Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis
Abstract
:1. Introduction
2. Non-Targeted Analysis
3. Targeted Analysis
3.1. Glycerolipids (GL)
3.2. Sphingolipids (SP)
3.3. Glycerophospholipids (GP)
3.4. Sterol Lipids (ST)
3.5. Fatty Acyls (FA)
3.6. Prenol Lipids (PR)
3.7. Polyketides (PK)
3.8. Saccharolipids (SL)
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A Comprehensive Classification System for Lipids. J. Lipid Res. 2005, 46, 839–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.; Shimizu, T.; Spener, F.; Meer, G.; van Wakelam, M.J.O.; Dennis, E.A. Update of the LIPID MAPS Comprehensive Classification System for Lipids. J. Lipid Res. 2009, 50, S9–S14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid Classification, Structures and Tools. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 2011, 1811, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gross, R.W. Shotgun Lipidomics: Electrospray Ionization Mass Spectrometric Analysis and Quantitation of Cellular Lipidomes Directly from Crude Extracts of Biological Samples. Mass Spectrom. Rev. 2005, 24, 367–412. [Google Scholar] [CrossRef]
- Van Meer, G.; de Kroon, A.I.P.M. Lipid Map of the Mammalian Cell. J. Cell Sci. 2011, 124, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.D. Lipidomics: A Global Approach to Lipid Analysis in Biological Systems. J. Lipid Res. 2006, 47, 2101–2111. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.W.; Braidy, N.; Poljak, A.; Pickford, R.; Thambisetty, M.; Sachdev, P.S. Dysregulation of Lipids in Alzheimer’s Disease and Their Role as Potential Biomarkers. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2017, 13, 810–827. [Google Scholar] [CrossRef]
- Perrotti, F.; Rosa, C.; Cicalini, I.; Sacchetta, P.; Del Boccio, P.; Genovesi, D.; Pieragostino, D. Advances in Lipidomics for Cancer Biomarkers Discovery. Int. J. Mol. Sci. 2016, 17, 1992. [Google Scholar] [CrossRef] [Green Version]
- Mika, A.; Sledzinski , T.; Stepnowski, P. Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods. Curr. Med. Chem. 2019, 60–103. [Google Scholar] [CrossRef]
- Tenenboim, H.; Burgos, A.; Willmitzer, L.; Brotman, Y. Using Lipidomics for Expanding the Knowledge on Lipid Metabolism in Plants. Biochimie 2016, 130, 91–96. [Google Scholar] [CrossRef]
- Appala, K.; Bimpeh, K.; Freeman, C.; Hines, K.M. Recent Applications of Mass Spectrometry in Bacterial Lipidomics. Anal. Bioanal. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hewelt-Belka, W.; Nakonieczna, J.; Belka, M.; Bączek, T.; Namieśnik, J.; Kot-Wasik, A. Untargeted Lipidomics Reveals Differences in the Lipid Pattern among Clinical Isolates of Staphylococcus Aureus Resistant and Sensitive to Antibiotics. J. Proteome Res. 2016, 15, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, C.; Han, X. Tutorial on Lipidomics. Anal. Chim. Acta 2019, 1061, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Cajka, T.; Fiehn, O. Comprehensive Analysis of Lipids in Biological Systems by Liquid Chromatography-Mass Spectrometry. TrAC Trends Anal. Chem. 2014, 61, 192–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524–545. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid Extraction by Methyl-Tert-Butyl Ether for High-Throughput Lipidomics. J. Lipid Res. 2008, 49, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- Löfgren, L.; Ståhlman, M.; Forsberg, G.-B.; Saarinen, S.; Nilsson, R.; Hansson, G.I. The BUME Method: A Novel Automated Chloroform-Free 96-Well Total Lipid Extraction Method for Blood Plasma. J. Lipid Res. 2012, 53, 1690–1700. [Google Scholar] [CrossRef] [Green Version]
- Sostare, J.; Di Guida, R.; Kirwan, J.; Chalal, K.; Palmer, E.; Dunn, W.B.; Viant, M.R. Comparison of Modified Matyash Method to Conventional Solvent Systems for Polar Metabolite and Lipid Extractions. Anal. Chim. Acta 2018, 1037, 301–315. [Google Scholar] [CrossRef]
- Ulmer, C.Z.; Jones, C.M.; Yost, R.A.; Garrett, T.J.; Bowden, J.A. Optimization of Folch, Bligh-Dyer, and Matyash Sample-to-Extraction Solvent Ratios for Human Plasma-Based Lipidomics Studies. Anal. Chim. Acta 2018, 1037, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Satomi, Y.; Hirayama, M.; Kobayashi, H. One-Step Lipid Extraction for Plasma Lipidomics Analysis by Liquid Chromatography Mass Spectrometry. J. Chromatogr. B 2017, 1063, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Sarafian, M.H.; Gaudin, M.; Lewis, M.R.; Martin, F.-P.; Holmes, E.; Nicholson, J.K.; Dumas, M.-E. Objective Set of Criteria for Optimization of Sample Preparation Procedures for Ultra-High Throughput Untargeted Blood Plasma Lipid Profiling by Ultra Performance Liquid Chromatography–Mass Spectrometry. Anal. Chem. 2014, 86, 5766–5774. [Google Scholar] [CrossRef] [PubMed]
- Zein Elabdeen, H.R.; Mustafa, M.; Szklenar, M.; Rühl, R.; Ali, R.; Bolstad, A.I. Ratio of Pro-Resolving and Pro-Inflammatory Lipid Mediator Precursors as Potential Markers for Aggressive Periodontitis. PLoS ONE 2013, 8, e70838. [Google Scholar] [CrossRef] [Green Version]
- Jurowski, K.; Kochan, K.; Walczak, J.; Barańska, M.; Piekoszewski, W.; Buszewski, B. Comprehensive Review of Trends and Analytical Strategies Applied for Biological Samples Preparation and Storage in Modern Medical Lipidomics: State of the Art. TrAC Trends Anal. Chem. 2017, 86, 276–289. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L.; Steffen, D.; Ye, T.; Raftery, D. Metabolic Profiling of Gender: Headspace-SPME/GC–MS and 1H NMR Analysis of Urine. Metabolomics 2012, 8, 323–334. [Google Scholar] [CrossRef]
- Silva, C.L.; Passos, M.; Câmara, J.S. Solid Phase Microextraction, Mass Spectrometry and Metabolomic Approaches for Detection of Potential Urinary Cancer Biomarkers—A Powerful Strategy for Breast Cancer Diagnosis. Talanta 2012, 89, 360–368. [Google Scholar] [CrossRef]
- Pawliszyn, J. Theory of Solid-Phase Microextraction. J. Chromatogr. Sci. 2000, 38, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Wang, C.; Han, R.H.; Han, X. Novel Advances in Shotgun Lipidomics for Biology and Medicine. Prog. Lipid Res. 2016, 61, 83–108. [Google Scholar] [CrossRef] [Green Version]
- Reichardt, C.; Welton, T.; Appendix, A. Properties, Purification, and Use of Organic Solvents. In Solvents and Solvent Effects in Organic Chemistry; Wiley: Hoboken, NJ, USA, 2010; pp. 549–586. [Google Scholar] [CrossRef]
- Seyer, A.; Boudah, S.; Broudin, S.; Junot, C.; Colsch, B. Annotation of the Human Cerebrospinal Fluid Lipidome Using High Resolution Mass Spectrometry and a Dedicated Data Processing Workflow. Metabolomics 2016, 12, 91. [Google Scholar] [CrossRef] [Green Version]
