Ester-Modified Sodium Silicate Grout Material for Moraine Stabilization: Synthesis and Freeze-Thaw Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.1.1. Grouting Materials
2.1.2. Moraine
2.2. Experimental Design
2.2.1. Slurry Mixing Procedure
2.2.2. Slurry Mix Design
2.2.3. Sample Preparation
2.3. Test Methods
2.3.1. Gel Time Test
2.3.2. Viscosity Tests
2.3.3. Freeze-Thaw Cycle Tests
2.3.4. UCS Tests
2.3.5. Microstructure Tests
3. Results and Discussion
3.1. Prediction Model
3.2. Gel Time
3.2.1. The Effect of Single Factors on Gel Time
- (1)
- The effect of Baume degree on gel time.
- (2)
- The effect of concentration of EGDA on gel time.
- (3)
- The effect of dosage of catalyst on gel time.
3.2.2. The Influence of the Interaction of Various Factors on Gel Time
3.2.3. The Gelation Mechanism
3.3. Viscosity
3.3.1. Initial Viscosity
3.3.2. Time-Dependent Viscosity
3.4. Freeze-Thaw Resistance
3.4.1. Mechanical Strength
3.4.2. Strength Attenuation
3.4.3. Performance Improvement
3.5. Solidification Mechanism
3.5.1. XRD Analysis
3.5.2. FTIR Analysis
3.5.3. SEM Analysis
4. Conclusions
- (1)
- Ester-Modified Sodium Silicate Grout Material has the advantages of controllable gel time and adjustable viscosity, and the established predictive model can accurately guide the material mix design.
- (2)
- The impact of various factors on gel time is significant, with the most notable factor being the amount of phosphoric acid added. As the amount of phosphoric acid increases, the gel time initially decreases and then starts to increase. The initial viscosity was positively correlated with the Baume degree of sodium silicate, and the viscosity exhibited an exponential increase over time.
- (3)
- The addition of EGDA can effectively enhance the mechanical strength and freeze-thaw resistance of the samples. The UCS shows a rapid decrease at first, followed by a slower decline as the number of freeze-thaw cycles increases. The inclusion of EGDA reduces the strength attenuation of the consolidated body, with a reduction rate of 10% to 30%.
- (4)
- The network structure formed by silica gel and lipids encapsulates fine particles, creating a dense consolidated body, which is the main reason for the enhancement of mechanical strength and freeze-thaw resistance. Freeze-thaw cycles disrupt the weaker cementation within the consolidated body, leading to a decrease in mechanical strength. A reasonable amount of EGDA can be selected based on engineering requirements, and the optimal ratio can be recommended using the predictive model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, D.J.A. Moraine Forms and Genesis. In Encyclopedia of Quaternary Science, 3rd ed.; Elias, S., Ed.; Elsevier: Oxford, UK, 2025; pp. 316–338. [Google Scholar]
- Peng, D.; Zhang, L.; Jiang, R.; Zhang, S.; Shen, P.; Lu, W.; He, X. Initiation Mechanisms and Dynamics of a Debris Flow Originated from Debris-Ice Mixture Slope Failure in Southeast Tibet, China. Eng. Geol. 2022, 307, 106783. [Google Scholar] [CrossRef]
- Palamakumbura, R.; Finlayson, A.; Ciurean, R.; Nedumpallile-Vasu, N.; Freeborough, K.; Dashwood, C. Geological and Geomorphological Influences on a Recent Debris Flow Event in the Ice-Scoured Mountain Quaternary Domain, Western Scotland. Proc. Geol. Assoc. 2021, 132, 456–468. [Google Scholar] [CrossRef]
- Liang, X.; Ying, K.; Ye, F.; Su, E.; Xia, T.; Han, X. Selection of Backfill Grouting Materials and Ratios for Shield Tunnel Considering Stratum Suitability. Constr. Build. Mater. 2022, 314, 125431. [Google Scholar] [CrossRef]
- Cui, P.; Ge, Y.; Li, S.; Li, Z.; Xu, X.; Zhou, G.G.D.; Chen, H.; Wang, H.; Lei, Y.; Zhou, L.; et al. Scientific Challenges in Disaster Risk Reduction for the Sichuan–Tibet Railway. Eng. Geol. 2022, 309, 106837. [Google Scholar] [CrossRef]
