Influence of β-Stabilizing Nb on Phase Stability and Phase Transformation in Ti-Zr Shape Memory Alloys: From the Viewpoint of the First-Principles Calculation
Abstract
:1. Introduction
2. Calculation Methods
3. Results and Discussions
4. Conclusions
- From the electronical density of state viewpoint, the β→α′ martensitic transformation occurred in the Ti-Zr-Nb shape memory alloy with the Nb content within the range of 6.25 at.% to 12.5 at.%. Upon the Nb content exceeding 12.5 at.%, Ti-Zr-Nb shape memory alloys possessed the reversible β→α″ martensitic transformation.
- The transformation strain along the different crystal orientations in Ti-Zr-Nb shape memory alloys firstly increased and then decreased with Nb content increasing. For comparison, the transformation strain along the [011]β orientation can be obtained as the maximum value. Moreover, the maximum value of the transformation strain can be achieved in the Ti-Zr-Nb shape memory alloy by optimizing 12.5 at.% Nb.
- The increased hydrostatic stress led to the reduction in the difference in free energy. The difference in the free energy was largest in the Ti-Zr-Nb shape memory alloy with 12.5 at.% Nb. This indicated that it had the largest dσ/dT, which was suitable for obtaining the largest elastocaloric effect.
- The calculated results revealed that the Ti-Zr-Nb shape memory alloy with 12.5 at.% Nb possessed the perfect combination of a larger recoverable strain and higher elastocaloric effect, making it the most promising candidate for biomedical materials. Moreover, the specific thermo-mechanical treatment can be adopted to optimize its performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Senopati, G.; Rashid, R.A.R.; Kartika, I.; Palanisamy, S. Recent Development of Low-Cost β-Ti Alloys for Biomedical Applications: A Review. Metals 2023, 13, 194. [Google Scholar] [CrossRef]
- Li, H.F.; Huang, J.Y.; Lin, G.C.; Wang, P.Y. Recent advances in tribological and wear properties of biomedical metallic materials. Rare Met. 2021, 40, 16. [Google Scholar] [CrossRef]
- Strnad, G.; Jakab-Farkas, L.; Gobber, F.S.; Peter, I. Synthesis and Characterization of Nanostructured Oxide Layers on Ti-Nb-Zr-Ta and Ti-Nb-Zr-Fe Biomedical Alloys. J. Funct. Biomater. 2023, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Korneva, A.; Straumal, B.; Gornakova, A.; Kilmametov, A.; Gondek, Ł.; Lityńska-Dobrzyńska, L.; Chulist, R.; Pomorska, M.; Zięba, P. Formation and Thermal Stability of the ω-Phase in Ti–Nb and Ti–Mo Alloys Subjected to HPT. Materials. 2022, 15, 4136. [Google Scholar] [CrossRef]
- Yi, X.Y.; Wang, Y.F.; Liu, W.; Sun, B.; Huang, B.W.; Meng, X.L.; Gao, Z.Y.; Wang, H.Z. Unraveling role of Co addition in microstructure and mechanical properties of biomedical Ti-Nb based shape memory alloy. Mater. Charact. 2023, 200, 112848. [Google Scholar] [CrossRef]
- Al-Zain, Y.; Kim, H.Y.; Hosoda, H.; Nam, T.H.; Miyazaki, S. Shape memory properties of Ti–Nb–Mo biomedical alloys. Acta Mater. 2010, 58, 4212–4223. [Google Scholar] [CrossRef]
