Effect of La on Microstructure, Mechanical Properties and Friction Behavior of In Situ Synthesized TiB2/6061 Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Analysis
3.2. Microstructures of Composites with Different La Additions
3.3. Mechanical Properties of Composites with Different La Additions
3.4. Friction Behaviors of Composites with Different La Additions
4. Discussion
4.1. Microstructures
4.2. Strengthening Mechanisms
4.3. Wear Mechanisms
5. Conclusions
- (1)
- In 3 wt.%TiB2/6061 composites, the average size of α-Al grains was about 150 μm, and the agglomeration of TiB2 particles was serious. With 0.3 wt.% La addition, the size of α-Al grains was refined, and the particle agglomeration was alleviated. The refinement of grain size could be attributed to the combined effect of La and TiB2 particles. However, 0.5 wt.% La addition resulted in the coarsening of the α-Al grains.
- (2)
- The addition of La changed the ultimate morphologies of TiB2 particles. In 0.3 wt.%La-3 wt.%TiB2/6061 composites, TiB2 particles maintained the basis of hexagonal prism morphology, with chamfering planes. The adsorption of La inhibited the growth of {11}, {112} and {101} crystal planes, leading to incomplete degeneration.
- (3)
- The in situ synthesized TiB2/6061 composites with 0.3 wt% La show the best tensile property and good elongation. Compared with 3 wt.%TiB2/6061 composites, the YS and UTS of 0.3 wt.%La-3 wt.%TiB2/6061 composites increased 69.2% and 34.8%, and the EL increased by 5.7%.
- (4)
- The wear resistance of composites improved with trace La addition, and 0.3 wt.% La had the greatest effect on wear resistance. The average friction coefficient of the 0.3 wt.%La-3 wt.%TiB2/6061 composites was the smallest, the curves were the smoothest, and the smallest and shallowest grooves were on the wearing surface. Adhesive wear and abrasive wear mechanisms existed in the friction behaviors of the composites.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, Z.; Wang, J.; Zhu, M.; Wen, T.; Yang, F.; Ji, S.; Zheng, J.; Yang, H. Effects of In Situ TiB2 on the Microstructural Evolution, Mechanical Properties, and Friction Behavior of the Al-Si-Cu Alloys Processed by Laser Powder-Bed Fusion. Metals 2024, 14, 1015. [Google Scholar] [CrossRef]
- Jia, C.; Xu, Z.; Li, Y.; He, Y.; Liu, H.; ZHu, Z.; Liu, H.; Liu, C. Hot deformation behavior and microstructural evolution of an in-Situ 2 wt.% TiB2-Reinforced 6061 Al matrix composite. J. Mater. Eng. Perform. 2024, 33, 3309–3319. [Google Scholar] [CrossRef]
- Ma, X.; Yang, H.; Dong, B.; Shu, S.; Wang, Z.; Shao, Y.; Jiang, Q.; Qiu, F. Novel method to achieve synergetic strength–ductility improvement of Al-Cu alloy by in situ TiC-TiB2 particles via direct reaction synthesis. Mater. Sci. Eng. A 2023, 869, 144810. [Google Scholar] [CrossRef]
- Matveev, A.; Promakhov, V.; Schulz, N.; Vladislav, B.; Timur, T. Nano-and Submicron-Sized TiB2 Particles in Al-TiB2 Composite Produced in Semi-Industrial Self-Propagating High-Temperature Synthesis Conditions. Metals 2024, 14, 511. [Google Scholar] [CrossRef]
- Dorri, M.; Omrani, E.; Lopez, H.; Zhou, L.; Yongho, S.; Rohatgi, P. Strengthening in hybrid Alumina-Titanium diboride Aluminum matrix composites synthesized by ultrasonic assisted reactive mechanical mixing. Mater. Sci. Eng. A 2017, 702, 312–321. [Google Scholar] [CrossRef]
- Wu, L.; Li, X.; Han, G.; Deng, Y.; Ma, N.; Wang, H. Precipitation behavior of the high-Li-content in-situ TiB2/Al-Li-Cu composite. Mater. Charact. 2017, 132, 215–222. [Google Scholar] [CrossRef]
- Chen, F.; Chen, Z.; Mao, F.; Wang, T.; Cao, Z. TiB2 reinforced aluminum based in situ composites fabricated by stir casting. Mater. Sci. Eng. A 2015, 625, 357–368. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.; Zhao, X.; Liu, B.; Chen, X.; Zhou, L. Study on the Microscopic Mechanism of the Grain Refinement of Al-Ti-B Master Alloy. Metals 2024, 14, 197. [Google Scholar] [CrossRef]
