Qualitative Verbal Fluency Components as Prognostic Factors for Developing Alzheimer’s Dementia and Mild Cognitive Impairment: Results from the Population-Based HELIAD Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Neuropsychological Assessments and Diagnostic Procedures
2.2. Statistical Analysis and Outcome Measures
3. Results
3.1. Baseline Characteristics and Missing Data
3.2. Associations between Qualitative Verbal Fluency Indices and Incident Dementia or Mild Cognitive Impairment
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quaranta, D.; Piccininni, C.; Caprara, A.; Malandrino, A.; Gainotti, G.; Marra, C. Semantic Relations in a Categorical Verbal Fluency Test: An Exploratory Investigation in Mild Cognitive Impairment. Front. Psychol. 2019, 10, 2797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Z.; Janse, E.; Visser, K.; Meyer, A.S. What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front. Psychol. 2014, 5, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, J.D.; Crawford, J.R.; Phillips, L. Verbal fluency performance in dementia of the Alzheimer’s type: A meta-analysis. Neuropsychologia 2004, 42, 1212–1222. [Google Scholar] [CrossRef] [PubMed]
- Rinehardt, E.; Eichstaedt, K.; Schinka, J.A.; Loewenstein, D.A.; Mattingly, M.; Fils, J.; Duara, R.; Schoenberg, M.R. Verbal fluency patterns in mild cognitive impairment and Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2014, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Birn, R.M.; Kenworthy, L.; Case, L.; Caravella, R.; Jones, T.B.; Bandettini, P.A.; Martin, A. Neural systems supporting lexical search guided by letter and semantic category cues: A self-paced overt response fMRI study of verbal fluency. NeuroImage 2010, 49, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Stuss, D.T.; Alexander, M.P.; Hamer, L.; Palumbo, C.; Dempster, R.; Binns, M.; Levine, B.; Izukawa, D. The effects of focal anterior and posterior brain lesions on verbal fluency. J. Int. Neuropsychol. Soc. 1998, 4, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Folia, V.; Liampas, I.; Ntanasi, E.; Yannakoulia, M.; Sakka, P.; Hadjigeorgiou, G.; Scarmeas, N.; Dardiotis, E.; Kosmidis, M.H. Longitudinal trajectories and normative language standards in older adults with normal cognitive status. Neuropsychology 2022, 36, 626–639. [Google Scholar] [CrossRef]
- Liampas, I.; Folia, V.; Morfakidou, R.; Siokas, V.; Yannakoulia, M.; Sakka, P.; Scarmeas, N.; Hadjigeorgiou, G.; Dardiotis, E.; Kosmidis, M.H. Language Differences among Individuals with Normal Cognition, Amnestic and Non-Amnestic MCI, and Alzheimer’s Disease. Arch. Clin Neuropsychol. 2022, acac080. [Google Scholar] [CrossRef]
- Sutin, A.R.; Stephan, Y.; Terracciano, A. Verbal fluency and risk of dementia. Int. J. Geriatr. Psychiatry 2019, 34, 863–867. [Google Scholar] [CrossRef]
- Folia, V.; Liampas, I.; Siokas, V.; Silva, S.; Ntanasi, E.; Yannakoulia, M.; Sakka, P.; Hadjigeorgiou, G.; Scarmeas, N.; Dardiotis, E.; et al. Language performance as a prognostic factor for developing Alzheimer’s Clinical Syndrome and Mild Cognitive Impairment: Results from the population-based HELIAD cohort. J. Int. Neuropsychol. Soc. 2022, 1–9. [Google Scholar] [CrossRef]