- Mou, Y.; Chen, H.; Wang, T.; Ruan, H.; Li, X.; Yu, Y.; Zhou, Y.; Meng, H. The Breaching Mechanism of Moraine Dams with Buried Ice: A Review. Cold Reg. Sci. Technol. 2024, 228, 104315. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhang, X.; Cui, B.; Wu, Y. Dynamic Response Characteristics of Moraine-Soil Slopes under the Combined Action of Earthquakes and Cryogenic Freezing. Cold Reg. Sci. Technol. 2023, 211, 103854. [Google Scholar] [CrossRef]
- Li, Z.-R.; Jiang, M.-G.; Feng, X.-L.; Wang, S.-Y.; Zeng, Q.-T.; Chen, C.; Liu, W.-L.; Sun, W. Analysis of Energy Consumption Characteristics and Fracture Characteristics of Moraine Grouting Solidified Body under Uniaxial Compression. Front. Earth Sci. 2023, 11, 1223785. [Google Scholar] [CrossRef]
- Feng, X.-L.; Li, Z.-R.; Jiang, M.-G.; Wang, S.-Y.; Chen, C.; Sun, W. Experimental Study of Soil Erosion on Moraine-Consolidated Slopes under Heavy Rainfall. Heliyon 2024, 10, e26721. [Google Scholar] [CrossRef]
- Hao, Y.; Guo, C.; Shi, M.; Wang, F.; Xia, Y.; Wang, C. Application of Polymer Split Grouting Technology in Earthen Dam: Diffusion Law and Applicability. Constr. Build. Mater. 2023, 369, 130612. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, E.; Ma, S.; Zhang, D. Study on Grouting Performance Optimization of Polymer Composite Materials Applied to Water Plugging and Reinforcement in Mines. Materials 2024, 17, 4245. [Google Scholar] [CrossRef]
- Ding, Y.; Ahmad, M.R.; Chen, B.; Yu, X. Ground Granulated Blast Furnace Slag-Modified Magnesium Phosphate Cement Used as Grouting Material: Workability, Mechanical Property and Corrosion Resistance Optimization. J. Build. Eng. 2024, 96, 110450. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Wu, C.; Zhang, W.; Chen, Y.; Li, Y. Preparation and Research on Mechanical Properties of Eco-Friendly Geopolymer Grouting Cementitious Materials Based on Industrial Solid Wastes. Materials 2024, 17, 3874. [Google Scholar] [CrossRef] [PubMed]
- Dafalla, M.; Al-Mahbashi, A.M.; Alnuaim, A. Tension Capacity of Crushed Limestone–Cement Grout. Materials 2024, 17, 3860. [Google Scholar] [CrossRef]
- Wu, L.; Wu, Z.; Weng, L.; Liu, Y.; Liu, Q. Investigation on Basic Properties and Microscopic Mechanisms of Polyacrylate Latex Modified Cement Grouting Material for Water Blocking and Reinforcement. Constr. Build. Mater. 2023, 409, 133872. [Google Scholar] [CrossRef]
- Han, C.; Wei, J.; Zhang, W.; Yang, F.; Yin, H.; Xie, D.; Xie, C. Quantitative Permeation Grouting in Sand Layer with Consideration of Grout Properties and Medium Characteristics. Constr. Build. Mater. 2022, 327, 126947. [Google Scholar] [CrossRef]
- Sha, F.; Zhang, L.; Zhang, M.; Zuo, Y.; Niu, H. Penetration Grouting Diffusion and Strengthening Mechanism of Sand Layer with Crucial Grout. J. Build. Eng. 2024, 91, 109585. [Google Scholar] [CrossRef]
- Saleh, S.; Yunus, N.Z.M.; Ahmad, K.; Ali, N. Improving the Strength of Weak Soil Using Polyurethane Grouts: A Review. Constr. Build. Mater. 2019, 202, 738–752. [Google Scholar] [CrossRef]
- Anagnostopoulos, C.A.; Papaliangas, T.; Manolopoulou, S.; Dimopoulos, T. Physical and Mechanical Properties of Chemically Grouted Sand. Tunn. Undergr. Space Technol. 2011, 26, 718–724. [Google Scholar] [CrossRef]
- Anagnostopoulos, C.A.; Dimitriadi, M.; Konstantinidis, D. Static and Cyclic Behaviour of Epoxy Resin and Bentonite-Grouted Sands. Transp. Geotech. 2022, 33, 100725. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Liu, M.; Yu, X. Comparative Study on the Mechanical Properties of Solidified Silty-Fine Sand Reinforced by Permeable Polymer and Traditional Grouting Materials. Constr. Build. Mater. 2024, 419, 135485. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Li, P.; Tian, D.; Wang, J.; Liu, B. Experimental Study on New Grouting Material of Acidic Sodium Silicate and Its Properties of Grouted-Sand. Constr. Build. Mater. 2023, 392, 131955. [Google Scholar] [CrossRef]
