Phase Transformation Crystallography in Pipeline HSLA Steel after TMCP
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stalheim, D.; Boggess, T.; San Marchi, C.; Jansto, S.; Somerday, B.; Muralidharan, G.; Sofronis, P. Microstructure and Mechanical Property Performance of Commercial Grade API Pipeline Steels in High Pressure Gaseous Hydrogen. In Proceedings of the 8th International Pipeline Conference, Calgary, AB, Canada, 27 September–1 October 2010. [Google Scholar]
- Zhang, G.; Bai, X.; Stalheim, D.; Li, S.; Ding, W. Development and Production of Heavy Gauge X80 and High Strength X90 Pipeline Steels Utilizing TMCP/Optimized Cooling Process. In Proceedings of the 10th International Pipeline Conference, Calgary, AB, Canada, 29 September–3 October 2014. [Google Scholar]
- Roccisano, A.; Nafisi, S.; Stalheim, D.; Ghomashchi, R. Effect of TMCP Rolling Schedules on the Microstructure and Performance of X70 Steel. Mater. Charact. 2021, 178, 111207. [Google Scholar] [CrossRef]
- Lobanov, M.L.; Khotinov, V.A.; Urtsev, V.N.; Danilov, S.V.; Urtsev, N.V.; Platov, S.I.; Stepanov, S.I. Tensile Deformation and Fracture Behavior of API-5L X70 Line Pipe Steel. Materials 2022, 15, 501. [Google Scholar] [CrossRef]
- Ray, R.K.; Jonas, J.J. Transformation Textures in Steels. Int. Mater. Rev. 1994, 34, 927–942. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Khan, M.; Khan, S.A.; Afzal, A.; Subbiah, R.; Ahmad, S.N.; Husain, M.; Butt, M.M.; Othman, A.R.; Bakar, E.A. Determination of Non-Recrystallization Temperature for Niobium Microalloyed Steel. Materials 2021, 14, 2639. [Google Scholar] [CrossRef]
- Vervynckt, S.; Verbeken, K.; Lopez, B.; Jonas, J.J. Modern HSLA Steels and Role of Non-Recrystallisation Temperature. Int. Mater. Rev. 2012, 57, 187–207. [Google Scholar] [CrossRef]
- Inagaki, H.; Suda, T. The Development of Rolling Textures in Low-Carbon Steels. Texture Stress Microstruct. 1972, 1, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, H. Transformation Textures in Control-Rolled High Tensile Strength Steels. Trans. Iron Steel Inst. Jpn. 1977, 17, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-L.; Xu, Y.-B.; Tan, X.-D.; Wu, D. Influences of Crystallography and Delamination on Anisotropy of Charpy Impact Toughness in API X100 Pipeline Steel. Mater. Sci. Eng. A 2014, 607, 53–62. [Google Scholar] [CrossRef]
- Pyshmintsev, I.Y.; Struin, A.O.; Gervasyev, A.M.; Lobanov, M.L.; Rusakov, G.M.; Danilov, S.V.; Arabey, A.B. Effect of Bainite Crystallographic Texture on Failure of Pipe Steel Sheets Made by Controlled Thermomechanical Treatment. Metallurgist 2016, 60, 405–412. [Google Scholar] [CrossRef]
- Lobanov, M.L.; Krasnov, M.L.; Urtsev, V.N.; Danilov, S.V.; Pastukhov, V.I. Effect of Cooling Rate on the Structure of Low-Carbon Low-Alloy Steel After Thermomechanical Controlled Processing. Met. Sci. Heat Treat. 2019, 61, 32–38. [Google Scholar] [CrossRef]
- Kestens, L.A.I.; Nguyen-Minh, T.; Petrov, R.H. The Role of Parent Phase Topology in Double Young–Kurdjumow–Sachs Variant Selection during Phase Transformation in Low-Carbon Steels. Metals 2022, 12, 939. [Google Scholar] [CrossRef]
- Hara, T.; Shinohara, Y.; Asahi, H.; Terada, Y. Effects of Microstructure and Texture on DWTT Properties for High Strength Line Pipe Steels. In Proceedings of the 2006 International Pipeline Conference, Calgary, AB, Canada, 25–29 September 2006; pp. 245–250. [Google Scholar]