- Auriacombe, S.; Lechevallier, N.; Amieva, H.; Harston, S.; Raoux, N.; Dartigues, J.F. A Longitudinal Study of Quantitative and Qualitative Features of Category Verbal Fluency in Incident Alzheimer’s Disease Subjects: Results from the PAQUID Study. Dement. Geriatr. Cogn. Disord. 2006, 21, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Gomez, R.; White, D. Using verbal fluency to detect very mild dementia of the Alzheimer type. Arch. Clin. Neuropsychol. 2006, 21, 771–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troyer, A.K.; Moscovitch, M.; Winocur, G. Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsychology 1997, 11, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Troyer, A.K.; Moscovitch, M.; Winocur, G.; Leach, L.; Freedman, M. Clustering and switching on verbal fluency tests in Alzheimer’s and Parkinson’s disease. J. Int. Neuropsychol. Soc. 1998, 4, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.G.; Wadley, V.G.; Kapur, P.; DeRamus, T.P.; Singletary, B.; Nicholas, A.P.; Blanton, P.D.; Lokken, K.; Deshpande, H.; Marson, D.; et al. Lexical factors and cerebral regions influencing verbal fluency performance in MCI. Neuropsychologia 2014, 54, 98–111. [Google Scholar] [CrossRef]
- Azuma, T. Working Memory and Perseveration in Verbal Fluency. Neuropsychology 2004, 18, 69–77. [Google Scholar] [CrossRef]
- Fischer-Baum, S.; Miozzo, M.; Laiacona, M.; Capitani, E. Perseveration during verbal fluency in traumatic brain injury reflects impairments in working memory. Neuropsychology 2016, 30, 791–799. [Google Scholar] [CrossRef]
- Itaguchi, Y.; Castro-Chavira, S.A.; Waterloo, K.; Johnsen, S.H.; Rodríguez-Aranda, C. Evaluation of Error Production in Animal Fluency and Its Relationship to Frontal Tracts in Normal Aging and Mild Alzheimer’s Disease: A Combined LDA and Time-Course Analysis Investigation. Front. Aging Neurosci. 2022, 13, 710938. [Google Scholar] [CrossRef]
- Pakhomov, S.V.S.; Eberly, L.E.; Knopman, D.S. Recurrent perseverations on semantic verbal fluency tasks as an early marker of cognitive impairment. J. Clin. Exp. Neuropsychol. 2018, 40, 832–840. [Google Scholar] [CrossRef]
- Pekkala, S.; Albert, M.L.; Spiro III, A.; Erkinjuntti, T. Perseveration in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2008, 25, 109–114. [Google Scholar] [CrossRef]
- Fagundo, A.B.; López, S.; Romero, M.; Guarch, J.; Marcos, T.; Salamero, M. Clustering and switching in semantic fluency: Predictors of the development of Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2008, 23, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Liampas, I.; Folia, V.; Ntanasi, E.; Yannakoulia, M.; Sakka, P.; Hadjigeorgiou, G.; Scarmeas, N.; Dardiotis, E.; Kosmidis, M.H. Longitudinal episodic memory trajectories in older adults with normal cognition. Clin. Neuropsychol. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Karp, A.; Kåreholt, I.; Qiu, C.; Bellander, T.; Winblad, B.; Fratiglioni, L. Relation of education and occupation-based socioeconomic status to incident Alzheimer’s disease. Am. J. Epidemiol. 