- Mollamahmutoğlu, M.; Avci, E.; Tomaç, S.K.; Köse, D.A. Performance of Novel Chemical Grout in Treating Sands. J. Mater. Civ. Eng. 2017, 29, 04017164. [Google Scholar] [CrossRef]
- Avci, E.; Mollamahmutoğlu, M.; Deveci, E. Sodium Silicate-Formamide Grouted Silt and Silty Sand Properties. J. Adhes. Sci. Technol. 2022, 36, 2269–2284. [Google Scholar] [CrossRef]
- Cui, Y.; Tan, Z.; Han, D.; Song, J. Investigation and Application of a High Performance Grouting Material in Water-Rich Silty Fine Sand Stratum. Constr. Build. Mater. 2022, 329, 127100. [Google Scholar] [CrossRef]
- Mollamahmutoğlu, M.; Avcı, E.; Deveci, E. Strength and Permeability Properties of Sodium Silicate–Glyoxal-Stabilized Silt and Fine Sand. Q. J. Eng. Geol. Hydrogeol. 2022, 55, qjegh2021-115. [Google Scholar] [CrossRef]
- Yu, X. Preparation and Structure Analysis of Aluminum Oxide/Water Glass/Polyurethane Composite Grouting Material for Mining. J. Build. Eng. 2023, 76, 107170. [Google Scholar] [CrossRef]
- Qiu, E.; He, Q.; Chen, Q.; Sun, X.; Zhang, R.; Qu, M.; Wan, X. Influence of Freeze–Thaw Cycles on Mechanical Properties of Moraine Soils. Transp. Geotech. 2023, 42, 101097. [Google Scholar] [CrossRef]
- Li, H.; Guan, H.; Jia, Z.; Liu, W.; Ma, X.; Liu, Y.; Wang, H.; Zhou, Q. Corrigendum: Freeze–Thaw Condition Limits the Fermentation Process and Accelerates the Aerobic Deterioration of Oat (Avena Sativa) Silage in the Qinghai-Tibet Plateau. Front. Microbiol. 2022, 13, 1016936. [Google Scholar] [CrossRef]
- Ma, Q.; Ma, D.; Yao, Z. Influence of Freeze-Thaw Cycles on Dynamic Compressive Strength and Energy Distribution of Soft Rock Specimen. Cold Reg. Sci. Technol. 2018, 153, 10–17. [Google Scholar] [CrossRef]
- Ma, W.; Yang, K.; Zhou, X.; Luo, Z.; Guo, Y. Effect of Hydrophilic Polyurethane on Interfacial Shear Strength of Pisha Sandstone Consolidation under Freeze–Thaw Cycles. Polymers 2023, 15, 2131. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, G.; Niu, X.; Zhang, L.; Wang, Z. Study on Application Effect of Sand Consolidating Agent for the Slope of Highway Subgrade in Season Frozen Zone. Adv. Civ. Eng. 2019, 2019, 3716153. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, D.; Yang, F.; Mei, J.; Yao, Y.; Deng, Y. Freeze–Thaw Damage Analysis and Life Prediction of Modified Pervious Concrete Based on Weibull Distribution. Case Stud. Constr. Mater. 2024, 20, e03305. [Google Scholar] [CrossRef]
- GB/T 4209-2008; Sodium Silicate for Industrial Use. Chinese Standard Press: Beijing, China, 2008.
- GB/T 4472-2011; Detemination of Density and Relative Density for Chemical Products. Chinese Standard Press: Beijing, China, 2011.
- GB/T 2091-2008; Phosphoric Acid for Industry Use. China Planning Press: Beijing, China, 2008.
- Yu, X.; Wang, Y.; Sun, G. Comparative Analysis of Mechanical Properties and Fracture Characteristics between Sodium Silicate Modified Polyurethane and Polyurethane Materials. Constr. Build. Mater. 2024, 444, 137917. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Wu, A.; Liu, P.; Chang, Y.; Ruan, Z. Performance Evolution of Alkali-Activated Phosphorus Slag Paste Filling Material: Effect of Hemihydrate Phosphogypsum Content. Process Saf. Environ. Prot. 2024, 187, 736–748. [Google Scholar] [CrossRef]
- JC/T 2536-2019; Cement Sodium Silicate Grout. China Construction Science and Technology Press: Beijing, China, 2019.
- GB/T 22235-2008; Determination for Viscosity of Liquids. Chinese Standard Press: Beijing, China, 2008.
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). Chinese Standard Press: Beijing, China, 2022.
