A Mathematical Model to Optimize the Neoadjuvant Chemotherapy Treatment Sequence for Triple-Negative Locally Advanced Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Doses
- (a)
- The DX dose was 60 mg/m2 body surface area every 21 or 14 days for 4 cycles.
- (b)
- The CPh dose was 600 mg/m2 body surface area every 21 or 14 days for 4 cycles. The treatment administered every 14 days is proposed by the NCCN guidelines in the United States of America; however, some countries continue administering treatment every 21 days as described in previous studies [20]. The treatment administration every 14 days is associated with unacceptable hematological toxicity. That must be balanced by administering granulocyte colony-stimulating factor (GCSF) [33].
- (c)
- The PX dose was 80 mg/m2 of body surface area intravenously every week for 12 weeks.
- (d)
- The CP dose was obtained through the Calvert formula, , where IFG is the glomerular function index or creatinine clearance; this is the volume of fluid filtered per time unit from renal glomerular capillaries into Bowman’s capsule, usually measured in milliliters per minute. The IFG varies for each patient. For the CP every three weeks, which was our schedule, the AUC = 6 (6 units equals 6 mg. min/mL), where the AUC is the area under the curve of free plasma carboplatin concentration versus time. This is a method used to reduce toxicity based on renal clearance values calculated using the age and health condition of the patient.
2.2. Standard Sequence of 21-Day Cycle (SS21)
2.3. Standard Sequence of 14-Day Cycle (SS14)
2.4. Inverted Sequence of 21-Day Cycle (IS21)
2.5. Inverted Sequence of 14-Day Cycle (IS14)
2.6. Glossary of Parameters Used in Models
- : is the exchange between compartments N1 and N2.
- : is the tumor cell survival proportion after applying drugs s (DX plus CPh).
- : is the effect of PX on mitosis.
- : represents the portion of susceptible cells resistant because of drug s.
- : parameter that indicates the decrease in the resistant population.
2.7. Quantitative Model
2.8. Doxorubicin and Cyclophosphamide Effect
2.9. Qualitative Behavior of Paclitaxel
2.10. Resistance Model
3. Results
3.1. Growth Rate Simulations of Tumor Cell Population
3.2. Simulations of Effects of Doxorubicin and Cyclophosphamide
3.3. Simulations of the Paclitaxel Effect
3.4. Simulations of Resistance Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Shahriyari, L.; Komarova, N.L. Symmetric vs. Asymmetric Stem Cell Divisions: An Adaptation against Cancer? PLoS ONE 2013, 8, e76195. [Google Scholar] [CrossRef] [PubMed]
- Butner, J.D.; Wang, Z.; Elganainy, D.; Al Feghali, K.A.; Plodinec, M.; Calin, G.A.; Dogra, P.; Nizzero, S.; Ruiz-Ramírez, J.; Martin, G.V.; et al. A Mathematical Model for the Quantification of a Patient’s Sensitivity to Checkpoint Inhibitors and Long-Term Tumour Burden. Nat. Biomed. Eng. 2021, 5, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Shahriyari, L. Cell Dynamics in Tumour Environment after Treatments. J. R. Soc. Interface 2017, 14, 20160977. [Google Scholar] [CrossRef]
- Chamseddine, I.M.; Rejniak, K.A. Hybrid Modeling Frameworks of Tumor Development and Treatment. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1461. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.T.; Weis, J.A.; Barnes, S.L.; Tyson, D.R.; Miga, M.I.; Quaranta, V.; Yankeelov, T.E. A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer. Sci. Rep. 2017, 7, 5725. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, R.; Shariatpanahi, S.P.; Goliaei, B.; Peyvandi, S.; Rüegg, C. Dormant Tumor Cell Vaccination: A Mathematical Model of Immunological Dormancy in Triple-Negative Breast Cancer. Cancers 2021, 13, 245. [Google Scholar] [CrossRef] [PubMed]
