Characterizations of the Beta Kumaraswamy Exponential Distribution
Abstract
:1. Introduction
2. The BKw-E Distribution
The Hazard and Reliability Functions
3. Statistical Properties
3.1. Moments
3.2. Quantile Function
3.3. Median
3.4. Mode
3.5. Skewness and Kurtosis
3.6. The Mean Deviation
4. Rényi Entropy
5. Order Statistics
6. Application with a Real Data Set
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumaraswamy, P. A generalized probability density function for double-bounded random processes. J. Hydrol. 1980, 46, 79–88. [Google Scholar] [CrossRef]
- Jones, M. Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages. Stat. Methodol. 2009, 6, 70–81. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; de Castro, M. A new family of generalized distributions. J. Stat. Comput. Simul. 2011, 81, 883–898. [Google Scholar] [CrossRef]
- Nadarajah, S.; Cordeiro, G.M.; Ortega, E.M. General results for the Kumaraswamy-G distribution. J. Stat. Comput. Simul. 2012, 82, 951–979. [Google Scholar] [CrossRef]
- Lemonte, A.J.; Barreto-Souza, W.; Cordeiro, G.M. The exponentiated Kumaraswamy distribution and its log-transform. Braz. J. Probab. Stat. 2013, 27, 31–53. [Google Scholar] [CrossRef]
- Elbatal, I. Kumaraswamy linear exponential distribution. Pioneer J. Theor. Appl. Stat. 2013, 5, 59–73. [Google Scholar]
- Adepoju, K.; Chukwu, O. Maximum likelihood estimation of the Kumaraswamy exponential distribution with applications. J. Mod. Appl. Stat. Methods 2015, 14, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.; Silva, A. The exponentiated Kumaraswamy exponential distribution. Br. J. Appl. Sci. Technol. 2015, 10, 12. [Google Scholar] [CrossRef]
- Chacko, M.; Mohan, R. Estimation of parameters of Kumaraswamy-Exponential distribution under progressive type-II censoring. J. Stat. Comput. Simul. 2017, 87, 1951–1963. [Google Scholar] [CrossRef]
- Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications. Commun. Stat. Theory Methods 2002, 31, 497–512. [Google Scholar] [CrossRef]
- Nadarajah, S.; Kotz, S. The beta exponential distribution. Reliab. Eng. Syst. Saf. 2006, 91, 689–697. [Google Scholar] [CrossRef]
- Barreto-Souza, W.; Santos, A.H.; Cordeiro, G.M. The beta generalized exponential distribution. J. Stat. Comput. Simul. 2010, 80, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Bakoban, R.A.; Abu-Zinadah, H.H. The Beta Generalized Inverted Exponential Distribution With Real Data Application. REVSTAT–Stat. J. 2017, 15, 65–88. [Google Scholar]
- Handique, L.; Chakraborty, S.; Ali, M.M. Beta Generated Kumaraswamy-G Family of Distributions. Pak. J. Stat. 2017, 33, 467–490. [Google Scholar]
- Madaki, U.Y.; Abu-Bakar, M.R.; Handique, L. Beta Kumaraswamy Burr type X distribution and its properties. Preprints 2018, 1, 1–34. [Google Scholar]
- Kenney, J.F.; Keeping, E.S. Mathematics of Statistics Part 1, 3rd ed.; Van Nostrand: New York, NY, USA, 1962. [Google Scholar]
- Keller, A.; Kamath, A.; Perera, U. Reliability analysis of CNC machine tools. Reliab. Eng. 1982, 3, 449–473. [Google Scholar] [CrossRef]