- Burla, B.; Arita, M.; Arita, M.; Bendt, A.K.; Cazenave-Gassiot, A.; Dennis, E.A.; Ekroos, K.; Han, X.; Ikeda, K.; Liebisch, G.; et al. MS-Based Lipidomics of Human Blood Plasma—A Community-Initiated Position Paper to Develop Accepted Guidelines. J. Lipid Res. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Meulebroek, L.; De Paepe, E.; Vercruysse, V.; Pomian, B.; Bos, S.; Lapauw, B.; Vanhaecke, L. Holistic Lipidomics of the Human Gut Phenotype Using Validated Ultra-High-Performance Liquid Chromatography Coupled to Hybrid Orbitrap Mass Spectrometry. Anal. Chem. 2017, 89, 12502–12510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.W.K.; Braidy, N.; Pickford, R.; Sachdev, P.S.; Poljak, A. Comparison of Single Phase and Biphasic Extraction Protocols for Lipidomic Studies Using Human Plasma. Front. Neurol. 2019, 10, 879. [Google Scholar] [CrossRef]
- Gardner, M.S.; Kuklenyik, Z.; Lehtikoski, A.; Carter, K.A.; McWilliams, L.G.; Kusovschi, J.; Bierbaum, K.; Jones, J.I.; Rees, J.; Reis, G.; et al. Development and Application of a High Throughput One-Pot Extraction Protocol for Quantitative LC-MS/MS Analysis of Phospholipids in Serum and Lipoprotein Fractions in Normolipidemic and Dyslipidemic Subjects. J. Chromatogr. B 2019, 1118–1119, 137–147. [Google Scholar] [CrossRef]
- Shibusawa, Y.; Yamakawa, Y.; Noji, R.; Yanagida, A.; Shindo, H.; Ito, Y. Three-Phase Solvent Systems for Comprehensive Separation of a Wide Variety of Compounds by High-Speed Counter-Current Chromatography. J. Chromatogr. A 2006, 1133, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Leopold, J.; Popkova, Y.; Engel, K.M.; Schiller, J. Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Lipids. Biomolecules 2018, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Alshehry, H.Z.; Barlow, K.C.; Weir, M.J.; Zhou, Y.; McConville, J.M.; Meikle, J.P. An Efficient Single Phase Method for the Extraction of Plasma Lipids. Metabolites 2015, 5, 389. [Google Scholar] [CrossRef]
- Alshehry, Z.H.; Mundra, P.A.; Barlow, C.K.; Mellett, N.A.; Wong, G.; McConville, M.J.; Simes, J.; Tonkin, A.M.; Sullivan, D.R.; Barnes, E.H.; et al. Plasma Lipidomic Profiles Improve on Traditional Risk Factors for the Prediction of Cardiovascular Events in Type 2 Diabetes Mellitus. Circulation 2016, 134, 1637–1650. [Google Scholar] [CrossRef] [Green Version]
- Meikle, P.J.; Gerard, W.; Despina, T.; Barlow, C.K.; Weir, J.M.; Christopher, M.J.; MacIntosh, G.L.; Benjamin, G.; Linda, S.; Adam, K.; et al. Plasma Lipidomic Analysis of Stable and Unstable Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2723–2732. [Google Scholar] [CrossRef] [Green Version]
- Iriondo, A.; Tainta, M.; Saldias, J.; Arriba, M.; Ochoa, B.; Goñi, F.M.; Martinez-Lage, P.; Abad-García, B. Isopropanol Extraction for Cerebrospinal Fluid Lipidomic Profiling Analysis. Talanta 2019, 195, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Rombouts, C.; De Spiegeleer, M.; Van Meulebroek, L.; De Vos, W.H.; Vanhaecke, L. Validated Comprehensive Metabolomics and Lipidomics Analysis of Colon Tissue and Cell Lines. Anal. Chim. Acta 2019, 1066, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Birjandi, A.P.; Bojko, B.; Ning, Z.; Figeys, D.; Pawliszyn, J. High Throughput Solid Phase Microextraction: A New Alternative for Analysis of Cellular Lipidome? J. Chromatogr. B 2017, 1043, 12–19. [Google Scholar] [CrossRef]
- Astarita, G.; Ahmed, F.; Piomelli, D. Lipidomic Analysis of Biological Samples by Liquid Chromatography Coupled to Mass Spectrometry BT—Lipidomics: Volume 1: Methods and Protocols; Armstrong, D., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 201–219. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Guo, H.; Wu, T.; Tao, N.; Wang, X.; Zhong, J. Effect of Three Types of Thermal Processing Methods on the Lipidomics Profile of Tilapia Fillets by UPLC-Q-Extractive Orbitrap Mass Spectrometry. Food Chem. 2019, 298, 125029. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xiang, X.; Jin, Y.; Wang, N.; Ma, M. High-Throughput Lipidomic Profiling of High-Density Lipoprotein from Egg Yolk (EYHDL): Comparison Based on UPLC-MS/MS and GC–MS. Eur. Food Res. Technol. 2019, 245, 1665–1675. [Google Scholar] [CrossRef]
- Chen, J.; Nichols, K.K.; Wilson, L.; Barnes, S.; Nichols, J.J. Untargeted Lipidomic Analysis of Human Tears: A New Approach for Quantification of O-Acyl-Omega Hydroxy Fatty Acids. Ocul. Surf. 2019, 17, 347–355. [Google Scholar] [CrossRef]
- Martins-Noguerol, R.; Moreno-Pérez, J.A.; Acket, S.; Makni, S.; Garcés, R.; Troncoso-Ponce, A.; Salas, J.J.; Thomasset, B.; Martínez-Force, E. Lipidomic Analysis of Plastidial Octanoyltransferase Mutants of Arabidopsis Thaliana. Metabolites 2019, 9, 209. [Google Scholar] [CrossRef] [Green Version]
- Min, H.K.; Lim, S.; Chung, B.C.; Moon, M.H. Shotgun Lipidomics for Candidate Biomarkers of Urinary Phospholipids in Prostate Cancer. Anal. Bioanal. Chem. 2011, 399, 823–830. [Google Scholar] [CrossRef]
- Gregory, K.E.; Bird, S.S.; Gross, V.S.; Marur, V.R.; Lazarev, A.V.; Walker, W.A.; Kristal, B.S. Method Development for Fecal Lipidomics Profiling. Anal. Chem. 2013, 85, 1114–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löfgren, L.; Forsberg, G.-B.; Ståhlman, M. The BUME Method: A New Rapid and Simple Chloroform-Free Method for Total Lipid Extraction of Animal Tissue. Sci. Rep. 2016, 6, 27688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrizo, D.; Nerín, I.; Domeño, C.; Alfaro, P.; Nerín, C. Direct Screening of Tobacco Indicators in Urine and Saliva by Atmospheric Pressure Solid Analysis Probe Coupled to Quadrupole-Time of Flight Mass Spectrometry (ASAP-MS-Q-TOF-). J. Pharm. Biomed. Anal. 2016, 124, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Burgos, A.; Szymanski, J.; Seiwert, B.; Degenkolbe, T.; Hannah, M.A.; Giavalisco, P.; Willmitzer, L. Analysis of Short-Term Changes in the Arabidopsis Thaliana Glycerolipidome in Response to Temperature and Light. Plant J. 2011, 66, 656–668. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, Y.; Kamide, Y.; Hirai, M.Y.; Saito, K. Plant Lipidomics Based on Hydrophilic Interaction Chromatography Coupled to Ion Trap Time-of-Flight Mass Spectrometry. Metabolomics 2013, 9, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cala, M.P.; Aldana, J.; Medina, J.; Sánchez, J.; Guio, J.; Wist, J.; Meesters, R.J.W. Multiplatform Plasma Metabolic and Lipid Fingerprinting of Breast Cancer: A Pilot Control-Case Study in Colombian Hispanic Women. PLoS ONE 2018, 13, e0190958. [Google Scholar] [CrossRef] [Green Version]
- Cala, M.; Aldana, J.; Sánchez, J.; Guio, J.; Meesters, R.J.W. Urinary Metabolite and Lipid Alterations in Colombian Hispanic Women with Breast Cancer: A Pilot Study. J. Pharm. Biomed. Anal. 2018, 152, 234–241. [Google Scholar] [CrossRef]
- Navarro-Reig, M.; Tauler, R.; Iriondo-Frias, G.; Jaumot, J. Untargeted Lipidomic Evaluation of Hydric and Heat Stresses on Rice Growth. J. Chromatogr. B 2019, 1104, 148–156. [Google Scholar] [CrossRef]