- Gao, Q.; Wu, S.; Lü, S.; Xiong, X.; Du, R.; An, P. Improvement of particles distribution of in-situ 5 vol% TiB2 particulates reinforced Al-4.5Cu alloy matrix composites with ultrasonic vibration treatment. J. Alloys Compd. 2017, 692, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Kang, H.; Guo, E.; Li, J.; Du, G.; Chen, Z.; Wang, T. Ultrasound-assisted dispersion of TiB2 nanoparticles in 7075 matrix hybrid composites. Mater. Sci. Eng. A 2022, 840, 142958. [Google Scholar] [CrossRef]
- Agrawal, S.; Ghose, A.; Chakrabarty, I. Effect of rotary electromagnetic stirring during solidification of in-situ Al-TiB2 composites. Mater. Design. 2017, 113, 195–206. [Google Scholar] [CrossRef]
- Xie, H.; Cao, Y. Effect of holding time and Ti/B molar ratio on microstructure and mechanical properties of in-situ TiB2/Al composites fabricated by mixed salt reaction. Mater. Res. Express. 2023, 10, 046511. [Google Scholar] [CrossRef]
- Xue, J.; Wu, W.; Ma, J.; Huang, H. Study on the fabrication of in-situ TiB2/Al composite by electroslag melting. Sci. Eng. Compd. Compos. Mater. 2021, 28, 73–82. [Google Scholar] [CrossRef]
- Huang, J.; Xiang, Z.; Tang, Y.; Li, J.; Shen, G.; Shi, G.; Ma, X.; Chen, Y.; Chen, Z. Interfacial precipitation of the in-situ TiB2-reinforced Al-Zn-Mg-Cu-Zr composite. Mater. Chem. Phys. 2023, 301, 127561. [Google Scholar] [CrossRef]
- Yang, H.; Cai, Z.; Zhang, Q.; Shao, Y.; Dong, B.; Xuan, Q.; Qiu, F. Comparison of the effects of Mg and Zn on the interface mismatch and compression properties of 50 vol% TiB2/Al composites. Ceram. Int. 2021, 47, 22121–22129. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, Y.; Chen, Z.; Zhao, Y.; Kang, H. Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite. Mater. Design. 2014, 64, 185–193. [Google Scholar] [CrossRef]
- Zhang, T.; Feng, K.; Li, Z.; Kokawa, H. Effects of rare earth elements on the microstructure and wear properties of TiB2 reinforced aluminum matrix composite coatings: Experiments and first principles calculations. Appl. Surf. Sci. 2020, 530, 147051. [Google Scholar] [CrossRef]
- Huang, D.; Yan, D.; Ma, S.; Wang, X. Scandium on the formation of in situ TiB2 particulates in an aluminum matrix. J. Mater. Res. 2018, 33, 2721–2727. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Chen, Y.; Wang, F.; Wang, H. Effect of Cu element on morphology of TiB2 particles in TiB2/Al-Cu composites. T. Nonferr. Metal. Soc. 2020, 30, 1148–1156. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, J.; Dong, B.; Li, X.; Kou, S.; Zhang, S.; Qiu, F. Effect of Cu and Zn elements on morphology of ceramic particles and interfacial bonding in TiB2/Al composites. Ceram. Inter. 2022, 48, 25894–25904. [Google Scholar] [CrossRef]
- Xue, J.; Wu, W.; Ma, J.; Huang, H.; Zhao, Z. Study on the effect of CeO2 for fabricating in-situ TiB2/A356 composites with improved mechanical properties. Mater. Sci. Eng. A 2020, 786, 139416. [Google Scholar] [CrossRef]
- Zhuang, W.; Jia, J.; Liu, J.; Qin, L.; Li, J.; Meng, C. Microstructure evolution and properties improvement of in-situ TiB2/6061 composites via trace Mn addition. J. Mol. Struct. 2024, 1301, 137423. [Google Scholar] [CrossRef]
- Jiang, H.; Zheng, Q.; Song, Y.; Li, Y.; Li, S.; He, J.; Zhang, L.; Zhao, J. Influence of minor La addition on the solidification, aging behaviors and the tensile properties of Al-Mg-Si alloys. Mater. Charact. 2022, 185, 111750. [Google Scholar] [CrossRef]
- Tsai, Y.; Chou, C.; Lee, S.; Lin, C.; Lin, J.; Lim, S. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys. J. Alloys Compd. 2009, 487, 157–162. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, L.; Jiang, H.; Zhao, J.; He, J. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys. J. Mater. Sci. Technol. 2020, 47, 142–151. [Google Scholar] [CrossRef]