2004, 159, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letenneur, L.; Gilleron, V.; Commenges, D.; Helmer, C.; Orgogozo, J.-M.; Dartigues, J.-F. Are sex and educational level independent predictors of dementia and Alzheimer’s disease? Incidence data from the PAQUID project. JNNP 1999, 66, 177–183. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Dardiotis, E.; Kosmidis, M.H.; Yannakoulia, M.; Hadjigeorgiou, G.M.; Scarmeas, N. The Hellenic Longitudinal Investigation of Aging and Diet (HELIAD): Rationale, Study Design, and Cohort Description. Neuroepidemiology 2014, 43, 9–14. [Google Scholar] [CrossRef]
- Liampas, I.; Hatzimanolis, A.; Siokas, V.; Yannakoulia, M.; Kosmidis, M.H.; Sakka, P.; Hadjigeorgiou, G.M.; Scarmeas, N.; Dardiotis, E. Antihypertensive medication class and the risk of dementia and cognitive decline in older adults: A secondary analysis of the prospective HELIAD cohort. J. Alzheimers Dis. 2022, 89, 709–719. [Google Scholar] [CrossRef]
- Liampas, I.; Siokas, V.; Kyrozis, A.; Sakoutis, G.; Yannakoulia, M.; Kosmidis, M.H.; Sakka, P.; Sakkas, G.K.; Giannaki, C.D.; Stefanidis, I.; et al. Prevalence and Determinants of Restless Legs Syndrome (Willis-Ekbom Disease) in an Older Greek Population. Behav. Sleep Med. 2022, 1–13. [Google Scholar] [CrossRef]
- Bougea, A.; Maraki, M.I.; Yannakoulia, M.; Stamelou, M.; Xiromerisiou, G.; Kosmidis, M.H.; Ntanasi, E.; Dardiotis, E.; Hadjigeorgiou, G.M.; Sakka, P. Higher probability of prodromal Parkinson disease is related to lower cognitive performance. Neurology 2019, 92, e2261–e2272. [Google Scholar] [CrossRef]
- Kosmidis, M.H.; Vlahou, C.H.; Panagiotaki, P.; Kiosseoglou, G. The verbal fluency task in the Greek population: Normative data, and clustering and switching strategies. J. Int. Neuropsychol. Soc. 2004, 10, 164–172. [Google Scholar] [CrossRef]
- Robert, P.H.; Lafont, V.; Medecin, I.; Berthet, L.; Thauby, S.; Baudu, C.; Darcourt, G.U.Y. Clustering and switching strategies in verbal fluency tasks: Comparison between schizophrenics and healthy adults. J. Int. Neuropsychol. Soc. 1998, 4, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Kosmidis, M.H.; Vlachos, G.S.; Anastasiou, C.A.; Yannakoulia, M.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Ntanasi, E.; Scarmeas, N. Dementia Prevalence in Greece: The Hellenic Longitudinal Investigation of Aging and Diet (HELIAD). Alzheimer Dis. Assoc. Disord. 2018, 32, 232–239. [Google Scholar] [CrossRef]
- Vlachos, G.S.; Kosmidis, M.H.; Yannakoulia, M.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Ntanasi, E.; Stefanis, L.; Scarmeas, N. Prevalence of Mild Cognitive Impairment in the Elderly Population in Greece: Results From the HELIAD Study. Alzheimer Dis. Assoc. Disord. 2020, 34, 156–162. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Mourtzi, N.; Yannakoulia, M.; Ntanasi, E.; Kosmidis, M.H.; Anastasiou, C.A.; Dardiotis, E.; Hadjigeorgiou, G.; Megalou, M.; Sakka, P.; Scarmeas, N. History of induced abortions and frailty in older Greek women: Results from the HELIAD study. Eur. Geriatr. Med. 2018, 9, 301–310. [Google Scholar] [CrossRef]