- Villaseñor, A.; Garcia-Perez, I.; Garcia, A.; Posma, J.M.; Fernández-López, M.; Nicholas, A.J.; Modi, N.; Holmes, E.; Barbas, C. Breast Milk Metabolome Characterization in a Single-Phase Extraction, Multiplatform Analytical Approach. Anal. Chem. 2014, 86, 8245–8252. [Google Scholar] [CrossRef] [PubMed]
- Hummel, J.; Segu, S.; Li, Y.; Irgang, S.; Jueppner, J.; Giavalisco, P. Ultra Performance Liquid Chromatography and High Resolution Mass Spectrometry for the Analysis of Plant Lipids. Front. Plant Sci. 2011, 2, 54. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.S.; Raju, R.; Ray, S.; Kshirsagar, R.; Gilbert, A.; Zang, L.; Karger, B.L. Lipidomics of CHO Cell Bioprocessing: Relation to Cell Growth and Specific Productivity of a Monoclonal Antibody. Biotechnol. J. 2018, 13, 1700745. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Sun, J.; Fan, S.; Yao, X.; Ran, X.; Zheng, C.; Huang, M.; Bi, H. Optimization of Lipid Extraction and Analytical Protocols for UHPLC-ESI-HRMS-Based Lipidomic Analysis of Adherent Mammalian Cancer Cells. Anal. Bioanal. Chem. 2017, 409, 5349–5358. [Google Scholar] [CrossRef]
- Calderón, C.; Sanwald, C.; Schlotterbeck, J.; Drotleff, B.; Lämmerhofer, M. Comparison of Simple Monophasic versus Classical Biphasic Extraction Protocols for Comprehensive UHPLC-MS/MS Lipidomic Analysis of Hela Cells. Anal. Chim. Acta 2019, 1048, 66–74. [Google Scholar] [CrossRef]
- Nilsson, A.K.; Sjöbom, U.; Christenson, K.; Hellström, A. Lipid Profiling of Suction Blister Fluid: Comparison of Lipids in Interstitial Fluid and Plasma. Lipids Health Dis. 2019, 18, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwood, D.J.; Dos Santos, M.S.; Huang, S.; Russell, M.R.G.; Collinson, L.M.; MacRae, J.I.; West, A.; Jiang, H.; Gutierrez, M.G. Subcellular Antibiotic Visualization Reveals a Dynamic Drug Reservoir in Infected Macrophages. Science 2019, 364, 1279–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, S.; Barnes, J.M.; Young, S.A.; Garcia, D.M.; Tolley, H.D.; Kauwe, J.S.K.; Graves, S.W. Discovery and Confirmation of Diagnostic Serum Lipid Biomarkers for Alzheimer’s Disease Using Direct Infusion Mass Spectrometry. J. Alzheimer’s Dis. 2017, 59, 277–290. [Google Scholar]
- Gulati, S.; Ekland, E.H.; Ruggles, K.V.; Chan, R.B.; Jayabalasingham, B.; Zhou, B.; Mantel, P.-Y.; Lee, M.C.S.; Spottiswoode, N.; Coburn-Flynn, O.; et al. Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium Falciparum. Cell Host Microbe 2015, 18, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Uchikata, T.; Matsubara, A.; Fukusaki, E.; Bamba, T. High-Throughput Phospholipid Profiling System Based on Supercritical Fluid Extraction–Supercritical Fluid Chromatography/Mass Spectrometry for Dried Plasma Spot Analysis. J. Chromatogr. A 2012, 1250, 69–75. [Google Scholar] [CrossRef]
- Lísa, M.; Holčapek, M. UHPSFC/ESI-MS Analysis of Lipids BT—Clinical Metabolomics: Methods and Protocols; Giera, M., Ed.; Springer: New York, NY, USA, 2018; pp. 73–82. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, Q.; Zhang, H.; Mo, C.; Yao, J.; Huang, T.; Zhou, T.; Tan, W. Lipidomics Study of the Protective Effects of Isosteviol Sodium on Stroke Rats Using Ultra High-Performance Supercritical Fluid Chromatography Coupling with Ion-Trap and Time-of-Flight Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2018, 157, 145–155. [Google Scholar] [CrossRef]
- Bojko, B.; Wąsowicz, M.; Pawliszyn, J. Metabolic Profiling of Plasma from Cardiac Surgical Patients Concurrently Administered with Tranexamic Acid: DI-SPME–LC–MS Analysis. J. Pharm. Anal. 2014, 4, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Bessonneau, V.; Bojko, B.; Pawliszyn, J. Analysis of Human Saliva Metabolome by Direct Immersion Solid-Phase Microextraction LC and Benchtop Orbitrap MS. Bioanalysis 2013, 5, 783–792. [Google Scholar] [CrossRef]
- Garwolińska, D.; Hewelt-Belka, W.; Namieśnik, J.; Kot-Wasik, A. Rapid Characterization of the Human Breast Milk Lipidome Using a Solid-Phase Microextraction and Liquid Chromatography–Mass Spectrometry-Based Approach. J. Proteome Res. 2017, 16, 3200–3208. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, L.; Shi, X.; Xu, G. New Advances in Analytical Methods for Mass Spectrometry-Based Large-Scale Metabolomics Study. TrAC Trends Anal. Chem. 2019, 121, 115665. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Y.; Yang, J.; Ye, F.; Zhou, T.; Gongke, L. Advances of Supercritical Fluid Chromatography in Lipid Profiling. J. Pharm. Anal. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Furse, S.; Egmond, M.R.; Killian, J.A. Isolation of Lipids from Biological Samples. Mol. Membr. Biol. 2015, 32, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Brietzke, E. Recent Advances in Lipidomics: Analytical and Clinical Perspectives. Prostaglandins Other Lipid Mediat. 2017, 128–129, 8–16. [Google Scholar] [CrossRef] [PubMed]
- König, S.; Ischebeck, T.; Lerche, J.; Stenzel, I.; Heilmann, I. Salt-Stress-Induced Association of Phosphatidylinositol 4,5-Bisphosphate with Clathrin-Coated Vesicles in Plants. Biochem. J. 2008, 415, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Lubary, M.; Hofland, G.W.; ter Horst, J.H. A Process for the Production of a Diacylglycerol-Based Milk Fat Analogue. Eur. J. Lipid Sci. Technol. 2011, 113, 459–468. [Google Scholar] [CrossRef]
- Schlotterbeck, J.; Cebo, M.; Kolb, A.; Lämmerhofer, M. Quantitative Analysis of Chemoresistance-Inducing Fatty Acid in Food Supplements Using UHPLC–ESI-MS/MS. Anal. Bioanal. Chem. 2019, 411, 479–491. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.; Zhu, M.-J. A Sensitive GC/MS Detection Method for Analyzing Microbial Metabolites Short Chain Fatty Acids in Fecal and Serum Samples. Talanta 2019, 196, 249–254. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Da Ros, A.; Masuero, D.; Izquierdo-Cañas, P.M.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; Mattivi, F.; Vrhovsek, U. LC-MS/MS Analysis of Free Fatty Acid Composition and Other Lipids in Skins and Seeds of Vitis Vinifera Grape Cultivars. Food Res. Int. 2019, 125, 108556. [Google Scholar] [CrossRef]
- Mehari, B.; Redi-Abshiro, M.; Chandravanshi, B.S.; Combrinck, S.; McCrindle, R.; Atlabachew, M. GC-MS Profiling of Fatty Acids in Green Coffee (Coffea arabica L.) Beans and Chemometric Modeling for Tracing Geographical Origins from Ethiopia. J. Sci. Food Agric. 2019, 99, 3811–3823. [Google Scholar] [CrossRef]
- Zarai, Z.; Eddehech, A.; Rigano, F.; Oteri, M.; Micalizzi, G.; Dugo, P.; Mondello, L.; Cacciola, F. Characterization of Monoacylglycerols and Diacylglycerols Rich in Polyunsaturated Fatty Acids Produced by Hydrolysis of Musteleus Mustelus Liver Oil Catalyzed by an Immobilized Bacterial Lipase. J. Chromatogr. A 2020, 1613, 460692. [Google Scholar] [CrossRef]