- Gervasyev, A.; Pyshmintsev, I.; Petrov, R.; Huo, C.; Barbaro, F. Splitting Susceptibility in Modern X80 Pipeline Steels. Mater. Sci. Eng. A 2020, 772, 138746. [Google Scholar] [CrossRef]
- Joo, M.S.; Suh, D.-W.; Bae, J.H.; Sanchez Mouriño, N.; Petrov, R.; Kestens, L.A.I.; Bhadeshia, H.K.D.H. Experiments to Separate the Effect of Texture on Anisotropy of Pipeline Steel. Mater. Sci. Eng. A 2012, 556, 601–606. [Google Scholar] [CrossRef] [Green Version]
- Hölscher, M.; Raabe, D.; Lücke, K. Relationship between Rolling Textures and Shear Textures in f.c.c. and b.c.c. Metals. Acta Metall. Mater. 1994, 42, 879–886. [Google Scholar] [CrossRef]
- Hutchinson, B.; Ryde, L.; Lindh, E.; Tagashira, K. Texture in Hot Rolled Austenite and Resulting Transformation Products. Mater. Sci. Eng. A 1998, 257, 9–17. [Google Scholar] [CrossRef]
- Kurdjumow, G.; Sachs, G. Über Den Mechanismus Der Stahlhärtung. Z. Phys. 1930, 64, 325–343. [Google Scholar] [CrossRef]
- Nishiyama, Z. X-Ray Investigation of the Mechanism of the Transformation from Face-Centred Cubic Lattice to Body-Centred Cubic. Sci. Rep. Tohoku Imp. Univ. 1934, 23, 637. [Google Scholar]
- Wassermann, G. Ueber den Mechanismus der α-γ-Umwandlung Des Eisens; Verlag Stahleisen: Düsseldorf, Germany, 1935. [Google Scholar]
- Greninger, A.B.; Troiano, A.R. The Mechanism of Martensite Formation. Jom 1949, 1, 590–598. [Google Scholar] [CrossRef]
- Kraposhin, V.; Jakovleva, I.; Karkina, L.; Nuzhny, G.; Zubkova, T.; Talis, A. Microtwinning as a Common Mechanism for the Martensitic and Pearlitic Transformations. J. Alloys Compd. 2013, 577, S30–S36. [Google Scholar] [CrossRef]
- Sasidhar, K.N.; Dhande, T.; Javed, N.; Ghosh, A.; Mukherjee, M.; Sharma, V.; Mahashabde, V.V.; Das Bakshi, S. Effect of Transformation Texture on the Impact Toughness of Hot-Rolled Ti+Nb Microalloyed Steel. Mater. Des. 2017, 128, 86–97. [Google Scholar] [CrossRef]
- Chang, R. An Atomistic Study of Fracture. Int. J. Fract. Mech. 1970, 6, 111–125. [Google Scholar] [CrossRef]
- Schemmann, L.; Stallybrass, C.; Schröder, J.; Liessem, A.; Zaefferer, S. Crack Formation in Charpy Tests of the Heat-Affected Zone of Large-Diameter Linepipe Material. In Proceedings of the 12th International Pipeline Conference, Calgary, AB, Canada, 24–28 September 2018. [Google Scholar]
- Tomida, T.; Wakita, M.; Yoshida, M.; Imai, N. Quantitative Prediction of Transformation Texture in Hot-Rolled Steel Sheets by Multiple KS Relation. In Materials Processing and Texture; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 325–332. ISBN 978-0-470-44419-1. [Google Scholar]
- Tomida, T.; Wakita, M. Transformation Texture in Hot-Rolled Steel Sheets and Its Quantitative Prediction. ISIJ Int. 2012, 52, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Tomota, Y.; Adachi, Y.; Paradowska, A.M.; Kelleher, J.F.; Zhang, S.Y. Effects of Ausforming Temperature on Bainite Transformation, Microstructure and Variant Selection in Nanobainite Steel. Acta Mater. 2013, 61, 4142–4154. [Google Scholar] [CrossRef]
- Pereloma, E.V.; Al-Harbi, F.; Gazder, A.A. The Crystallography of Carbide-Free Bainites in Thermo-Mechanically Processed Low Si Transformation-Induced Plasticity Steels. J. Alloys Compd. 2014, 615, 96–110. [Google Scholar] [CrossRef]