- Elshalakany, A.B.; Ali, S.; Amigó Mata, A.; Eessaa, A.K.; Mohan, P.; Osman, T.A.; Amigo, B.V. Microstructure and Mechanical Properties of Ti-Mo-Zr-Cr Biomedical Alloys by Powder Metallurgy. J. Mater. Eng. Perform. 2017, 26, 1262–1271. [Google Scholar] [CrossRef]
- Nohira, N.; Hayashi, K.; Tahara, M.; Hosoda, H. Fabrication and mechanical properties of Bi-added Ti-Cr alloys for biomedical applications. J. Mater. Res. Technol. 2023, 23, 5644–5652. [Google Scholar] [CrossRef]
- Li, P.Y.; Ma, X.D.; Tong, T.; Wang, Y.S. Microstructural and mechanical properties of β-type Ti–Mo–Nb biomedical alloys with low elastic modulus. J. Alloys Compd. 2020, 815, 152412. [Google Scholar] [CrossRef]
- Bolzoni, L.; Ruiz-Navas, E.M.; Gordo, E. Feasibility study of the production of biomedical Ti–6Al–4V alloy by powder metallurgy. Mater. Sci. Eng. C 2015, 49, 400–407. [Google Scholar] [CrossRef]
- Lu, H.Z.; Yang, C.; Li, X.X.; Cheng, Q.R.; Ma, H.W.; Wang, Z.; Li, X.Q.; Qu, S.G. Microstructure evolution and superelasticity of Ti-24Nb-xZr alloys fabricated by spark plasma sintering. J. Alloys Compd. 2020, 823, 153875. [Google Scholar] [CrossRef]
- Kim, Y.H. Specific mechanical properties of highly porous Ti-Zr-Mo-Sn shape memory alloy for biomedical applications. Scr. Mater. 2023, 231, 115433. [Google Scholar] [CrossRef]
- Kim, H.Y. Ni-Free Ti-Based Shape Memory Alloys. Shape Mem. Eff. Superelasticity 2018, 4, 53–81. [Google Scholar]
- Li, Y.; Cui, Y.; Zhang, F.; Xu, H.B. Shape memory behavior in Ti–Zr alloys. Scr. Mater. 2011, 64, 584–587. [Google Scholar] [CrossRef]
- Song, X.; Xiong, C.; Zhang, F.; Nie, Y.S.; Li, Y. Strain induced martensite stabilization in β Ti-Zr-Nb shape memory alloy. Mater. Lett. 2019, 259, 126914. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, Z.G.; Xiong, C.Y.; Qu, W.T.; Yuan, B.F.; Wang, Z.G.; Li, Y. Martensitic transformations and the shape memory effect in Ti-Zr-Nb-Al high-temperature shape memory alloys. Mater. Sci. Eng. A 2017, 679, 14–19. [Google Scholar] [CrossRef]
- Li, Q.Q.; Ma, X.L.; Song, X.Y.; Xiong, C.Y.; Qu, W.T.; Li, Y. Improvement in the superelasticity of Ti–19Zr–11Nb–4Ta shape memory alloy caused by aging treatments. J. Mater. Res. Technol. 2022, 19, 1293–1297. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, S.X.; Yin, Y.X.; Zheng, L.Y.; Xie, H.L.; Shen, Y. Martensitic transition and shape memory effect of Ti-Zr-Mo series alloys. Intermetallics 2017, 88, 55–60. [Google Scholar] [CrossRef]
- Kudryashova, A.; Sheremetyev, V.; Lukashevich, K.; Cheverikin, V.; Inaekyan, K.; Galkin, S.; Prokoshkin, S.; Brailovski, V. Effect of a combined thermomechanical treatment on the microstructure, texture and superelastic properties of Ti-18Zr-14Nb alloy for orthopedic implants. J. Alloys Compd. 2020, 843, 156066. [Google Scholar] [CrossRef]
- Qu, W.T.; Sun, X.G.; Yuan, B.F.; Xiong, C.Y.; Zhang, F.; Li, Y.; Sun, B.H. Microstructures and phase transformations of Ti-30Zr-xNb (x=5, 7, 9, 13 at.%) shape memory alloys. Mater. Charact. 2016, 122, 1–5. [Google Scholar] [CrossRef]
- Fu, J.; Yamamoto, A.; Kim, H.Y.; Hosoda, H.; Miyazaki, S. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater. 2015, 17, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, Y.; Luo, K.; Xu, H.B. Microstructure and shape memory effect of Ti–20Zr–10Nb alloy. Mater. Sci. Eng. A 2010, 527, 652–656. [Google Scholar] [CrossRef]