- Bayles, K.A.; Tomoeda, C.K.; McKnight, P.E.; Helm-Estabrooks, N.; Hawley, J.N. Verbal Perseveration in Individuals with Alzheimer’s Disease. Semin. Speech Lang. 2004, 25, 335–347. [Google Scholar] [CrossRef]
- Miozzo, M.; Fischer-Baum, S.; Caccappolo-van Vliet, E. Perseverations in Alzheimer’s disease: Memory slips? Cortex 2013, 49, 2028–2039. [Google Scholar] [CrossRef]
- DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Molecular Neurodegeneration 2019, 14, 32. [Google Scholar] [CrossRef] [Green Version]
- Grober, E.; Hall, C.B.; Lipton, R.B.; Zonderman, A.B.; Resnick, S.M.; Kawas, C. Memory impairment, executive dysfunction, and intellectual decline in preclinical Alzheimer’s disease. J. Int. Neuropsychol. Soc. 2008, 14, 266–278. [Google Scholar] [CrossRef]
- Hamel, R.; Köhler, S.; Sistermans, N.; Koene, T.; Pijnenburg, Y.; van der Flier, W.; Scheltens, P.; Aalten, P.; Verhey, F.; Visser, P.J.; et al. The trajectory of cognitive decline in the pre-dementia phase in memory clinic visitors: Findings from the 4C-MCI study. Psychol. Med. 2015, 45, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Williams, O.A.; An, Y.; Armstrong, N.M.; Kitner-Triolo, M.; Ferrucci, L.; Resnick, S.M. Profiles of Cognitive Change in Preclinical and Prodromal Alzheimer’s Disease Using Change-Point Analysis. J. Alzheimer’s Dis. 2020, 75, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Amieva, H.; Jacqmin-Gadda, H.; Orgogozo, J.M.; Le Carret, N.; Helmer, C.; Letenneur, L.; Barberger-Gateau, P.; Fabrigoule, C.; Dartigues, J.F. The 9 year cognitive decline before dementia of the Alzheimer type: A prospective population-based study. Brain 2005, 128, 1093–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amieva, H.; Mokri, H.; Le Goff, M.; Meillon, C.; Jacqmin-Gadda, H.; Foubert-Samier, A.; Orgogozo, J.-M.; Stern, Y.; Dartigues, J.-F. Compensatory mechanisms in higher-educated subjects with Alzheimer’s disease: A study of 20 years of cognitive decline. Brain 2014, 137, 1167–1175. [Google Scholar] [CrossRef]
- Wilson, R.S.; Leurgans, S.E.; Boyle, P.A.; Bennett, D.A. Cognitive Decline in Prodromal Alzheimer Disease and Mild Cognitive Impairment. Arch. Neurol. 2011, 68, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Reinvang, I.; Grambaite, R.; Espeseth, T. Executive Dysfunction in MCI: Subtype or Early Symptom. J. Alzheimer’s Dis. 2012, 2012, 936272. [Google Scholar] [CrossRef] [Green Version]
- Kemp, J.; Philippi, N.; Phillipps, C.; Botzung, A.; Blanc, F. Cognitive profile in prodromal disease (dementia) with Lewy bodies. Geriatr. Psychol. Neuropsychiatr. Vieil. 2017, 15, 434–442. [Google Scholar] [CrossRef]
- Kawashima, S.; Shimizu, Y.; Ueki, Y.; Matsukawa, N. Impairment of the visuospatial working memory in the patients with Parkinson’s Disease: An fMRI study. BMC Neurol. 2021, 21, 335. [Google Scholar] [CrossRef]
Baseline Parameter | Without Dementia at Follow-Up (n = 921) | With Dementia at Follow-Up (n = 34) | p-Value (between-Group Differences) | |
---|---|---|---|---|
Age in years at baseline (N = 955) | 72.75 ± 4.86 | 77.34 ± 4.99 | <0.001 | |