- Gašparović, B.; Penezić, A.; Lampitt, R.S.; Sudasinghe, N.; Schaub, T. Free Fatty Acids, Tri-, Di- and Monoacylglycerol Production and Depth-Related Cycling in the Northeast Atlantic. Mar. Chem. 2016, 186, 101–109. [Google Scholar] [CrossRef]
- Jensen, J.R.; Pitcher, M.H.; Yuan, Z.X.; Ramsden, C.E.; Domenichiello, A.F. Concentrations of Oxidized Linoleic Acid Derived Lipid Mediators in the Amygdala and Periaqueductal Grey Are Reduced in a Mouse Model of Chronic Inflammatory Pain. Prostaglandins, Leukot. Essent. Fat. Acids 2018, 135, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Rund, K.M.; Ostermann, A.I.; Kutzner, L.; Galano, J.-M.; Oger, C.; Vigor, C.; Wecklein, S.; Seiwert, N.; Durand, T.; Schebb, N.H. Development of an LC-ESI(-)-MS/MS Method for the Simultaneous Quantification of 35 Isoprostanes and Isofurans Derived from the Major N3- and N6-PUFAs. Anal. Chim. Acta 2018, 1037, 63–74. [Google Scholar] [CrossRef]
- Sanak, M.; Gielicz, A.; Nagraba, K.; Kaszuba, M.; Kumik, J.; Szczeklik, A. Targeted Eicosanoids Lipidomics of Exhaled Breath Condensate in Healthy Subjects. J. Chromatogr. B 2010, 878, 1796–1800. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.M.; Poloyac, S.M.; Anderson, K.B.; Waddell, B.L.; Messamore, E.; Yao, J.K. A Rapid UPLC-MS/MS Assay for Eicosanoids in Human Plasma: Application to Evaluate Niacin Responsivity. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Cummings, M.; Massey, K.A.; Mappa, G.; Wilkinson, N.; Hutson, R.; Munot, S.; Saidi, S.; Nugent, D.; Broadhead, T.; Wright, A.I.; et al. Integrated Eicosanoid Lipidomics and Gene Expression Reveal Decreased Prostaglandin Catabolism and Increased 5-Lipoxygenase Expression in Aggressive Subtypes of Endometrial Cancer. J. Pathol. 2019, 247, 21–34. [Google Scholar] [CrossRef]
- Gobo, L.A.; de Carvalho, L.M.; Temp, F.; Viana, C.; Mello, C.F. A Rapid Method for Identification and Quantification of Prostaglandins in Cerebral Tissues by UHPLC-ESI-MS/MS for the Lipidomic in Vivo Studies. Anal. Biochem. 2018, 545, 98–103. [Google Scholar] [CrossRef]
- Dumlao, D.S.; Buczynski, M.W.; Norris, P.C.; Harkewicz, R.; Dennis, E.A. High-Throughput Lipidomic Analysis of Fatty Acid Derived Eicosanoids and N-Acylethanolamines. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2011, 1811, 724–736. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.M.; Donnelly, M.K.; Crago, E.A.; Roman, D.M.; Sherwood, P.R.; Horowitz, M.B.; Poloyac, S.M. Rapid, Simultaneous Quantitation of Mono and Dioxygenated Metabolites of Arachidonic Acid in Human CSF and Rat Brain. J. Chromatogr. B 2009, 877, 3991–4000. [Google Scholar] [CrossRef] [Green Version]
- Teav, T.; Gallart-Ayala, H.; van der Velpen, V.; Mehl, F.; Henry, H.; Ivanisevic, J. Merged Targeted Quantification and Untargeted Profiling for Comprehensive Assessment of Acylcarnitine and Amino Acid Metabolism. Anal. Chem. 2019, 91, 11757–11769. [Google Scholar] [CrossRef]
- Wang, M.; Yang, R.; Mu, H.; Zeng, J.; Zhang, T.; Zhou, W.; Wang, S.; Tang, Y.; Li, H.; Zhang, C.; et al. A Simple and Precise Method for Measurement of Serum Free Carnitine and Acylcarnitines by Isotope Dilution HILIC-ESI-MS/MS. Int. J. Mass Spectrom. 2019, 446, 116208. [Google Scholar] [CrossRef]
- Yang, Y.; Sadri, H.; Prehn, C.; Adamski, J.; Rehage, J.; Dänicke, S.; Saremi, B.; Sauerwein, H. Acylcarnitine Profiles in Serum and Muscle of Dairy Cows Receiving Conjugated Linoleic Acids or a Control Fat Supplement during Early Lactation. J. Dairy Sci. 2019, 102, 754–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.T.; MahmoudianDehkordi, S.; Bhattacharyya, S.; Arnold, M.; Liu, D.; Neavin, D.; Moseley, M.A.; Thompson, J.W.; Williams, L.S.J.; Louie, G.; et al. Acylcarnitine Metabolomic Profiles Inform Clinically-Defined Major Depressive Phenotypes. J. Affect. Disord. 2020, 264, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, Q. Simultaneous Quantification of Free Fatty Acids and Acylcarnitines in Plasma Samples Using Dansylhydrazine Labeling and Liquid Chromatography–Triple Quadrupole Mass Spectrometry. Anal. Bioanal. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kolar, M.J.; Nelson, A.T.; Chang, T.; Ertunc, M.E.; Christy, M.P.; Ohlsson, L.; Härröd, M.; Kahn, B.B.; Siegel, D.; Saghatelian, A. Faster Protocol for Endogenous Fatty Acid Esters of Hydroxy Fatty Acid (FAHFA) Measurements. Anal. Chem. 2018, 90, 5358–5365. [Google Scholar] [CrossRef]
- Zhu, Q.-F.; Yan, J.-W.; Zhang, T.-Y.; Xiao, H.-M.; Feng, Y.-Q. Comprehensive Screening and Identification of Fatty Acid Esters of Hydroxy Fatty Acids in Plant Tissues by Chemical Isotope Labeling-Assisted Liquid Chromatography–Mass Spectrometry. Anal. Chem. 2018, 90, 10056–10063. [Google Scholar] [CrossRef]
- Zhu, Q.-F.; Yan, J.-W.; Ni, J.; Feng, Y.-Q. FAHFA Footprint in the Visceral Fat of Mice across Their Lifespan. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158639. [Google Scholar] [CrossRef]
- Hu, C.; Wang, M.; Duan, Q.; Han, X. Sensitive Analysis of Fatty Acid Esters of Hydroxy Fatty Acids in Biological Lipid Extracts by Shotgun Lipidomics after One-Step Derivatization. Anal. Chim. Acta 2020, 1105, 105–111. [Google Scholar] [CrossRef]
- Tan, B.; William Yu, Y.; Francesca Monn, M.; Velocity Hughes, H.; O’Dell, D.K.; Michael Walker, J. Targeted Lipidomics Approach for Endogenous N-Acyl Amino Acids in Rat Brain Tissue. J. Chromatogr. B 2009, 877, 2890–2894. [Google Scholar] [CrossRef]
- Zhu, M.; Xu, X.; Hou, Y.; Han, J.; Wang, J.; Zheng, Q.; Hao, H. Boronic Derivatization of Monoacylglycerol and Monitoring in Biofluids. Anal. Chem. 2019, 91, 6724–6729. [Google Scholar] [CrossRef]
- Gao, F.; McDaniel, J.; Chen, Y.E.; Rockwell, H.; Lynes, D.M.; Tseng, Y.-H.; Sarangarajan, R.; Narain, R.N.; Kiebish, A.M. Monoacylglycerol Analysis Using MS/MSALL Quadruple Time of Flight Mass Spectrometry. Metabolites 2016, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Ertl, V.M.; Höring, M.; Schött, H.-F.; Blücher, C.; Kjølbæk, L.; Astrup, A.; Burkhardt, R.; Liebisch, G. Quantification of Diacylglycerol and Triacylglycerol Species in Human Fecal Samples by Flow Injection Fourier Transform Mass Spectrometry. Anal. Bioanal. Chem. 2020. [Google Scholar] [CrossRef] [Green Version]
- Rashid, R.; Cazenave-Gassiot, A.; Gao, I.H.; Nair, Z.J.; Kumar, J.K.; Gao, L.; Kline, K.A.; Wenk, M.R. Comprehensive Analysis of Phospholipids and Glycolipids in the Opportunistic Pathogen Enterococcus Faecalis. PLoS ONE 2017, 12, e0175886. [Google Scholar] [CrossRef] [Green Version]
- Harrison, K.A.; Bergman, B.C. HPLC-MS/MS Methods for Diacylglycerol and Sphingolipid Molecular Species in Skeletal Muscle BT—High-Throughput Metabolomics: Methods and Protocols; D’Alessandro, A., Ed.; Springer: New York, NY, USA, 2019; pp. 137–152. [Google Scholar] [CrossRef]