- Solís-Pérez, J.E.; Gómez-Aguilar, J.F.; Atangana, A. A Fractional Mathematical Model of Breast Cancer Competition Model. Chaos Solitons Fractals 2019, 127, 38–54. [Google Scholar] [CrossRef]
- Wodarz, D.; Komarova, N. Dynamics of Cancer: Mathematical Foundations of Oncology; World Scientific: Singapore, 2014. [Google Scholar]
- Chakrabarti, A.; Verbridge, S.; Stroock, A.D.; Fischbach, C.; Varner, J.D. Multiscale Models of Breast Cancer Progression. Ann. Biomed. Eng. 2012, 40, 2488–2500. [Google Scholar] [CrossRef]
- Abernathy, K.; Abernathy, Z.; Baxter, A.; Stevens, M. Global Dynamics of a Breast Cancer Competition Model. Differ. Equ. Dyn. Syst. 2020, 28, 791–805. [Google Scholar] [CrossRef]
- Knútsdóttir, H.; Pálsson, E.; Edelstein-Keshet, L. Mathematical Model of Macrophage-Facilitated Breast Cancer Cells Invasion. J. Theor. Biol. 2014, 357, 184–199. [Google Scholar] [CrossRef]
- Jarrett, A.M.; Bloom, M.J.; Godfrey, W.; Syed, A.K.; Ekrut, D.A.; Ehrlich, L.I.; Yankeelov, T.E.; Sorace, A.G. Mathematical Modelling of Trastuzumab-Induced Immune Response in an in Vivo Murine Model of HER2+ Breast Cancer. Math. Med. Biol. 2019, 36, 381–410. [Google Scholar] [CrossRef] [PubMed]
- Roe Dale, R.; Isaacson, D.; Kupferschmid, M. A Mathematical Model of Breast Cancer Treatment with CMF and Doxorubicin. Bull. Math. Biol. 2011, 73, 585–608. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.C. Mathematical Modeling of Tumor Growth: The MCF-7 Breast Cancer Cell Line. Math. Biosci. Eng. 2019, 16, 6512–6535. [Google Scholar] [CrossRef] [PubMed]
- Castillo Montiel, E.; Chimal Eguía, J.C.; Tello, J.I.; Piñon Zaráte, G.; Herrera Enríquez, M.; Castell Rodríguez, A.E. Enhancing Dendritic Cell Immunotherapy for Melanoma Using a Simple Mathematical Model. Theor. Biol. Med Model. 2015, 12, 1–14. [Google Scholar] [CrossRef]
- Lopez Alfonso, J.C.; Poleszczuk, J.; Walker, R.; Kim, S.; Pilon Thomas, S.; Conejo Garcia, J.J.; Soliman, H.; Czerniecki, B.; Harrison, L.B.; Enderling, H. Immunologic Consequences of Sequencing Cancer Radiotherapy and Surgery. JCO Clin. Cancer Inform. 2019, 3, 1–16. [Google Scholar] [CrossRef]
- Poleszczuk, J.; Luddy, K.; Chen, L.; Lee, J.K.; Harrison, L.B.; Czerniecki, B.J.; Soliman, H.; Enderling, H. Neoadjuvant Radiotherapy of Early-Stage Breast Cancer and Long-Term Disease-Free Survival. Breast Cancer Res. 2017, 19, 1–7. [Google Scholar] [CrossRef]
- Liedtke, C.; Mazouni, C.; Hess, K.R.; André, F.; Tordai, A.; Mejia, J.A.; Symmans, W.F.; Gonzalez-Angulo, A.M.; Hennessy, B.; Green, M.; et al. Response to Neoadjuvant Therapy and Long-Term Survival in Patients with Triple-Negative Breast Cancer. J. Clin. Oncol. 2008, 26, 1275–1281. [Google Scholar] [CrossRef]
- Huang, M.; O’shaughnessy, J.; Zhao, J.; Haiderali, A.; Cort Es, J.; Ramsey, S.D.; Briggs, A.; Hu, P.; Karantza, V.; Aktan, G.; et al. Association of Pathologic Complete Response with Long-Term Survival Outcomes in Triple-Negative Breast Cancer: A Meta-Analysis. Cancer Res. 2020, 80, 5427–5434. [Google Scholar] [CrossRef]
- Rastogi, P.; Anderson, S.J.; Bear, H.D.; Geyer, C.E.; Kahlenberg, M.S.; Robidoux, A.; Margolese, R.G.; Hoehn, J.L.; Vogel, V.G.; Dakhil, S.R.; et al. Preoperative Chemotherapy: Updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J. Clin. Oncol. 2008, 26, 778–785. [Google Scholar] [CrossRef]