- Dharini, V.; Balamaheswari, M.; Nevis Presentia, A. Enhancing the Strength of Expansive Clayey Soil Using Lime as Soil Stabilizing Agent Along with Sodium Silicate as Grouting Chemical. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Matinfar, M.; Nychka, J.A. A Review of Sodium Silicate Solutions: Structure, Gelation, and Syneresis. Adv. Colloid Interface Sci. 2023, 322, 103036. [Google Scholar] [CrossRef]
Factors | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
X1: Baume degree/°Bé | 20 | 25 | 30 |
X2: EGDA/% | 15 | 20 | 25 |
X3: Phosphoric acid/% | 3 | 5 | 7 |
Moraine: Slurry | Slurry | ||
---|---|---|---|
Baume Degree/°Bé | Phosphoric Acid/% | EGDA Dosages/% | |
6:1 | 25 | 3 | 0, 10, 15, 20, 25 |
Serial Number | Design Value | Measured Value | Predicted Value | ||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Y1 | Y2 | Y1* | Y2* | |
1 | 20 | 15 | 5 | 468 | 6.1 | 512.25 | 6.23 |
2 | 30 | 15 | 5 | 260 | 9.2 | 307.00 | 9.46 |
3 | 20 | 25 | 5 | 66 | 6.6 | 19.00 | 6.46 |
4 | 30 | 25 | 5 | 30 | 9.8 | 0 | 9.68 |
5 | 20 | 20 | 3 | 466 | 5.9 | 438.13 | 6.40 |
6 | 30 | 20 | 3 | 279 | 9.6 | 248.38 | 9.62 |
7 | 20 | 20 | 7 | 1314 | 6.4 | 1344.63 | 6.30 |
8 | 30 | 20 | 7 | 1268 | 9.3 | 1295.88 | 9.52 |
9 | 25 | 15 | 3 | 562 | 8.5 | 545.63 | 7.90 |
10 | 25 | 25 | 3 | 78 | 7.9 | 152.88 | 8.12 |
11 | 25 | 15 | 7 | 1612 | 7.7 | 1537.13 | 7.80 |
12 | 25 | 25 | 7 | 1099 | 8.1 | 1115.38 | 8.02 |
13 | 25 | 20 | 5 | 291 | 7.5 | 375.20 | 7.96 |
14 | 25 | 20 | 5 | 332 | 8.2 | 375.20 | 7.96 |
15 | 25 | 20 | 5 | 402 | 8.5 | 375.20 | 7.96 |
16 | 25 | 20 | 5 | 452 | 8.1 | 375.20 | 7.96 |
17 | 25 | 20 | 5 | 399 | 7.9 | 375.20 | 7.96 |
Source | Sum of Squares | Mean of Squares | F-Value | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | |
Model | 3.56 × 106 | 20.92 | 3.95 × 105 | 6.97 | 69.76 | 63.02 | <0.001 | <0.001 |
x1 | 28,441.12 | 20.80 | 28,441.12 | 20.80 | 5.02 | 187.96 | 0.06 | <0.001 |
x2 | 3.32 × 105 | 0.10 | 3.32 × 105 | 0.1013 | 58.56 | 0.91 | <0.001 | 0.36 |
x3 | 1.91 × 106 | 0.02 | 1.91 × 106 | 0.020 | 337.02 | 0.18 | <0.001 | 0.68 |
x1x2 | 7396.00 | 7396.00 | 1.31 | 0.29 | ||||
x1x3 | 4970.25 | 4970.25 | 0.88 | 0.38 | ||||
x2x3 | 210.25 | 210.25 | 0.04 | 0.85 | ||||
x12 | 32,310.57 | 32,310.57 | 5.70 | 0.05 | ||||
x22 | 28036.04 | 28,036.04 | 4.95 | 0.06 | ||||
x32 | 1.25 × 106 | 1.25 × 106 | 220.10 | <0.001 | ||||
Residual | 396,651.55 | 1.44 | 5664.51 | 0.1107 | ||||
Lack of fit | 23,512.75 | 0.89 | 7837.58 | 0.0985 | 1.94 | 0.71 | 0.27 | 0.69 |
Pure Error | 16,138.80 | 0.550 | 4034.70 | 0.1380 | ||||
Cor Total | 3.60 × 106 | 22.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Wu, A.; Wang, S.; Sun, W.; Gao, T.; Bai, L. Ester-Modified Sodium Silicate Grout Material for Moraine Stabilization: Synthesis and Freeze-Thaw Resistance. Materials 2024, 17, 5512. https://doi.org/10.3390/ma17225512
Chen C, Wu A, Wang S, Sun W, Gao T, Bai L. Ester-Modified Sodium Silicate Grout Material for Moraine Stabilization: Synthesis and Freeze-Thaw Resistance. Materials. 2024; 17(22):5512. https://doi.org/10.3390/ma17225512
Chicago/Turabian StyleChen, Chong, Aixiang Wu, Shaoyong Wang, Wei Sun, Tong Gao, and Longjian Bai. 2024. "Ester-Modified Sodium Silicate Grout Material for Moraine Stabilization: Synthesis and Freeze-Thaw Resistance" Materials 17, no. 22: 5512. https://doi.org/10.3390/ma17225512
APA StyleChen, C., Wu, A., Wang, S., Sun, W., Gao, T., & Bai, L. (2024). Ester-Modified Sodium Silicate Grout Material for Moraine Stabilization: Synthesis and Freeze-Thaw Resistance. Materials, 17(22), 5512. https://doi.org/10.3390/ma17225512