- Bird, S.S.; Marur, V.R.; Sniatynski, M.J.; Greenberg, H.K.; Kristal, B.S. Serum Lipidomics Profiling Using LC–MS and High-Energy Collisional Dissociation Fragmentation: Focus on Triglyceride Detection and Characterization. Anal. Chem. 2011, 83, 6648–6657. [Google Scholar] [CrossRef] [Green Version]
- Zeb, A. Triacylglycerols Composition, Oxidation and Oxidation Compounds in Camellia Oil Using Liquid Chromatography–Mass Spectrometry. Chem. Phys. Lipids 2012, 165, 608–614. [Google Scholar] [CrossRef]
- Zheng, G.; Li, W. Profiling Membrane Glycerolipids during γ-Ray-Induced Membrane Injury. BMC Plant Biol. 2017, 17, 203. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Su, X.; Luo, Q.; Xu, J.; Chen, J.; Yan, X.; Chen, H. Profiles of Glycerolipids in Pyropia Haitanensis and Their Changes Responding to Agaro-Oligosaccharides. J. Appl. Phycol. 2014, 26, 2397–2404. [Google Scholar] [CrossRef]
- Knific, T.; Vouk, K.; Smrkolj, Š.; Prehn, C.; Adamski, J.; Rižner, T.L. Models Including Plasma Levels of Sphingomyelins and Phosphatidylcholines as Diagnostic and Prognostic Biomarkers of Endometrial Cancer. J. Steroid Biochem. Mol. Biol. 2018, 178, 312–321. [Google Scholar] [CrossRef]
- Yan, Y.; Du, Z.; Chen, C.; Li, J.; Xiong, X.; Zhang, Y.; Jiang, H. Lysophospholipid Profiles of Apolipoprotein E-Deficient Mice Reveal Potential Lipid Biomarkers Associated with Atherosclerosis Progression Using Validated UPLC-QTRAP-MS/MS-Based Lipidomics Approach. J. Pharm. Biomed. Anal. 2019, 171, 148–157. [Google Scholar] [CrossRef]
- Uhl, O.; Glaser, C.; Demmelmair, H.; Koletzko, B. Reversed Phase LC/MS/MS Method for Targeted Quantification of Glycerophospholipid Molecular Species in Plasma. J. Chromatogr. B 2011, 879, 3556–3564. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Song, X.; Jia, Q.; Zhang, X.; Qian, Y.; Qiu, J. Analysis of Glycerophospholipid Metabolism after Exposure to PCB153 in PC12 Cells through Targeted Lipidomics by UHPLC-MS/MS. Ecotoxicol. Environ. Saf. 2019, 169, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Deeley, J.M.; Thomas, M.C.; Truscott, R.J.W.; Mitchell, T.W.; Blanksby, S.J. Identification of Abundant Alkyl Ether Glycerophospholipids in the Human Lens by Tandem Mass Spectrometry Techniques. Anal. Chem. 2009, 81, 1920–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- She, Y.; Song, J.; Yang, E.; Zhao, L.; Zhong, Y.; Rui, W.; Feng, Y.; Wu, X. Rapid Identification of Glycerophospholipids from RAW264.7 Cells by UPLC/ESI -QTOF-MS. Biomed. Chromatogr. 2014, 28, 1744–1755. [Google Scholar] [CrossRef]
- She, Y.; Zheng, Q.; Xiao, X.; Wu, X.; Feng, Y. An Analysis on the Suppression of NO and PGE2 by Diphenylheptane A and Its Effect on Glycerophospholipids of Lipopolysaccharide-Induced RAW264.7 Cells with UPLC/ESI-QTOF-MS. Anal. Bioanal. Chem. 2016, 408, 3185–3201. [Google Scholar] [CrossRef]
- Sun, T.; Pawlowski, S.; Johnson, M.E. Highly Efficient Microscale Purification of Glycerophospholipids by Microfluidic Cell Lysis and Lipid Extraction for Lipidomics Profiling. Anal. Chem. 2011, 83, 6628–6634. [Google Scholar] [CrossRef] [Green Version]
- Maciel, E.; Neves, B.M.; Santinha, D.; Reis, A.; Domingues, P.; Teresa Cruz, M.; Pitt, A.R.; Spickett, C.M.; Domingues, M.R.M. Detection of Phosphatidylserine with a Modified Polar Head Group in Human Keratinocytes Exposed to the Radical Generator AAPH. Arch. Biochem. Biophys. 2014, 548, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Stübiger, G.; Aldover-Macasaet, E.; Bicker, W.; Sobal, G.; Willfort-Ehringer, A.; Pock, K.; Bochkov, V.; Widhalm, K.; Belgacem, O. Targeted Profiling of Atherogenic Phospholipids in Human Plasma and Lipoproteins of Hyperlipidemic Patients Using MALDI-QIT-TOF-MS/MS. Atherosclerosis 2012, 224, 177–186. [Google Scholar] [CrossRef]
- Basit, A.; Piomelli, D.; Armirotti, A. Rapid Evaluation of 25 Key Sphingolipids and Phosphosphingolipids in Human Plasma by LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 5189–5198. [Google Scholar] [CrossRef] [Green Version]
- Mi, S.; Zhao, Y.-Y.; Dielschneider, R.F.; Gibson, S.B.; Curtis, J.M. An LC/MS/MS Method for the Simultaneous Determination of Individual Sphingolipid Species in B Cells. J. Chromatogr. B 2016, 1031, 50–60. [Google Scholar] [CrossRef]
- Chipeaux, C.; de Person, M.; Burguet, N.; Billette de Villemeur, T.; Rose, C.; Belmatoug, N.; Héron, S.; Le Van Kim, C.; Franco, M.; Moussa, F. Optimization of Ultra-High Pressure Liquid Chromatography–Tandem Mass Spectrometry Determination in Plasma and Red Blood Cells of Four Sphingolipids and Their Evaluation as Biomarker Candidates of Gaucher’s Disease. J. Chromatogr. A 2017, 1525, 116–125. [Google Scholar] [CrossRef]
- Li, J.; Hu, C.; Zhao, X.; Dai, W.; Chen, S.; Lu, X.; Xu, G. Large-Scaled Human Serum Sphingolipid Profiling by Using Reversed-Phase Liquid Chromatography Coupled with Dynamic Multiple Reaction Monitoring of Mass Spectrometry: Method Development and Application in Hepatocellular Carcinoma. J. Chromatogr. A 2013, 1320, 103–110. [Google Scholar] [CrossRef]
- Sullards, M.C.; Liu, Y.; Chen, Y.; Merrill, A.H. Analysis of Mammalian Sphingolipids by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) and Tissue Imaging Mass Spectrometry (TIMS). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2011, 1811, 838–853. [Google Scholar] [CrossRef] [Green Version]
- Bui, H.H.; Leohr, J.K.; Kuo, M.-S. Analysis of Sphingolipids in Extracted Human Plasma Using Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry. Anal. Biochem. 2012, 423, 187–194. [Google Scholar] [CrossRef]
- Scherer, M.; Böttcher, A.; Schmitz, G.; Liebisch, G. Sphingolipid Profiling of Human Plasma and FPLC-Separated Lipoprotein Fractions by Hydrophilic Interaction Chromatography Tandem Mass Spectrometry. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2011, 1811, 68–75. [Google Scholar] [CrossRef]
- T’Kindt, R.; Jorge, L.; Dumont, E.; Couturon, P.; David, F.; Sandra, P.; Sandra, K. Profiling and Characterizing Skin Ceramides Using Reversed-Phase Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. Anal. Chem. 2012, 84, 403–411. [Google Scholar] [CrossRef]
- Liao, H.W.; Lin, S.W.; Lin, Y.T.; Lee, C.H.; Kuo, C.H. Identification of Potential Sphingomyelin Markers for the Estimation of Hematocrit in Dried Blood Spots via a Lipidomic Strategy. Anal. Chim. Acta 2018, 1003, 34–41. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, D.; Xin, B.; Cechner, K.; Zhou, X.; Wang, H.; Zhou, A. Quantification of Monosialogangliosides in Human Plasma through Chemical Derivatization for Signal Enhancement in LC–ESI-MS. Anal. Chim. Acta 2016, 929, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hájek, R.; Jirásko, R.; Lísa, M.; Cífková, E.; Holčapek, M. Hydrophilic Interaction Liquid Chromatography–Mass Spectrometry Characterization of Gangliosides in Biological Samples. Anal. Chem. 2017, 89, 12425–12432. [Google Scholar] [CrossRef] [PubMed]
