Initiation (Nexp) | NFEA | Error |
---|---|---|---|---|
3.75 | [0, 1.50%] | 8 | 10 | 25.00% |
[0, 1.50%] | 9 | 10 | 11.11% | |
[0, 1.25%] | 14 | 12 | 14.29% | |
[0, 1.25%] | 14 | 12 | 14.29% | |
4.5 | [0, 1.10%] | 20 | 16 | 20.00% |
[0, 1.10%] | 19 | 16 | 15.79% | |
[0, 1.30%] | 14 | 13 | 7.14% | |
[0, 1.30%] | 14 | 13 | 7.14% | |
[0, 1.30%] | 15 | 13 | 13.33% | |
[0, 1.50%] | 10 | 11 | 10.00% | |
[0, 1.50%] | 11 | 11 | 0.00% | |
5.0 | [0, 1.80%] | 8 | 9 | 12.50% |
[0, 1.80%] | 8 | 9 | 12.50% | |
6.0 | [0, 1.50%] | 14 | 13 | 7.14% |
[0, 1.50%] | 14 | 13 | 7.14% | |
[0, 2.00%] | 8 | 9 | 12.50% | |
[0, 2.00%] | 7 | 9 | 28.57% | |
7.5 | [0, 3.00%] | 6 | 7 | 16.67% |
[0, 2.50%] | 8 | 8 | 0.00% | |
[0, 2.50%] | 7 | 8 | 14.29% | |
[0, 2.00%] | 11 | 10 | 9.09% | |
[0, 2.00%] | 12 | 10 | 16.67% | |
10 | [0, 2.00%] | 10 | 11 | 10.00% |
[0, 2.00%] | 11 | 11 | 0.00% | |
[0, 1.80%] | 13 | 13 | 0.00% | |
[0, 1.80%] | 16 | 13 | 18.75% | |
15 | [0, 3.50%] | 6 | 8 | 33.33% |
[0, 3.50%] | 6 | 8 | 33.33% | |
[0, 2.50%] | 12 | 11 | 8.33% | |
[0, 2.50%] | 12 | 11 | 8.33% | |
20 | [0, 2.20%] | 17 | 14 | 17.65% |
[0, 2.50%] | 16 | 12 | 25.00% | |
[0, 2.50%] | 13 | 12 | 7.69% | |
[0, 3.00%] | 9 | 11 | 22.22% | |
[0, 3.00%] | 11 | 11 | 0.00% | |
30 | [0, 3.50%] | 8 | 10 | 25.00% |
[0, 3.50%] | 9 | 10 | 11.11% | |
60 | [0, 2.50%] | 20 | 19 | 5.00% |
[0, 2.50%] | 24 | 19 | 20.83% | |
[0, 3.00%] | 19 | 16 | 15.79% | |
[0, 3.00%] | 18 | 16 | 11.11% | |
[0, 3.50%] | 13 | 13 | 0.00% | |
[0, 3.50%] | 12 | 13 | 8.33% | |
Average | 12.95% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Xie, X.; Li, S. A Simplified Ductile Fracture Model for Predicting Ultra-Low Cycle Fatigue of Structural Steels. Materials 2022, 15, 1663. https://doi.org/10.3390/ma15051663
Yu M, Xie X, Li S. A Simplified Ductile Fracture Model for Predicting Ultra-Low Cycle Fatigue of Structural Steels. Materials. 2022; 15(5):1663. https://doi.org/10.3390/ma15051663
Chicago/Turabian StyleYu, Mingming, Xu Xie, and Shuailing Li. 2022. "A Simplified Ductile Fracture Model for Predicting Ultra-Low Cycle Fatigue of Structural Steels" Materials 15, no. 5: 1663. https://doi.org/10.3390/ma15051663
APA StyleYu, M., Xie, X., & Li, S. (2022). A Simplified Ductile Fracture Model for Predicting Ultra-Low Cycle Fatigue of Structural Steels. Materials, 15(5), 1663. https://doi.org/10.3390/ma15051663