Years of education (N = 955) | 8.39 ± 4.86 | 6.18 ± 4.68 | 0.009 | |
Sex (M/F) (N = 955) | 363/558 (39.4%/60.6%) | 15/19 (44.1%/55.9%) | 0.582 | |
Main occupation (Manual/mental) (N = 860) | 520/307 (62.9%/37.1%) | 24/9 (72.7%/27.3%) | 0.250 | |
Socioeconomic status (Low/high) (N = 955) | 395/526 (42.9%/57.1%) | 18/16 (52.9%/47.1%) | 0.245 | |
MMSE (N = 937) | 27.66 ± 2.16 | 25.62 ± 2.89 | <0.001 | |
Semantic condition | Number of clusters (N = 936) | 2.42 ± 1.31 | 1.48 ± 1.06 | <0.001 |
Number of switches (N = 936) | 10.19 ± 4.73 | 7.06 ± 4.31 | <0.001 | |
Number of intrusions (N = 936) | 0.62 ± 1.54 | 0.35 ± 0.80 | 0.346 | |
Number of perseverations (N = 936) | 0.57 ± 1.03 | 0.71 ± 1.01 | 0.469 | |
Phonemic condition | Number of clusters (N = 914) | 0.34 ± 0.79 | 0.27 ± 0.52 | 0.596 |
Number of switches (N = 914) | 6.91 ± 4.18 | 4.60 ± 2.88 | 0.003 | |
Number of intrusions (N = 914) | 0.28 ± 0.76 | 0.23 ± 0.63 | 0.749 | |
Number of perseverations (N = 914) | 0.41 ± 0.88 | 0.33 ± 0.84 | 0.656 |
Baseline Parameter | Without Dementia or MCI at Follow-Up (n = 761) | With MCI at Follow-Up (n= 160) | p-Value (between-Group Differences) | |
---|---|---|---|---|
Age in years at baseline (N = 921) | 72.46 ± 4.70 | 74.13 ± 5.36 | <0.001 | |
Years of education (N = 921) | 8.74 ± 4.86 | 6.72 ± 4.52 | <0.001 | |
Sex (M/F) (N = 921) | 297/464 (39.0%61.0%) | 66/94 (41.3%/58.7%) | 0.601 | |
Main occupation (Manual/mental) (N = 827) | 414/269 (60.6%/39.4%) | 106/38 (73.6%/26.4%) | 0.003 | |
Socioeconomic status (Low/high) (N = 921) | 313/448 (41.1%/58.9%) | 82/78 (51.3%/48.7%) | 0.019 | |
MMSE (N = 905) | 27.78 ± 2.00 | 27.09 ± 2.50 | <0.001 | |
Semantic condition | Number of clusters (N = 905) | 2.45 ± 1.24 | 2.27 ± 1.59 | 0.131 |
Number of switches (N = 905) | 10.56 ± 4.77 | 8.41 ± 4.09 | <0.001 | |
Number of intrusions (N = 905) | 0.63 ± 1.62 | 0.55 ± 1.09 | 0.583 | |
Number of perseverations (N = 905) | 0.59 ± 1.01 | 0.48 ± 1.14 | 0.202 | |
Phonemic condition | Number of clusters (N = 884) | 0.35 ± 0.64 | 0.32 ± 1.31 | 0.714 |
Number of switches (N = 884) | 7.07 ± 4.23 | 6.12 ± 3.80 | 0.012 | |
Number of intrusions (N = 884) | 0.25 ± 0.68 | 0.42 ± 1.08 | 0.011 | |
Number of perseverations (N = 884) | 0.40 ± 0.84 | 0.42 ± 1.06 | 0.781 |
Variable | Dementia at Follow-Up | Alzheimer’ s Dementia at Follow-Up |
---|---|---|
Semantic condition | Adjusted HR (95%CI), p-value | Adjusted HR (95%CI), p-value |
Number of clusters | 0.69 (0.49, 0.97), 0.035 | 0.71 (0.49, 1.03), 0.069 |
Number of switches | 0.87 (0.79, 0.97), 0.012 | 0.86 (0.77, 0.97), 0.011 |
Number of intrusions | 0.91 (0.60, 1.39), 0.660 | 0.72 (0.38, 1.34), 0.296 |
Number of perseverations | 1.52 (1.15, 2.01), 0.003 | 1.55 (1.18, 2.04), 0.002 |
Phonemic condition | Adjusted HR (95%CI), p-value | Adjusted HR (95%CI), p-value |
Number of clusters | 1.19 (0.73, 1.94), 0.480 | 1.17 (0.69, 1.98), 0.552 |
Number of switches | 0.88 (0.77, 1.01), 0.060 | 0.88 (0.76, 1.01), 0.071 |
Number of intrusions | 0.99 (0.55, 1.78), 0.975 | 1.04 (0.59, 1.84), 0.894 |
Number of perseverations | 1.26 (0.81, 1.96), 0.308 | 1.32 (0.85, 2.03), 0.217 |