- Rényi, A. On the dimension and entropy of probability distributions. Acta Math. Hung. 1959, 10, 193–215. [Google Scholar] [CrossRef]
- Shannon, C.E. A note on the concept of entropy. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Song, K.S. Rényi information, loglikelihood and an intrinsic distribution measure. J. Stat. Plan. Inference 2001, 93, 51–69. [Google Scholar] [CrossRef]
- Kurths, J.; Voss, A.; Saparin, P.; Witt, A.; Kleiner, H.; Wessel, N. Quantitative analysis of heart rate variability. Chaos 1995, 5, 88–94. [Google Scholar] [CrossRef]
- Abraham, B.; Sankaran, P. Renyi’s entropy for residual lifetime distribution. Stat. Pap. 2006, 47, 17–29. [Google Scholar] [CrossRef]
- David, H.A.; Nagaraja, H.A. Order Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Abouammoh, A.; Abdulghani, S.; Qamber, I. On partial orderings and testing of new better than renewal used classes. Reliab. Eng. Syst. Saf. 1994, 43, 37–41. [Google Scholar] [CrossRef]
a | b | l | m | Mean | Mode | Median | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|
1.5 | 3 | 0.8 | 3 | 1 | 1.101 | 0.474 | 0.536 | 0.186 | 1.263 |
3.5 | 3 | 0.8 | 3 | 1 | 1.950 | 1.784 | 1.267 | 0.106 | 1.245 |
4 | 3 | 0.8 | 3 | 1 | 2.095 | 2.007 | 1.401 | 0.099 | 1.245 |
2 | 0.5 | 0.8 | 3 | 1 | 1.860 | 2.728 | 2.513 | 0.217 | 1.304 |
2 | 0.8 | 0.8 | 3 | 1 | 2.964 | 1.999 | 1.791 | 0.197 | 1.289 |
2 | 1.5 | 0.8 | 3 | 1 | 2.376 | 1.346 | 1.172 | 0.172 | 1.269 |
2 | 3 | 0.9 | 3 | 1 | 1.219 | 0.791 | 0.673 | 0.1496 | 1.251 |
2 | 3 | 1.3 | 3 | 1 | 0.844 | 0.546 | 0.466 | 0.1496 | 1.251 |
2 | 3 | 2 | 3 | 1 | 0.549 | 0.356 | 0.303 | 0.1496 | 1.251 |
2 | 3 | 0.8 | 4 | 1 | 1.505 | 0.8896 | 0.757 | 0.1496 | 1.251 |
2 | 3 | 0.8 | 5 | 1 | 1.608 | 0.8896 | 0.757 | 0.1496 | 1.251 |
2 | 3 | 0.8 | 3 | 0.2 | 2.785 | 1.631 | 2.198 | 0.1496 | 1.251 |
2 | 3 | 0.8 | 3 | 2 | 0.970 | 0.650 | 0.501 | 0.1496 | 1.251 |
Model | MLEs | −2logL | AIC | CAIC | HQIC | |
---|---|---|---|---|---|---|
Exp | = 0.321 | 170.917 | 172.917 | 173.022 | 173.528 | |
ExpK-E | = 0.0250 | = 0.227 | 145.405 | 153.405 | 154.548 | 155.847 |
= 3.005 | = 11.125 | |||||
Kw-E | = 2.959 | = 5.619 | 142.758 | 148.758 | 149.414 | 150.58 |
= 0.227 | ||||||
BKw-E | = 10.138 | = 4.420 | 132.04 | 142.04 | 143.804 | 145.093 |
= 0.224 | = 32.859 | |||||
= 0.189 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-saiary, Z.A.; Bakoban, R.A.; Al-zahrani, A.A. Characterizations of the Beta Kumaraswamy Exponential Distribution. Mathematics 2020, 8, 23. https://doi.org/10.3390/math8010023
Al-saiary ZA, Bakoban RA, Al-zahrani AA. Characterizations of the Beta Kumaraswamy Exponential Distribution. Mathematics. 2020; 8(1):23. https://doi.org/10.3390/math8010023
Chicago/Turabian StyleAl-saiary, Zakeia A., Rana A. Bakoban, and Areej A. Al-zahrani. 2020. "Characterizations of the Beta Kumaraswamy Exponential Distribution" Mathematics 8, no. 1: 23. https://doi.org/10.3390/math8010023
APA StyleAl-saiary, Z. A., Bakoban, R. A., & Al-zahrani, A. A. (2020). Characterizations of the Beta Kumaraswamy Exponential Distribution. Mathematics, 8(1), 23. https://doi.org/10.3390/math8010023