- Li, S.; Choi, M.S.; Nam, T.H. Effect of thermo-mechanical treatment on microstructural evolution and mechanical properties of a superelastic Ti–Zr-based shape memory alloy. Mater. Sci. Eng. A 2020, 789, 139664. [Google Scholar] [CrossRef]
- Konopatsky, A.S.; Dubinskiy, S.M.; Zhukova, Y.S.; Sheremetyev, V.; Brailovski, V.; Prokoshkin, S.D.; Filonov, M.R. Ternary Ti-Zr-Nb and quaternary Ti-Zr-Nb-Ta shape memory alloys for biomedical applications: Structural features and cyclic mechanical properties. Mater. Sci. Eng. A 2017, 702, 301–311. [Google Scholar] [CrossRef]
- Xiong, C.Y.; Yao, L.; Yuan, B.F.; Qu, W.T.; Li, Y. Strain induced martensite stabilization and shape memory effect of Ti–20Zr–10Nb–4Ta alloy. Mater. Sci. Eng. A 2016, 658, 28–32. [Google Scholar] [CrossRef]
- Xue, P.; Li, Y.; Zhang, F.; Zhou, C.G. Shape memory effect and phase transformations of Ti–19.5Zr–10Nb–0.5Fe alloy. Scr. Mater. 2015, 101, 99–102. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.L.; Wang, D.; Sun, Q.; Zhao, Y.; Lu, S.S.; Li, S.; Vitos, W.L.; Ding, X.D. Large recoverable strain with suitable transition temperature in TiNb-based multicomponent shape memory alloys: First-principles calculations. Acta Mater. 2021, 221, 117366. [Google Scholar] [CrossRef]
- Bonisch, M.; Calin, M.; Waitz Panigrahi, T.; Zehetbauer, A.; Gebert, M.; Skrotzki, A.; Eckert, W.J. Thermal stability and phase transformations of martensitic Ti-Nb alloys. Sci. Technol. Adv. Mater. 2013, 14, 055004. [Google Scholar] [CrossRef]
- Minami, D.; Uesugi, T.; Takigawa, Y.; Higashi, K. First-principles study of transformation strains and phase stabilities in α’’ and β Ti-Nb-X alloys. J. Alloys Compd. 2017, 716, 37–45. [Google Scholar] [CrossRef]
- Li, C.X.; Luo, H.B.; Hu, Q.M.; Yang, R.; Yin, F.X.; Umezawa, O.; Vitos, L. Lattice parameters and relative stability of α’’ phase in binary titanium alloys from first-principles calculations. Solid State Commun. 2013, 159, 70–75. [Google Scholar] [CrossRef]
- Pathak, A.; Banumathy, S.; Sankarasubramanian, R.; Singh, A.K. Orthorhombic martensitic phase in Ti–Nb alloys: A first principles study. Comp. Mater. Sci. 2014, 83, 222–228. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ikehara, Y.; Kim, J.I.; Hosoda, H.; Miyazaki, S. Martensitic Transformation, Shape Memory Effect and Superelasticity of Ti–Nb Binary Alloys. Acta Mater. 2006, 54, 2419–2429. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Zhang, K.; Wu, H.L.; Wang, Q.; Wu, F.G.; He, C.G.; Dong, H.F. First-principles calculation of the effect of V content on the properties of NbMoTaWVx refractory high-entropy alloys. Mater. Today. Commun. 2024, 40, 109684. [Google Scholar] [CrossRef]
- Ali, M.S.; Islam, A.K.M.A.; Hossain, M.M.; Parvin, F. Phase stability, elastic, electronic, thermal and optical properties of Ti3Al1-xSixC2 (0≤x≤1): First principle study. Phys. B 2012, 407, 4221–4228. [Google Scholar] [CrossRef]