- Gundyrev, V.M.; Zeldovich, V.I.; Schastlivtsev, V.M. Crystallographic Analysis and Mechanism of Martensitic Transformation in Fe Alloys. Phys. Met. Metallogr. 2020, 121, 1045–1063. [Google Scholar] [CrossRef]
- Raabe, D. Recovery and Recrystallization: Phenomena, Physics, Models, Simulation. In Physical Metallurgy, 5th ed.; Laughlin, D.E., Hono, K., Eds.; Elsevier: Oxford, UK, 2014; pp. 2291–2397. ISBN 978-0-444-53770-6. [Google Scholar]
- Andreyev, Y.G.; Zarkova, Y.I.; Shtremel, M.A. Boundaries and Subboundaries in Packet Martensite. II. Boundaries between Packets. Fiz. Met. Metalloved. 1990, 69, 169–173. [Google Scholar]
- Lobanov, M.L.; Rusakov, G.M.; Redikul’tsev, A.A.; Belikov, S.V.; Karabanalov, M.S.; Struina, E.R.; Gervas’ev, A.M. Investigation of Special Misorientations in Lath Martensite of Low-Carbon Steel Using the Method of Orientation Microscopy. Phys. Met. Metallogr. 2016, 117, 254–259. [Google Scholar] [CrossRef]
- Kitahara, H.; Ueji, R.; Tsuji, N.; Minamino, Y. Crystallographic Features of Lath Martensite in Low-Carbon Steel. Acta Mater. 2006, 54, 1279–1288. [Google Scholar] [CrossRef]
- Shibata, A.; Jafarian, H.; Tsuji, N. Microstructure and Crystallographic Features of Martensite Transformed from Ultrafine-Grained Austenite in Fe–24Ni–0.3C Alloy. Mater. Trans. 2012, 53, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T. Controlled Rolling of Steel Plate and Strip. Int. Met. Rev. 1981, 26, 185–212. [Google Scholar] [CrossRef]
- Yakovleva, I.L.; Tereshchenko, N.A.; Urtsev, N.V. Observation of the Martensitic-Austenitic Component in the Structure of Low-Carbon Low-Alloy Pipe Steel. Phys. Met. Metallogr. 2020, 121, 352–358. [Google Scholar] [CrossRef]
- Li, X.; Fan, Y.; Ma, X.; Subramanian, S.V.; Shang, C. Influence of Martensite–Austenite Constituents Formed at Different Intercritical Temperatures on Toughness. Mater. Des. 2015, 67, 457–463. [Google Scholar] [CrossRef]
- Platov, S.I.; Gorbatyuk, S.M.; Lobanov, M.L.; Maslennikov, K.B.; Urtsev, N.V.; Dema, R.R.; Zvyagina, E.Y. Mathematical Model of the Accelerated Cooling of Metal in Thick-Plate Hot Rolling. Metallurgist 2022, 66, 462–468. [Google Scholar] [CrossRef]
- Erpalov, M.V.; Khotinov, V.A. Optical Method to Study Post-Necking Material Behaviour. AIP Conf. Proc. 2020, 2288, 030007. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Ni, H.-C.; Yen, H.-W. New Protocol for Orientation Reconstruction from Martensite to Austenite in Steels. Materialia 2020, 9, 100554. [Google Scholar] [CrossRef]
- Christian, J.W. The Theory of Transformations in Metals and Alloys; Pergamon: Prussia, PA, USA, 2002; ISBN 0-08-044019-3. [Google Scholar]
- Zorina, M.A.; Karabanalov, M.S.; Loginov, Y.N.; Lobanov, M.L. Crystallographic Laws of Formation of Recrystallization Texture in a Copper Capillary Tube. Met. Sci. Heat Treat. 2022, 64, 3–8. [Google Scholar] [CrossRef]
- Пышминцев, И.Ю.; Смирнoв, М.А. Структура и Свoйства Сталей для Магистральных Трубoпрoвoдoв; ООО Издательствo УМЦ УПИ: Yekaterinburg, Russia, 2019; ISBN 978-5-8295-0659-9. [Google Scholar]
- Rusakov, G.M.; Illarionov, A.G.; Loginov, Y.N.; Lobanov, M.L.; Redikul’tsev, A.A. Interrelation of Crystallographic Orientations of Grains in Aluminum Alloy AMg6 Under Hot Deformation and Recrystallization. Met. Sci. Heat Treat. 2015, 56, 650–655. [Google Scholar] [CrossRef]