- Broughton, R.; Ruíz-Lopez, N.; Hassall, K.L.; Martínez-Force, E.; Garcés, R.; Salas, J.J.; Beaudoin, F. New Insights in the Composition of Wax and Sterol Esters in Common and Mutant Sunflower Oils Revealed by ESI-MS/MS. Food Chem. 2018, 269, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Reinicke, M.; Schröter, J.; Müller-Klieser, D.; Helmschrodt, C.; Ceglarek, U. Free Oxysterols and Bile Acids Including Conjugates—Simultaneous Quantification in Human Plasma and Cerebrospinal Fluid by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta 2018, 1037, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Piqueras, M.; Theotoka, D.; Sarohia, G.S.; Bhattacharya, S.K. Analyses of Cholesterol and Derivatives in Ocular Tissues Using LC-MS/MS Methods BT—Metabolomics: Methods and Protocols; Bhattacharya, S.K., Ed.; Springer: New York, NY, USA, 2019; pp. 53–59. [Google Scholar] [CrossRef]
- Kunz, S.; Matysik, S. A Comprehensive Method to Determine Sterol Species in Human Faeces by GC-Triple Quadrupole MS. J. Steroid Biochem. Mol. Biol. 2019, 190, 99–103. [Google Scholar] [CrossRef]
- Schött, H.-F.; Krautbauer, S.; Höring, M.; Liebisch, G.; Matysik, S. A Validated, Fast Method for Quantification of Sterols and Gut Microbiome Derived 5α/β-Stanols in Human Feces by Isotope Dilution LC–High-Resolution MS. Anal. Chem. 2018, 90, 8487–8494. [Google Scholar] [CrossRef]
- Ceglarek, U.; Dittrich, J.; Leopold, J.; Helmschrodt, C.; Becker, S.; Staab, H.; Richter, O.; Rohm, S.; Aust, G. Free Cholesterol, Cholesterol Precursor and Plant Sterol Levels in Atherosclerotic Plaques Are Independently Associated with Symptomatic Advanced Carotid Artery Stenosis. Atherosclerosis 2020, 295, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Takeshima, M.; Ogihara, H.M.; Kataoka, H. Sterol Characteristics in Silkworm Brain and Various Tissues Characterized by Precise Sterol Profiling Using LC-MS/MS. Int. J. Mol. Sci. 2019, 20, 4840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matysik, S.; Liebisch, G. Quantification of Steroid Hormones in Human Serum by Liquid Chromatography-High Resolution Tandem Mass Spectrometry. J. Chromatogr. A 2017, 1526, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-Y.; Lee, H.S.; Kim, J.H.; Lee, J.H.; Choi, M.H. Supported Liquid Extraction Coupled to Gas Chromatography-Selective Mass Spectrometric Scan Modes for Serum Steroid Profiling. Anal. Chim. Acta 2018, 1037, 281–292. [Google Scholar] [CrossRef]
- Drotleff, B.; Hallschmid, M.; Lämmerhofer, M. Quantification of Steroid Hormones in Plasma Using a Surrogate Calibrant Approach and UHPLC-ESI-QTOF-MS/MS with SWATH-Acquisition Combined with Untargeted Profiling. Anal. Chim. Acta 2018, 1022, 70–80. [Google Scholar] [CrossRef]
- Hu, T.; An, Z.; Shi, C.; Li, P.; Liu, L. A Sensitive and Efficient Method for Simultaneous Profiling of Bile Acids and Fatty Acids by UPLC-MS/MS. J. Pharm. Biomed. Anal. 2020, 178, 112815. [Google Scholar] [CrossRef] [PubMed]
- LeníĿek, M.; Vecka, M.; Žížalová, K.; Vítek, L. Comparison of Simple Extraction Procedures in Liquid Chromatographymass Spectrometry Based Determination of Serum 7α-Hydroxy-4-Cholesten-3-One, a Surrogate Marker of Bile Acid Synthesis. J. Chromatogr. B 2016, 1033–1034, 317–320. [Google Scholar] [CrossRef]
- Ulaszewska, M.M.; Mancini, A.; Garcia-Aloy, M.; Del Bubba, M.; Tuohy, K.M.; Vrhovsek, U. Isotopic Dilution Method for Bile Acid Profiling Reveals New Sulfate Glycine-Conjugated Dihydroxy Bile Acids and Glucuronide Bile Acids in Serum. J. Pharm. Biomed. Anal. 2019, 173, 1–17. [Google Scholar] [CrossRef]
- Franco, P.; Porru, E.; Fiori, J.; Gioiello, A.; Cerra, B.; Roda, G.; Caliceti, C.; Simoni, P.; Roda, A. Identification and Quantification of Oxo-Bile Acids in Human Faeces with Liquid Chromatography–Mass Spectrometry: A Potent Tool for Human Gut Acidic Sterolbiome Studies. J. Chromatogr. A 2019, 1585, 70–81. [Google Scholar] [CrossRef]
- Higashi, T.; Watanabe, S.; Tomaru, K.; Yamazaki, W.; Yoshizawa, K.; Ogawa, S.; Nagao, H.; Minato, K.; Maekawa, M.; Mano, N. Unconjugated Bile Acids in Rat Brain: Analytical Method Based on LC/ESI-MS/MS with Chemical Derivatization and Estimation of Their Origin by Comparison to Serum Levels. Steroids 2017, 125, 107–113. [Google Scholar] [CrossRef]
- Stinco, C.M.; Benítez-González, A.M.; Meléndez-Martínez, A.J.; Hernanz, D.; Vicario, I.M. Simultaneous Determination of Dietary Isoprenoids (Carotenoids, Chlorophylls and Tocopherols) in Human Faeces by Rapid Resolution Liquid Chromatography. J. Chromatogr. A 2019, 1583, 63–72. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, T.; Xiang, T.; Dong, Y.; Zhang, J.; Zhang, L. Quantitation of Isoprenoids for Natural Rubber Biosynthesis in Natural Rubber Latex by Liquid Chromatography with Tandem Mass Spectrometry. J. Chromatogr. A 2018, 1558, 115–119. [Google Scholar] [CrossRef]
- Baidoo, E.E.K.; Wang, G.; Joshua, C.J.; Benites, V.T.; Keasling, J.D. Liquid Chromatography and Mass Spectrometry Analysis of Isoprenoid Intermediates in Escherichia Coli BT—Microbial Metabolomics: Methods and Protocols; Baidoo, E.E.K., Ed.; Springer: New York, NY, USA, 2019; pp. 209–224. [Google Scholar] [CrossRef]
- Chhonker, Y.S.; Haney, S.L.; Bala, V.; Holstein, S.A.; Murry, D.J. Simultaneous Quantitation of Isoprenoid Pyrophosphates in Plasma and Cancer Cells Using LC-MS/MS. Molecules 2018, 23, 3275. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.; Ikeda, A.; Vu, K.K.-T.; Yamaguchi, K.T.; Tyner, T.R.; Hasson, A.S. Method Development for the Measurement of Quinone Levels in Urine. J. Chromatogr. B 2011, 879, 3592–3598. [Google Scholar] [CrossRef]
- Kaiser, P.; Geyer, R.; Surmann, P.; Fuhrmann, H. LC–MS Method for Screening Unknown Microbial Carotenoids and Isoprenoid Quinones. J. Microbiol. Methods 2012, 88, 28–34. [Google Scholar] [CrossRef]
- Lukasiewicz, J.; Jachymek, W.; Niedziela, T.; Kenne, L.; Lugowski, C. Structural Analysis of the Lipid A Isolated from Hafnia Alvei 32 and PCM 1192 Lipopolysaccharides. J. Lipid Res. 2010, 51, 564–574. [Google Scholar] [CrossRef] [Green Version]
- Sándor, V.; Dörnyei, Á.; Makszin, L.; Kilár, F.; Péterfi, Z.; Kocsis, B.; Kilár, A. Characterization of Complex, Heterogeneous Lipid A Samples Using HPLC–MS/MS Technique I. Overall Analysis with Respect to Acylation, Phosphorylation and Isobaric Distribution. J. Mass Spectrom. 2016, 51, 1043–1063. [Google Scholar] [CrossRef]
- Sawyer, W.S.; Wang, L.; Uehara, T.; Tamrakar, P.; Prathapam, R.; Mostafavi, M.; Metzger IV, L.E.; Feng, B.; Baxter Rath, C.M. Targeted Lipopolysaccharide Biosynthetic Intermediate Analysis with Normal-Phase Liquid Chromatography Mass Spectrometry. PLoS ONE 2019, 14, e0211803. [Google Scholar] [CrossRef]