- Hu, Y.L.; Bai, L.H.; Tong, Y.G.; Deng, D.Y.; Liang, X.B.; Zhang, J.; Li, Y.J.; Chen, Y.X. First-principle calculation investigation of NbMoTaW based refractory high entropy alloys. J. Alloys Compd. 2020, 827, 153963. [Google Scholar] [CrossRef]
- Tobe, H.; Kim, H.Y.; Inamura, T.; Hosoda, H.; Nam, T.H.; Miyazaki, S. Effect of Nb content on deformation behavior and shape memory properties of Ti–Nb alloys. J. Alloys Compd. 2013, 577, S435–S438. [Google Scholar] [CrossRef]
- Suits, J.C. Structural instability in new magnetic Heusler compounds. Solid State Commun. 1976, 18, 423–425. [Google Scholar] [CrossRef]
- Xiao, H.B.; Yang, C.P.; Wang, R.L.; Xu, L.F.; Liu, G.Z.; Marchenkov, V.V. First principles study of martensitic transformation and magnetic properties of carbon doped Ni-Mn-Sn Heusler alloys. Phys. Lett. A 2016, 380, 3414–3420. [Google Scholar] [CrossRef]
- Inamura, T.; Kim, J.I.; Kim, H.Y.; Hosoda, H.; Wakashima, K.; Miyazaki, S. Composition dependent crystallography of α″-martensite in Ti-Nb-based β-titanium alloy. Philos. Mag. 2007, 87, 3325–3350. [Google Scholar] [CrossRef]
- Li, S.L.; Lim, J.W.; Rehman, I.U.; Lee, W.T.; Kim, J.G.; Oh, J.S.; Lee, T.; Nam, T.H. Tuning the texture characteristics and superelastic behaviors of Ti–Zr–Nb–Sn shape memory alloys by varying Nb content. Mater. Sci. Eng. A 2022, 845, 143243. [Google Scholar] [CrossRef]
- Kong, J.; Wang, B.; Sun, S.B.; Gao, Z.Y.; Meng, X.L. Elastocaloric effect induced by the strain glass behavior of Ti-18Zr-11Nb-3Sn alloy covering a wide temperature range. Mater. Lett. 2022, 308, 131083. [Google Scholar] [CrossRef]
CV1 | CV2 | CV3 | CV4 | CV5 | CV6 | |
---|---|---|---|---|---|---|
[100]α″ | [100]β | [100]β | [010]β | [010]β | [001]β | [001]β |
[010]α″ | [011]β | [01]β | [101]β | [10]β | [110]β | [10]β |
[001]α″ | [01]β | [0]β | [10]β | [0]β | [10]β | [0]β |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Chen, X.; Yi, X.; Li, W.; Liu, C.; Meng, X.; Gao, Z.; Cao, X.; Wang, H. Influence of β-Stabilizing Nb on Phase Stability and Phase Transformation in Ti-Zr Shape Memory Alloys: From the Viewpoint of the First-Principles Calculation. Metals 2024, 14, 1192. https://doi.org/10.3390/met14101192
Feng X, Chen X, Yi X, Li W, Liu C, Meng X, Gao Z, Cao X, Wang H. Influence of β-Stabilizing Nb on Phase Stability and Phase Transformation in Ti-Zr Shape Memory Alloys: From the Viewpoint of the First-Principles Calculation. Metals. 2024; 14(10):1192. https://doi.org/10.3390/met14101192
Chicago/Turabian StyleFeng, Xinxin, Xuepei Chen, Xiaoyang Yi, Weijian Li, Chenguang Liu, Xianglong Meng, Zhiyong Gao, Xinjian Cao, and Haizhen Wang. 2024. "Influence of β-Stabilizing Nb on Phase Stability and Phase Transformation in Ti-Zr Shape Memory Alloys: From the Viewpoint of the First-Principles Calculation" Metals 14, no. 10: 1192. https://doi.org/10.3390/met14101192
APA StyleFeng, X., Chen, X., Yi, X., Li, W., Liu, C., Meng, X., Gao, Z., Cao, X., & Wang, H. (2024). Influence of β-Stabilizing Nb on Phase Stability and Phase Transformation in Ti-Zr Shape Memory Alloys: From the Viewpoint of the First-Principles Calculation. Metals, 14(10), 1192. https://doi.org/10.3390/met14101192