- Tomida, T.; Wakita, M.; Yasuyama, M.; Sugaya, S.; Tomota, Y.; Vogel, S.C. Memory Effects of Transformation Textures in Steel and Its Prediction by the Double Kurdjumov–Sachs Relation. Acta Mater. 2013, 61, 2828–2839. [Google Scholar] [CrossRef]
- Landheer, H.; Offerman, S.E.; Petrov, R.H.; Kestens, L.A.I. The Role of Crystal Misorientations during Solid-State Nucleation of Ferrite in Austenite. Acta Mater. 2009, 57, 1486–1496. [Google Scholar] [CrossRef]
- Lobanov, M.L.; Pastukhov, V.I.; Redikul’tsev, A.A. Effect of Special Boundaries on γ → α Transformation in Austenitic Stainless Steel. Phys. Met. Metallogr. 2021, 122, 396–402. [Google Scholar] [CrossRef]
- Lobanov, M.L.; Zorina, M.A.; Reznik, P.L.; Pastukhov, V.I.; Redikultsev, A.A.; Danilov, S.V. Specific Features of Crystallographic Texture Formation in BCC-FCC Transformation in Extruded Brass. J. Alloys Compd. 2021, 882, 160231. [Google Scholar] [CrossRef]
- Gottstein, G. Physical Foundation of Materials Science; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 3-540-40139-3. [Google Scholar]
- Rollett, A.; Humphreys, F.; Rohrer, G.S.; Hatherly, M. Recrystallization and Related Annealing Phenomena, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2004; ISBN 978-0-08-044164-1. [Google Scholar]
- Ram, F.; Zaefferer, S.; Jäpel, T.; Raabe, D. Error Analysis of the Crystal Orientations and Disorientations Obtained by the Classical Electron Backscatter Diffraction Technique. J. Appl. Crystallogr. 2015, 48, 797–813. [Google Scholar] [CrossRef]
- Lobanov, M.L.; Yarkov, V.Y.; Pastukhov, V.I.; Naschetnikova, I.A.; Stepanov, S.I.; Redikultsev, A.A.; Zorina, M.A. The Effect of Cooling Rate on Crystallographic Features of Phase Transformations in Zr-2.5Nb. Materials 2023, 16, 3758. [Google Scholar] [CrossRef]
- Naschetnikova, I.A.; Stepanov, S.I.; Redikultsev, A.A.; Yarkov, V.Y.; Zorina, M.A.; Lobanov, M.L. Crystallographic Features of Phase Transformations during the Continuous Cooling of a Ti6Al4V Alloy from the Single-Phase β-Region. Materials 2022, 15, 5840. [Google Scholar] [CrossRef]
Specimen Separation Direction | YS/MPa | UTS/MPa | YS/UTS | Uniform Elongation/% | Total Elongation/% | Reduction Area /% | KCV−60 /J/cm2 |
---|---|---|---|---|---|---|---|
//RD | 520 ± 10 | 630 ± 10 | 0.83 | 6.6 ± 0.4 | 20.3 ± 0.4 | 81.5 ± 0.5 | 280 ± 20 |
//TD | 550 ± 10 | 670 ± 10 | 0.82 | 8.9 ± 0.5 | 23.5 ± 0.4 | 80.0 ± 0.5 | 260 ± 20 |
45°RD | 500 ± 10 | 620 ± 10 | 0.81 | 7.5 ± 0.4 | 23.5 ± 0.4 | 84.5 ± 0.5 | 270 ± 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobanov, M.L.; Zorina, M.A.; Karabanalov, M.S.; Urtsev, N.V.; Redikultsev, A.A. Phase Transformation Crystallography in Pipeline HSLA Steel after TMCP. Metals 2023, 13, 1121. https://doi.org/10.3390/met13061121
Lobanov ML, Zorina MA, Karabanalov MS, Urtsev NV, Redikultsev AA. Phase Transformation Crystallography in Pipeline HSLA Steel after TMCP. Metals. 2023; 13(6):1121. https://doi.org/10.3390/met13061121
Chicago/Turabian StyleLobanov, Mikhail L., Maria A. Zorina, Maxim S. Karabanalov, Nikolay V. Urtsev, and Andrey A. Redikultsev. 2023. "Phase Transformation Crystallography in Pipeline HSLA Steel after TMCP" Metals 13, no. 6: 1121. https://doi.org/10.3390/met13061121
APA StyleLobanov, M. L., Zorina, M. A., Karabanalov, M. S., Urtsev, N. V., & Redikultsev, A. A. (2023). Phase Transformation Crystallography in Pipeline HSLA Steel after TMCP. Metals, 13(6), 1121. https://doi.org/10.3390/met13061121