- Paulus, C.; Rebets, Y.; Zapp, J.; Rückert, C.; Kalinowski, J.; Luzhetskyy, A. New Alpiniamides From Streptomyces Sp. IB2014/011-12 Assembled by an Unusual Hybrid Non-Ribosomal Peptide Synthetase Trans-AT Polyketide Synthase Enzyme. Front. Microbiol. 2018, 9, 1959. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Xu, S.; Jiang, F.; Liu, W. Genomic-Driven Discovery of an Amidinohydrolase Involved in the Biosynthesis of Mediomycin A. Appl. Microbiol. Biotechnol. 2018, 102, 2225–2234. [Google Scholar] [CrossRef] [PubMed]
- Bhan, N.; Cress, B.F.; Linhardt, R.J.; Koffas, M. Expanding the Chemical Space of Polyketides through Structure-Guided Mutagenesis of Vitis Vinifera Stilbene Synthase. Biochimie 2015, 115, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Lucini, L.; Giuberti, G.; Bhumireddy, S.R.; Mandal, R.; Trevisan, M.; Wishart, D.S. Transformation of Polyphenols Found in Pigmented Gluten-Free Flours during in Vitro Large Intestinal Fermentation. Food Chem. 2019, 298, 125068. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Li, H.-L.; Mai, S.-Y.; Tan, Y.-F.; Chen, F. Tissue Distribution of Active Principles from Alpiniae Oxyphyllae Fructus Extract: An Experimental Study in Rats. Curr. Pharm. Anal. 2019, 286–293. [Google Scholar] [CrossRef]
- Chen, F.; Li, H.-L.; Tan, Y.-F.; Li, Y.-H.; Lai, W.-Y.; Guan, W.-W.; Zhang, J.-Q.; Zhao, Y.-S.; Qin, Z.-M. Identification of Known Chemicals and Their Metabolites from Alpinia Oxyphylla Fruit Extract in Rat Plasma Using Liquid Chromatography/Tandem Mass Spectrometry (LC–MS/MS) with Selected Reaction Monitoring. J. Pharm. Biomed. Anal. 2014, 97, 166–177. [Google Scholar] [CrossRef]
- Manning, S.R.; La Claire II, J.W. Isolation of Polyketides from Prymnesium Parvum (Haptophyta) and Their Detection by Liquid Chromatography/Mass Spectrometry Metabolic Fingerprint Analysis. Anal. Biochem. 2013, 442, 189–195. [Google Scholar] [CrossRef]
- Rodríguez-López, C.E.; Hernández-Brenes, C.; Treviño, V.; Díaz de la Garza, R.I. Avocado Fruit Maturation and Ripening: Dynamics of Aliphatic Acetogenins and Lipidomic Profiles from Mesocarp, Idioblasts and Seed. BMC Plant Biol. 2017, 17, 159. [Google Scholar] [CrossRef] [Green Version]
- Lísa, M.; Holčapek, M. High-Throughput and Comprehensive Lipidomic Analysis Using Ultrahigh-Performance Supercritical Fluid Chromatography–Mass Spectrometry. Anal. Chem. 2015, 87, 7187–7195. [Google Scholar] [CrossRef]
- Wood, P.L.; Scoggin, K.; Ball, B.A.; Troedsson, M.H.; Squires, E.L. Lipidomics of Equine Sperm and Seminal Plasma: Identification of Amphiphilic (O-Acyl)-ω-Hydroxy-Fatty Acids. Theriogenology 2016, 86, 1212–1221. [Google Scholar] [CrossRef]
- Montefusco, D.J.; Allegood, J.C.; Spiegel, S.; Cowart, L.A. Non-Alcoholic Fatty Liver Disease: Insights from Sphingolipidomics. Biochem. Biophys. Res. Commun. 2018, 504, 608–616. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, M.; Fairn, G.D. Phospholipid Subcellular Localization and Dynamics. J. Biol. Chem. 2018, 293, 6230–6240. [Google Scholar] [CrossRef] [Green Version]
- López-Bascón, M.A.; Calderón-Santiago, M.; Sánchez-Ceinos, J.; Fernández-Vega, A.; Guzmán-Ruiz, R.; López-Miranda, J.; Malagon, M.M.; Priego-Capote, F. Influence of Sample Preparation on Lipidomics Analysis of Polar Lipids in Adipose Tissue. Talanta 2018, 177, 86–93. [Google Scholar] [CrossRef]
- Bollinger, J.G.; Ii, H.; Sadilek, M.; Gelb, M.H. Improved Method for the Quantification of Lysophospholipids Including Enol Ether Species by Liquid Chromatography-Tandem Mass Spectrometry. J. Lipid Res. 2010, 51, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Kalra, H.; Gupta, A.; Raut, B.; Hussain, A.; Rahman, M.A. HybridSPE: A Novel Technique to Reduce Phospholipid-Based Matrix Effect in LC-ESI-MS Bioanalysis. J. Pharm. Bioallied Sci. 2012, 4, 267–275. [Google Scholar] [CrossRef]
- Criado-Navarro, I.; Mena-Bravo, A.; Calderón-Santiago, M.; Priego-Capote, F. Determination of Glycerophospholipids in Vegetable Edible Oils: Proof of Concept to Discriminate Olive Oil Categories. Food Chem. 2019, 299, 125136. [Google Scholar] [CrossRef]
- Helmer, P.O.; Korf, A.; Hayen, H. Analysis of Artificially Oxidized Cardiolipins and Monolyso-Cardiolipins via Liquid Chromatography/High-Resolution Mass Spectrometry and Kendrick Mass Defect Plots after Hydrophilic Interaction Liquid Chromatography Based Sample Preparation. Rapid Commun. Mass Spectrom. 2020, 34, e8566. [Google Scholar] [CrossRef] [Green Version]
- John, C.; Werner, P.; Worthmann, A.; Wegner, K.; Tödter, K.; Scheja, L.; Rohn, S.; Heeren, J.; Fischer, M. A Liquid Chromatography-Tandem Mass Spectrometry-Based Method for the Simultaneous Determination of Hydroxy Sterols and Bile Acids. J. Chromatogr. A 2014, 1371, 184–195. [Google Scholar] [CrossRef]
- Ms, U.; Ferdosh, S.; Haque Akanda, M.J.; Ghafoor, K.; Rukshana, A.H.; Ali, M.E.; Kamaruzzaman, B.Y.; Fauzi, M.B.; Sharifudin Shaarani, H.S.; Islam Sarker, M.Z. Techniques for the Extraction of Phytosterols and Their Benefits in Human Health: A Review. Sep. Sci. Technol. 2018, 53, 2206–2223. [Google Scholar] [CrossRef]
- McDonald, J.G.; Thompson, B.M.; McCrum, E.C.; Russell, D.W. Extraction and Analysis of Sterols in Biological Matrices by High Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry. Methods Enzymol. 2007, 432, 145–170. [Google Scholar] [CrossRef]
- Liakh, I.; Pakiet, A.; Sledzinski, T.; Mika, A. Modern Methods of Sample Preparation for the Analysis of Oxylipins in Biological Samples. Molecules 2019, 24, 1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, H. GC-MS Methods for Tobacco Constituents BT—Gas Chromatography/Mass Spectrometry; Linskens, H.F., Jackson, J.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 277–298. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Stinco, C.M.; Brahm, P.M.; Vicario, I.M. Analysis of Carotenoids and Tocopherols in Plant Matrices and Assessment of Their In Vitro Antioxidant Capacity BT—Plant Isoprenoids: Methods and Protocols; Rodríguez-Concepción, M., Ed.; Springer: New York, NY, USA, 2014; pp. 77–97. [Google Scholar] [CrossRef]
- Yamada, T.; Bamba, T. Lipid Profiling by Supercritical Fluid Chromatography/Mass Spectrometry BT—Lipidomics; Wood, P., Ed.; Springer: New York, NY, USA, 2017; pp. 109–131. [Google Scholar] [CrossRef]
- Britton, G.; Young, A.J. Methods for the Isolation and Analysis of Carotenoids BT—Carotenoids in Photosynthesis; Young, A.J., Britton, G., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 409–457. [Google Scholar] [CrossRef]
- Hadj-Mahammed, M.; Badjah-Hadj-Ahmed, Y.; Meklati, B.Y. Behaviour of Polymethoxylated and Polyhydroxylated Flavones by Carbon Dioxide Supercritical Fluid Chromatography with Flame Ionization and Fourier Transform Infrared Detectors. Phytochem. Anal. 1993, 4, 275–278. [Google Scholar] [CrossRef]