- Zhuang, W.; Yang, H.; Yang, W.; Cui, J.; Huang, L.; Wu, C.; Liu, J.; Sun, Y.; Meng, C. Microstructure, tensile properties, and wear resistance of in situ TiB2/6061 composites prepared by high energy ball milling and stir casting. J. Mater. Eng. Perform. 2021, 30, 7730–7740. [Google Scholar] [CrossRef]
- James, T.; Hemmingson, S.; Sellers, J.; Campbell, C. Calorimetric measurement of adsorption and adhesion energies of Cu on Pt (111). Surf. Sci. 2017, 657, 58–62. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Z.; Chen, D.; Wu, Y.; Li, X.; Ma, N.; Wang, H. The constitutive model and processing map for in situ 5 wt.% TiB2 reinforced 7050 Al alloy matrix composite. Key. Eng. Mater. 2014, 575, 11–19. [Google Scholar] [CrossRef]
- Sun, G.; Zhao, G.; Shao, L.; Li, X.; Deng, Y.; Wang, H. Particle dispersion and mechanical properties enhancement of in-situ TiB2/7050 Al matrix composite via additive friction stir deposition. Mater. Lett. 2024, 357, 135790. [Google Scholar] [CrossRef]
- Bian, Z.; Cai, Y.; Zhang, D.; Wu, Y.; Zhao, D.; Wang, M.; Cui, S.; Wang, H. Improving mechanical performance of heat-resistant eutectic Al-Fe-Ni alloy by in-situ TiB2 particles. Mater. Lett. 2024, 358, 135857. [Google Scholar] [CrossRef]
- Zhuang, W.; Qin, L.; Jia, J.; Li, J.; Cao, Q.; Meng, C.; Liu, J. Microstructure and mechanical properties of network/point cluster structured TiC/6061 composites prepared by in-situ synthesis. Mater. Lett. 2024, 365, 136446. [Google Scholar] [CrossRef]
- Ding, W.; Cheng, Y.; Taili, C.; Zhao, X.; Liu, X. Research status and application prospect of Aluminum matrix composites. Res. Appl. Mater. Sci. 2020, 2, 74–92. [Google Scholar]
- Liu, Z.; Dong, Z.; Cheng, X.; Zheng, Q.; Zhao, J.; Han, Q. On the supplementation of Magnesium and usage of ultrasound stirring for fabricating in situ TiB2/A356 composites with improved mechanical properties. Metal. Mater. Tran. 2018, 49, 5585–5598. [Google Scholar] [CrossRef]
- Hushan, B. Introduction to Tribology; Wiley: New York, NY, USA, 2002; p. 732. [Google Scholar]
- Lu, H.; Zhu, P.; Wang, W. Study of adhesive wear mechanisms in asperity junctions based on phase field fracture method. Mater. Today Comm. 2024, 40, 109903. [Google Scholar] [CrossRef]
- Poria, S.; Sutradhar, G.; Sahoo, P. Design of experiments analysis of friction behavior of Al-TiB2 composite. Mater. Today Proc. 2017, 4, 2956–2964. [Google Scholar] [CrossRef]
Element | Si | Cu | Mn | Mg | Zn | Ti | Fe | Al |
---|---|---|---|---|---|---|---|---|
Content | 0.5 | 0.3 | 0.15 | 1.0 | 0.25 | 0.15 | 0.7 | 96.95 |
Crystal planes | {0001} | {100} | {101} | {110} | {112} |
Adsorption energy | −1.1681 | −0.7263 | −0.5195 | −3.2306 | −0.5545 |
La content (wt.%) | 0 | 0.1 | 0.3 | 0.5 |
Hardness (HB) | 81.2 ± 0.1 | 83.5 ± 0.1 | 90.1 ± 0.2 | 78.2 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Zhuang, W.; Li, J.; Cao, Q.; Liu, J. Effect of La on Microstructure, Mechanical Properties and Friction Behavior of In Situ Synthesized TiB2/6061 Composites. Metals 2024, 14, 1169. https://doi.org/10.3390/met14101169
Jia J, Zhuang W, Li J, Cao Q, Liu J. Effect of La on Microstructure, Mechanical Properties and Friction Behavior of In Situ Synthesized TiB2/6061 Composites. Metals. 2024; 14(10):1169. https://doi.org/10.3390/met14101169
Chicago/Turabian StyleJia, Jing, Weibin Zhuang, Jinghui Li, Qing Cao, and Jingfu Liu. 2024. "Effect of La on Microstructure, Mechanical Properties and Friction Behavior of In Situ Synthesized TiB2/6061 Composites" Metals 14, no. 10: 1169. https://doi.org/10.3390/met14101169
APA StyleJia, J., Zhuang, W., Li, J., Cao, Q., & Liu, J. (2024). Effect of La on Microstructure, Mechanical Properties and Friction Behavior of In Situ Synthesized TiB2/6061 Composites. Metals, 14(10), 1169. https://doi.org/10.3390/met14101169