Variable | Dementia at Follow-Up | Alzheimer’ s Dementia at Follow-Up |
---|---|---|
Semantic condition | Adjusted HR (95%CI), p-value | Adjusted HR (95%CI), p-value |
Number of clusters | 0.64 (0.43, 0.97), 0.037 | 0.64 (0.41, 1.01), 0.057 |
Number of switches | 0.94 (0.83, 1.07), 0.364 | 0.96 (0.84, 1.10), 0.576 |
Number of intrusions | 0.86 (0.56, 1.31), 0.468 | 0.89 (0.59, 1.34), 0.567 |
Number of perseverations | 1.08 (0.71, 1.66), 0.719 | 1.01 (0.66, 1.55), 0.950 |
Phonemic condition | Adjusted HR (95%CI), p-value | Adjusted HR (95%CI), p-value |
Number of clusters | 1.20 (0.41, 3.52), 0.742 | 1.32 (0.42, 4.09), 0.634 |
Number of switches | 1.00 (0.85, 1.16), 0.957 | 0.98 (0.83, 1.16), 0.844 |
Number of intrusions | 3.05 (0.94, 9.95), 0.062 | 3.46 (1.07, 11.19), 0.039 |
Number of perseverations | 1.48 (0.47, 4.66), 0.506 | 1.49 (0.46, 4.80), 0.502 |
Variable | MCI at Follow-Up | Variable | MCI at Follow-Up |
---|---|---|---|
Semantic Condition | Adjusted HR (95%CI), p-Value | Phonemic Condition | Adjusted HR (95%CI), p-Value |
Number of clusters | 1.03 (0.90, 1.18), 0.689 | Number of clusters | 1.21 (0.96, 1.51), 0.101 |
Number of switches | 0.95 (0.91, 0.99), 0.014 | Number of switches | 0.98 (0.93, 1.04), 0.544 |
Number of intrusions | 1.03 (0.89, 1.18), 0.773 | Number of intrusions | 1.27 (1.06, 1.53), 0.009 |
Number of perseverations | 1.15 (0.96, 1.39), 0.139 | Number of perseverations | 1.14 (0.94, 1.38), 0.186 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liampas, I.; Folia, V.; Zoupa, E.; Siokas, V.; Yannakoulia, M.; Sakka, P.; Hadjigeorgiou, G.; Scarmeas, N.; Dardiotis, E.; Kosmidis, M.H. Qualitative Verbal Fluency Components as Prognostic Factors for Developing Alzheimer’s Dementia and Mild Cognitive Impairment: Results from the Population-Based HELIAD Cohort. Medicina 2022, 58, 1814. https://doi.org/10.3390/medicina58121814
Liampas I, Folia V, Zoupa E, Siokas V, Yannakoulia M, Sakka P, Hadjigeorgiou G, Scarmeas N, Dardiotis E, Kosmidis MH. Qualitative Verbal Fluency Components as Prognostic Factors for Developing Alzheimer’s Dementia and Mild Cognitive Impairment: Results from the Population-Based HELIAD Cohort. Medicina. 2022; 58(12):1814. https://doi.org/10.3390/medicina58121814
Chicago/Turabian StyleLiampas, Ioannis, Vasiliki Folia, Elli Zoupa, Vasileios Siokas, Mary Yannakoulia, Paraskevi Sakka, Georgios Hadjigeorgiou, Nikolaos Scarmeas, Efthimios Dardiotis, and Mary H. Kosmidis. 2022. "Qualitative Verbal Fluency Components as Prognostic Factors for Developing Alzheimer’s Dementia and Mild Cognitive Impairment: Results from the Population-Based HELIAD Cohort" Medicina 58, no. 12: 1814. https://doi.org/10.3390/medicina58121814
APA StyleLiampas, I., Folia, V., Zoupa, E., Siokas, V., Yannakoulia, M., Sakka, P., Hadjigeorgiou, G., Scarmeas, N., Dardiotis, E., & Kosmidis, M. H. (2022). Qualitative Verbal Fluency Components as Prognostic Factors for Developing Alzheimer’s Dementia and Mild Cognitive Impairment: Results from the Population-Based HELIAD Cohort. Medicina, 58(12), 1814. https://doi.org/10.3390/medicina58121814