- Sikov, W.M.; Berry, D.A.; Perou, C.M.; Singh, B.; Cirrincione, C.T.; Tolaney, S.M.; Kuzma, C.S.; Pluard, T.J.; Somlo, G.; Port, E.R.; et al. Impact of the Addition of Carboplatin and/or Bevacizumab to Neoadjuvant Once-per-Week Paclitaxel Followed by Dose-Dense Doxorubicin and Cyclophosphamide on Pathologic Complete Response Rates in Stage II to III Triple-Negative Breast Cancer: CALGB 40603 (Alliance). J. Clin. Oncol. 2015, 33, 13–21. [Google Scholar] [CrossRef]
- Shepherd, J.H.; Ballman, K.; Mei, Y.; Polley, C.; Campbell, J.D.; Fan, C.; Selitsky, S.; Fernandez Martinez, A.; Parker, J.S.; Hoadley, K.A.; et al. CALGB 40603 (Alliance): Long-Term Outcomes and Genomic Correlates of Response and Survival After Neoadjuvant Chemotherapy with or Without Carboplatin and Bevacizumab in Triple-Negative Breast Cancer. J. Clin. Oncol. 2022, 40, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Hahnen, E.; Lederer, B.; Hauke, J.; Loibl, S.; Kröber, S.; Schneeweiss, A.; Denkert, C.; Fasching, P.A.; Blohmer, J.U.; Jackisch, C.; et al. Germline Mutation Status, Pathological Complete Response, and Disease-Free Survival in Triple-Negative Breast Cancer Secondary Analysis of the GeparSixto Randomized Clinical Trial. JAMA Oncol. 2017, 3, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; et al. Gene Expression Patterns of Breast Carcinomas Distinguish Tumor Subclasses with Clinical Implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [PubMed]
- Atchley, D.P.; Albarracin, C.T.; Lopez, A.; Valero, V.; Amos, C.I.; Gonzalez-Angulo, A.M.; Hortobagyi, G.N.; Arun, B.K. Clinical and Pathologic Characteristics of Patients with BRCA-Positive and BRCA-Negative Breast Cancer. J. Clin. Oncol. 2008, 26, 4282–4286. [Google Scholar] [CrossRef]
- Prat, A.; Fan, C.; Fernández, A.; Hoadley, K.A.; Martinello, R.; Vidal, M.; Viladot, M.; Pineda, E.; Arance, A.; Muñoz, M.; et al. Response and Survival of Breast Cancer Intrinsic Subtypes Following Multi-Agent Neoadjuvant Chemotherapy. BMC Med. 2015, 13, 1–11. [Google Scholar] [CrossRef]
- Kim, T.; Han, W.; Kim, M.K.; Lee, J.W.; Kim, J.; Ahn, S.K.; Lee, H.B.; Moon, H.G.; Lee, K.H.; Kim, T.Y.; et al. Predictive Significance of P53, Ki-67, and Bcl-2 Expression for Pathologic Complete Response after Neoadjuvant Chemotherapy for Triple-Negative Breast Cancer. J. Breast Cancer 2015, 18, 16–21. [Google Scholar] [CrossRef]
- Pan, Y.; Yuan, Y.; Liu, G.; Wei, Y. P53 and Ki-67 as Prognostic Markers in Triplenegative Breast Cancer Patients. PLoS ONE 2017, 12, e0172324. [Google Scholar] [CrossRef]
- Earl, H.M.; Vallier, A.L.; Hiller, L.; Fenwick, N.; Young, J.; Iddawela, M.; Abraham, J.; Hughes-Davies, L.; Gounaris, I.; McAdam, K.; et al. Effects of the Addition of Gemcitabine, and Paclitaxel-First Sequencing, in Neoadjuvant Sequential Epirubicin, Cyclophosphamide, and Paclitaxel for Women with High-Risk Early Breast Cancer (Neo-TAnGo): An Open-Label, 2×2 Factorial Randomised Phase 3 Trial. Lancet Oncol. 2014, 15, 201–212. [Google Scholar] [CrossRef]
- Taghian, A.G.; Abi Raad, R.; Assaad, S.I.; Casty, A.; Ancukiewicz, M.; Yeh, E.; Molokhia, P.; Attia, K.; Sullivan, T.; Kuter, I.; et al. Paclitaxel Decreases the Interstitial Fluid Pressure and Improves Oxygenation in Breast Cancers in Patients Treated with Neoadjuvant Chemotherapy: Clinical Implications. J. Clin. Oncol. 2005, 23, 1951–1961. [Google Scholar] [CrossRef]
- Skipper, H.E. Laboratory Models: Some Historical Perspective; Wittes, R.E., Goldin, A., Eds.; American Society of Clinical Oncology: Alexandria, VA, USA, 1986; Volume 70. [Google Scholar]
- Norton, L. Cancer Log-Kill Revisited. In American Society of Clinical Oncology Educational Book; ASCO Educational Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2014. [Google Scholar]
