Effect of Surface Roughness on Corrosion Resistance of Mooring Chains for Offshore Floating Photovoltaics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Salt-Spray Corrosion
3.2. Polarization Behavior
3.3. Electrochemical Impedance Spectroscopy
3.4. X-ray Photoelectron Spectroscopy
4. Conclusions
- (1)
- The salt-spray corrosion resistance of mooring chain steel is significantly enhanced by reducing surface roughness: the number and depth of corrosion pits are significantly reduced;
- (2)
- With an increase in roughness of the original surface, the mass loss after 24 h salt-spray corrosion exponentially increased:
- (3)
- Reduction in surface roughness significantly increased pitting potential of a specimen and enhanced the re-passivation ability, thereby significantly improving the pitting resistance: pitting potential was linearly related to initial roughness of the specimen:
- (4)
- A decrease in surface roughness improved the oxide contents of Fe, Mo, and Si in the passive film, improved its density, effectively blocked chloride ion erosion, and improved corrosion resistance of the mooring chain steel.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costoya, X.; DeCastro, M.; Carvalho, D.; Arguilé-Pérez, B.; Gómez-Gesteira, M. Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula. Renew. Sustain. Energy Rev. 2022, 157, 112037. [Google Scholar] [CrossRef]
- Kazemi-Robati, E.; Silva, B.; Bessa, R.J. Stochastic optimization framework for hybridization of existing offshore wind farms with wave energy and floating photovoltaic systems. J. Clean. Prod. 2024, 454, 142215. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, W.; Fu, H.; Li, J. The effect of corrosion evolution on the stress corrosion cracking behavior of mooring chain steel. Corros. Sci. 2022, 203, 110316. [Google Scholar] [CrossRef]
- Rezende, F.A.; Videiro, P.M.; Sagrilo, L.V.; Oliveira, M.C. Reliability-based fatigue inspection planning for mooring chains of floating systems. Reliab. Eng. Syst. Saf. 2024, 242, 109775. [Google Scholar] [CrossRef]
- Jorge, J.C.F.; Santos Filho, A.M.F.d.; Diniz, J.L.C.; Souza, L.F.G.d.; Mendes, M.C. Evaluation of High Strength Cast Steel Welded Joints Suitable to Mooring Components. Rev. Soldag. Insp. 2022, 27, e2720. [Google Scholar] [CrossRef]
- Yaghin, A.L.; Melchers, R.E. Long-term inter-link wear of model mooring chains. Mar. Struct. 2015, 44, 61–84. [Google Scholar] [CrossRef]
- GB/T 32969-2016; Steel for Offshore Mooring Chain Cables. National Standard of the People’s Republic of China: Beijing, China, 2016.
- Li, S.; Yin, J.; Wang, C.; Hou, C.; Li, F. Hydrogen embrittlement behavior of ultrahigh strength mooring chain steel evaluated by the slow strain rate test. Int. J. Electrochem. Sci. 2019, 14, 2705–2713. [Google Scholar] [CrossRef]
- Zarandi, E.P.; Skallerud, B.H. Experimental and numerical study of mooring chain residual stresses and implications for fatigue life. Int. J. Fatigue 2020, 135, 105530. [Google Scholar] [CrossRef]
- Bergara, A.; Arredondo, A.; Altuzarra, J.; Martínez-Esnaola, J.M. Fatigue crack propagation analysis in offshore mooring chains and the influence of manufacturing residual stresses. Ocean Eng. 2022, 257, 111605. [Google Scholar] [CrossRef]
- Buzzatti, D.T.; Chludzinki, M.; dos Santos, R.E.; Buzzatti, J.T.; Lemos, G.V.B.; Mattei, F.; Marinho, R.R.; Paes, M.T.P.; Reguly, A. Toughness properties of a friction hydro pillar processed offshore mooring chain steel. J. Mater. Res. Technol. 2019, 8, 2625–2637. [Google Scholar] [CrossRef]
- Lone, E.N.; Sauder, T.; Larsen, K.; Leira, B.J. Fatigue reliability of mooring chains, including mean load and corrosion effects. Ocean Eng. 2022, 266, 112621. [Google Scholar] [CrossRef]
- Alkan, S.; Günen, A.; Gülen, M.; Gök, M.S. Effect of boriding on tribocorrosion behaviour of HSLA offshore mooring chain steel. Surf. Coat. Technol. 2024, 476, 130276. [Google Scholar] [CrossRef]
- Du, J.; Wang, H.; Wang, S.; Song, X.; Wang, J.; Chang, A. Fatigue damage assessment of mooring lines under the effect of wave climate change and marine corrosion. Ocean Eng. 2020, 206, 107303. [Google Scholar] [CrossRef]
- Liu, R.; Cao, L.; Liu, D.; Lian, Z.; Wang, Z. One-step laser interference lithography for large-scale preparation of a superhydrophobic Ti6Al4V surface with improved hardness, friction reduction and corrosion resistance. Colloids Surf. A 2024, 702, 134898. [Google Scholar] [CrossRef]
- Oh, S.; Kim, D.; Kim, K.; Kim, D.-I.; Chung, W.; Shin, B.-H. The effect of surface roughness on re-passivation and pitting corrosion of super duplex stainless steel UNS S 32760. Int. J. Electrochem. Sci. 2023, 18, 100351. [Google Scholar] [CrossRef]
- Kasha, A.; Srinivasan, K.V.; Obadimu, S.O.; Kourousis, K.I. Immersion corrosion of material extrusion steel 316 L: Influence of immersion time and surface roughness. Mater. Today Commun. 2023, 35, 106394. [Google Scholar] [CrossRef]
- Shi, W.; Yan, C.; Ren, Z.; Yuan, Z.; Liu, Y.; Zheng, S.; Li, X.; Han, X. Review on the development of marine floating photovoltaic systems. Ocean Eng. 2023, 286, 115560. [Google Scholar] [CrossRef]
- GB/T24195-2009; Corrosion of Metals and Alloys—Accelerated Cyclic Tests with Exposure to Acidified Salt Spray, “Dry” and “Wet” Conditions. National Standard of the People’s Republic of China: Beijing, China, 2009.
- ASTM G59; Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. American Society for Testing and Materials: Washington, DC, USA, 2020.
- ASTM G61; Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys. American Society for Testing and Materials: Washington, America, 2018.
- GB/T16545-2015; Corrosion of Metals and Alloys—Removal of Corrosion products from corrosion test specimens. National Standard of the People’s Republic of China: Beijing, China, 2015.
- Jinlong, L.; Tongxiang, L.; Chen, W. Surface enriched molybdenum enhancing the corrosion resistance of 316L stainless steel. Mater. Lett. 2016, 171, 38–41. [Google Scholar] [CrossRef]
- Olsson, C.-O.; Landolt, D. Passive films on stainless steels—Chemistry, structure and growth. Electrochim. Acta 2003, 48, 1093–1104. [Google Scholar] [CrossRef]
- Du, H.-Y.; Hu, Q.-K.; Yue, X.-W.; Jia, J.-W.; Wei, Y.-H.; Hou, L.-F.; Luo, H.; Wang, Q.; He, H.-W.; Wei, H. Effect of Mo on intergranular corrosion behavior in super-austenitic stainless steel. Corros. Sci. 2024, 231, 111986. [Google Scholar] [CrossRef]
- Liu, H.; Huang, F.; Yuan, W.; Hu, Q.; Liu, J.; Cheng, Y.F. Essential role of element Si in corrosion resistance of a bridge steel in chloride atmosphere. Corros. Sci. 2020, 173, 108758. [Google Scholar] [CrossRef]
- Chen, T.; Sun, L.; Zhang, T.; Liu, C.; Cheng, X.; Li, X. In-situ observation and kinetics study on shrinkage defect corrosion of ductile iron in NaCl solution. Corros. Sci. 2024, 232, 112034. [Google Scholar] [CrossRef]
- Tiamiyu, A.; Eduok, U.; Szpunar, J.; Odeshi, A. Corrosion behavior of metastable AISI 321 austenitic stainless steel: Investigating the effect of grain size and prior plastic deformation on its degradation pattern in saline media. Sci. Rep. 2019, 9, 12116. [Google Scholar] [CrossRef]
- Luo, H.; Li, Z.; Mingers, A.M.; Raabe, D. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 2018, 134, 131–139. [Google Scholar] [CrossRef]
- Yang, G.; Du, Y.; Chen, S.; Ren, Y. Effect of grain size on corrosion behavior of 304 stainless steel in coal chemical high salty wastewater. Mater. Today Commun. 2023, 34, 105407. [Google Scholar] [CrossRef]
- Fu, X.; Ji, Y.; Cheng, X.; Dong, C.; Fan, Y.; Li, X. Effect of grain size and its uniformity on corrosion resistance of rolled 316L stainless steel by EBSD and TEM. Mater. Today Commun. 2020, 25, 101429. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Mo | Ni | P | S | Fe |
---|---|---|---|---|---|---|---|---|
0.21 | 0.27 | 1.20 | 1.60 | 0.40 | 0.95 | ≤0.025 | ≤0.025 | Bal. |
Pitting Potential (V vs. SCE) | Passive Current Density (A/cm2) | Self-Corrosion Potential (V vs. SCE) | Self-Corrosion Current (A/cm2) | |
---|---|---|---|---|
4# | −0.36 | 1.89 × 10−5 | −0.705 | 6.665 × 10−6 |
8# | −0.33 | 1.12 × 10−5 | −0.693 | 5.622 × 10−6 |
20# | −0.24 | 1.05 × 10−5 | −0.688 | 5.418 × 10−6 |
40# | −0.18 | 8.53 × 10−6 | −0.672 | 4.045 × 10−6 |
Rs/(Ω·cm2) | Qf/(μΩ−1·cm−2·sn) | Rf/(Ω·cm2) | Qdl/(μΩ−1·cm−2·sn) | Rct/(Ω·cm2) | |
---|---|---|---|---|---|
4# | 3.85 | 21.49 | 211.4 | 37.68 | 2099 |
8# | 3.95 | 23.21 | 322.3 | 29.91 | 2176 |
20# | 4.33 | 77.24 | 492.3 | 13.17 | 2577 |
40# | 4.46 | 17.99 | 1586 | 24.48 | 3408 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Wang, Y.; Wang, W.; Lin, B.; Qu, M. Effect of Surface Roughness on Corrosion Resistance of Mooring Chains for Offshore Floating Photovoltaics. Metals 2024, 14, 1181. https://doi.org/10.3390/met14101181
Wang F, Wang Y, Wang W, Lin B, Qu M. Effect of Surface Roughness on Corrosion Resistance of Mooring Chains for Offshore Floating Photovoltaics. Metals. 2024; 14(10):1181. https://doi.org/10.3390/met14101181
Chicago/Turabian StyleWang, Feng, Yong Wang, Wei Wang, Bin Lin, and Minggui Qu. 2024. "Effect of Surface Roughness on Corrosion Resistance of Mooring Chains for Offshore Floating Photovoltaics" Metals 14, no. 10: 1181. https://doi.org/10.3390/met14101181
APA StyleWang, F., Wang, Y., Wang, W., Lin, B., & Qu, M. (2024). Effect of Surface Roughness on Corrosion Resistance of Mooring Chains for Offshore Floating Photovoltaics. Metals, 14(10), 1181. https://doi.org/10.3390/met14101181