- Citron, M.L.; Berry, D.A.; Cirrincione, C.; Hudis, C.; Winer, E.P.; Gradishar, W.J.; Davidson, N.E.; Martino, S.; Livingston, R.; Ingle, J.N.; et al. Randomized Trial of Dose-Dense versus Conventionally Scheduled and Sequential versus Concurrent Combination Chemotherapy as Postoperative Adjuvant Treatment of Node-Positive Primary Breast Cancer: First Report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J. Clin. Oncol. 2003, 21, 1431–1439. [Google Scholar] [CrossRef]
- Lovitt, C.J.; Shelper, T.B.; Avery, V.M. Doxorubicin Resistance in Breast Cancer Cells Is Mediated by Extracellular Matrix Proteins. BMC Cancer 2018, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Ryu, E.B.; Chang, J.M.; Seo, M.; Kim, S.A.; Lim, J.H.; Moon, W.K. Tumour Volume Doubling Time of Molecular Breast Cancer Subtypes Assessed by Serial Breast Ultrasound. Eur. Radiol. 2014, 24, 2227–2235. [Google Scholar] [CrossRef]
- Nakashima, K.; Uematsu, T.; Takahashi, K.; Nishimura, S.; Tadokoro, Y.; Hayashi, T.; Sugino, T. Does Breast Cancer Growth Rate Really Depend on Tumor Subtype? Measurement of Tumor Doubling Time Using Serial Ultrasonography between Diagnosis and Surgery. Breast Cancer 2019, 26, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Dahan, M.; Hequet, D.; Bonneau, C.; Paoletti, X.; Rouzier, R. Has Tumor Doubling Time in Breast Cancer Changed over the Past 80 Years? A Systematic Review. Cancer Med. 2021, 10, 5203–5217. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, J.; Lelle, R.J.; Pickartz, H.; Heidenreich, W.; Schwarting, R.; Kurtsiefer, L.; Stauch, G.; Stein, H. Growth Fractions in Breast Cancers Determined in Situ with Monoclonal Antibody Ki-67. J. Clin. Pathol. 1986, 39, 977–980. [Google Scholar] [CrossRef]
- Lellé, R.J. In Situ Determination of the Ki-67 Growth Fraction (Ki-67 GF) in Human Tumors (Studies in Breast Cancer). Acta Histochem. Suppl. 1990, 39, 109–124. [Google Scholar]
- Lashen, A.G.; Toss, M.S.; Katayama, A.; Gogna, R.; Mongan, N.P.; Rakha, E.A. Assessment of Proliferation in Breast Cancer: Cell Cycle or Mitosis? An Observational Study. Histopathology 2021, 79, 1087–1098. [Google Scholar] [CrossRef]
- Whitman, J.; Cook, D.; Patel, S.; Munn, L.; Cole, J.A. Accurate Prediction of Tumor Growth and Doubling Times for Triple Negative Breast Cancer (TNBC) Allows for Patient-Specific Assessment of Tumor Aggressiveness. In Proceedings of the American Association for Cancer Research Annual Meeting, Philadelphia, PA, USA, 16–19 September 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Alvarenga, J.C.; Minzoni-Alessio, A.; Olvera-Chávez, A.; Cruz-Pacheco, G.; Chimal-Eguia, J.C.; Hernández-Ruíz, J.; Álvarez-Blanco, M.A.; Bautista-Hernández, M.Y.; Quispe-Siccha, R.M. A Mathematical Model to Optimize the Neoadjuvant Chemotherapy Treatment Sequence for Triple-Negative Locally Advanced Breast Cancer. Mathematics 2023, 11, 2410. https://doi.org/10.3390/math11112410
López-Alvarenga JC, Minzoni-Alessio A, Olvera-Chávez A, Cruz-Pacheco G, Chimal-Eguia JC, Hernández-Ruíz J, Álvarez-Blanco MA, Bautista-Hernández MY, Quispe-Siccha RM. A Mathematical Model to Optimize the Neoadjuvant Chemotherapy Treatment Sequence for Triple-Negative Locally Advanced Breast Cancer. Mathematics. 2023; 11(11):2410. https://doi.org/10.3390/math11112410
Chicago/Turabian StyleLópez-Alvarenga, Juan C., Antonmaria Minzoni-Alessio, Arturo Olvera-Chávez, Gustavo Cruz-Pacheco, Juan C. Chimal-Eguia, Joselín Hernández-Ruíz, Mario A. Álvarez-Blanco, María Y. Bautista-Hernández, and Rosa M. Quispe-Siccha. 2023. "A Mathematical Model to Optimize the Neoadjuvant Chemotherapy Treatment Sequence for Triple-Negative Locally Advanced Breast Cancer" Mathematics 11, no. 11: 2410. https://doi.org/10.3390/math11112410