- Lebeau, J.; Venkatachalam, M.; Fouillaud, M.; Petit, T.; Vinale, F.; Dufossé, L.; Caro, Y. Production and New Extraction Method of Polyketide Red Pigments Produced by Ascomycetous Fungi from Terrestrial and Marine Habitats. J. Fungi (Basel Switz.) 2017, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Kay, C.D.; Rathore, A.S.; Grace, M.H.; Strauch, R.C.; Stephan, E.H.; Sakaguchi, C.A.; Lila, M.A. Increased Plasma Levels of Gut-Derived Phenolics Linked to Walking and Running Following Two Weeks of Flavonoid Supplementation. Nutrients 2018, 10, 1718. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.P.; Tran, L.V.H.; Namgoong, H.; Kim, Y.-H. Applications of Different Solvents and Conditions for Differential Extraction of Lipopolysaccharide in Gram-Negative Bacteria. J. Microbiol. 2019, 57, 644–654. [Google Scholar] [CrossRef]
Lipid Category | Main Subclasses | Log P Range a | LIPID Maps b | |||
---|---|---|---|---|---|---|
Curated | Computationally-Generated | All | ||||
Fatty Acyls [FA] | Fatty Acids and Conjugates, Eicosanoids, Docosanoids, Fatty esters, Fatty amides, Fatty nitriles, Fatty ethers, Fatty acyl glycosides, Acylcarnitines. | −5–15 | 7644 | 1792 | 9436 | |
Glycerolipids [GL] | Monoradylglycerols, Diradylglycerols, Triradylglycerols, Glycosylmonoradylglycerols, Glycosyldiradylglycerols. | 5–35 | 232 | 7379 | 7611 | |
Glycerophospholipids [GP] | Glycerophosphocholines, Glycerophosphoethanolamines, Glycerophosphoserines, Glycerophosphoglycerols, Glycerophosphoglycerophosphates, Glycerophosphoinositols, Oxidized glycerophospholipids, Cardiolipins. | 5–25 | 1607 | 8312 | 9919 | |
Sphingolipids [SP] | Sphingoid bases, Ceramides, Phosphosphingolipids, Neutral glycosphingolipids, Acidic glycosphingolipids, Basic glycosphingolipids. | 5–25 | 1410 | 3176 | 4586 | |
Sterol lipids [ST] | Sterols, Steroids, Secosteroids, Bile acids and derivatives, Steroid conjugates. | 0–20 | 2829 | 2829 | ||
Prenol lipids [PR] | Isoprenoids, Quinones and hydroquinones, Polyprenols. | 0–20 | 1352 | 1352 | ||
Sacccharolipids [SL] | Acylaminosugars, Acylaminosugar glycans, Acyltrehaloses. | 0–30 | 22 | 1294 | 1316 | |
Polyketides [PK] | Linear polyketides, Macrolides and lactone polyketides, Linear tetracyclines, Polyether antibiotics, Aflatoxins, Flavonoids, Aromatic polyketides. | 0–15 | 6810 | 6810 | ||
TOTAL | 21,906 | 21,953 | 43,859 |
Extraction Method | Principle | Protocol Name | System | Lipid Coverage | Lipid Recovery | Solvent-Efficiency | Carry-Over Free | Time-Efficiency | Repeatability | Versatility | Automatization | Biological Matrix | Platform | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PPT | Precipitation | OPE | iPrOH, ButOH/MeOH (2:2) CHCl3/MeOH (2:2) | Plasma | HPLC-ESI-QTRAP | [38,39,40] | ||||||||
CSF | UHPLC-ESI-QTOF | [41] | ||||||||||||
LLE | Partition | Folch * | CHCl3/MeOH (2:1) | Cell line/tissue | UHPLC-ESI-Q-Exactive Orbitrap | [42] | ||||||||
CSF | HPLC-ESI-Q-Exactive Orbitrap | [43] | ||||||||||||
Folch * BD * | CHCl3/MeOH (2:1) CHCl3 or CH2Cl2/MeOH (1:2) | Plasma/CSF Food | HPLC-ESI-Ion trap | [44] | ||||||||||
UHPLC-Q-Exactive Orbitrap | [45,46] | |||||||||||||
Tears | UHPLC-TripleTOF | [47] | ||||||||||||
Plants | HPLC-ESI-QTOF | [48] | ||||||||||||
Urine | UHPLC-ESI-3D-Ion trap | [49] | ||||||||||||
Feces | HPLC-ESI-Q-Exactive Orbitrap | [50] | ||||||||||||
Cell culture | HPLC-ESI-Q-Exactive Orbitrap | [43] | ||||||||||||
BD * MTBE * | CHCl3 or CH2Cl2/MeOH (1:2) MTBE/MeOH (5:1.5) | Animal tissue | DI-ESI-QTRAP | [51] | ||||||||||
Urine/saliva | ASAP-QTOF | [52] | ||||||||||||
Plant tissue | UHPLC-ESI-IT-TOF | [53,54] | ||||||||||||
Feces | HPLC-ESI-Q-Exactive Orbitrap | [50] | ||||||||||||
Plasma | HPLC-ESI-QTOF | [55] | ||||||||||||
MTBE * BUME | MTBE/MeOH (5:1.5) 1. ButOH/MeOH (3:1) 2. Hep/EtOAc (3:1) 3. 1% AcOH | Urine | HPLC-ESI-QTOF | [56] | ||||||||||
Food | UHPLC-ESI-TOF | [57] | ||||||||||||
Breast Milk | HPLC-ESI-QTOF | [58] | ||||||||||||
Plant tissue | UHPLC-ESI-Q-Exactive Orbitrap | [59] | ||||||||||||
Cell line | HPLC-LTQ-Orbitrap | [60] | ||||||||||||
Plant tissue | UHPLC-ESI-Q-Exactive Orbitrap | [61] | ||||||||||||
Cell line Plasma/SBF Animal tissue | UHPLC-ESI-QTOF | [62] | ||||||||||||
HPLC-ESI-QqQ | [63] | |||||||||||||
DI-ESI-QTRAP | [51] | |||||||||||||
BUME IPA/Hex * | 1. ButOH/MeOH (3:1) 2. Hep/EtOAc (3:1) 3. 1% AcOHiPrOH/Hex (3:2) | Cell lines | UHPLC-ESI-Q-Exactive Orbitrap | [64] | ||||||||||
Cell lines | UHPLC-ESI-Q-Exactive Orbitrap | [61] | ||||||||||||
Cell lines | UHPLC-ESI-QTOF | [62] | ||||||||||||
IPA/Hex * SFE | iPrOH/Hex (3:2) Supercritical CO2 | Serum Parasites | DI-ESI-TOF | [65] | ||||||||||
HPLC-ESI-QqQ | [66] | |||||||||||||
Plasma | SFE-ESI-QTRAP | [67] | ||||||||||||
Parasites | UHPSFC-ESI-IT-TOF | [68] | ||||||||||||
SPE | Coated fibers and capillary tubes (sorbent cartridge). | Animal tissue Plasma | UHPSFC-ESI-IT-TOF | [69] | ||||||||||
HPLC-ESI-Q-Exactive Orbitrap | [70] | |||||||||||||
SPE | Adsorbance | SPE SPME | Coated fibers and capillary tubes (sorbent cartridge). Diameter-reduced sorbent-coated rods/fibers | Saliva | HPLC-ESI-Q-Exactive Orbitrap | [71] | ||||||||
Breast Milk | HPLC-ESI-QTOF | [72] | ||||||||||||
Cell lines | HPLC-ESI-Q-Exactive Orbitrap | [43] | ||||||||||||
Urine | GC-EI-Q | [26,27] |
Lipid Class | Extraction Method | System | Biological Matrix (Sample Amount) | Platform | Ref |
---|---|---|---|---|---|
Fatty Acyls | |||||
Fatty Acids and Conjugates | |||||
1. LLE, 2. SPE | 1. Modified Bligh and Dyer, CH3Cl - MeOH - H2O (1:1:1) with 2 mM HCl; 2. 3-aminopropyl silica gel/ACN-AcOH (49:1) | Food supplements (3 mL) | UHPLC-ESI-QTOF | [79] | |
LLE | H2O with 0.5 M HCl - anhydrous Et2O (1:1) + Deriv. with BSTFA | Feces (30 mg) | GC-Q | [80] | |
LLE | Modified Folch, CH3Cl-MeOH-H2O (2:1:0.8) + BHT | Grapes-skins-seeds (0.1 g) | UHPLC-ESI-QqQ | [81] | |
LLE | Modified Folch, CH3Cl - MeOH - 0.73% NaCl (2:1:0.6) + Deriv. with 1% H2SO4 in MeOH | Green coffee (0.5 g) | GC-Q | [82] | |
LLE | Hex - 0.5% NaOH in MEOH and 14% BF3 in MeOH - Sat. NaCl (1.3:2:4) | Shark liver oil (25 mg) | GC-Q | [83] | |
1. Filter pre-conc. 2. LLE | 1. Whatman GF/F filters, 2. CH2Cl2 - MeOH - H2O (1.5:3:1) | Oceanic water (5–10 L) | DI-ESI- FT-ICR MS | [84] | |
Octadecanoids | |||||
1. OPE, 2. SPE | 1. MeOH + BHT; 2. < 8% MeOH/Polymeric RP/MeOH + BHT | Mice amygdala tissue | UHPLC-ESI-QTRAP | [85] | |
Eicosanoids | |||||
1. LLE, 2. Hydrolysis, 3. SPE | 1. MTBE-MeOH-0.15 M NH4OAc (2:1:1) + BHT; 2. MeOH-H2O-10M NaOH (1:1:1.2); 3. Reac.Mix. + AcOH + 0.1 M Na2HPO4 buffer (pH 6)/AEC/tOAc-Hex (75:25) + 1%AcOH | Human cells (1 × 107) | HPLC-ESI-QTRAP | [86] | |
LLE | Sample + AcOH (pH 3.5) - MTBE (2:1) + Deriv. for GC | Breath condensate (2 mL) | HPLC-ESI-QTRAP GC/NICI–MS | [87] | |
SPE | MeOH (<17%) + Na2HPO4 buffer (pH 6)/AEC/EtOAc - Hex (75:25) with 1% AcOH | Plasma (500 µL) | UHPLC-ESI-QTRAP | [86] | |
SPE | H2O + BHT/Polymeric RP/MeOH | Plasma (500 µL) | UPLC-ESI-QqQ | [88] | |
SPE | 15% MeOH + 0.1 M HCl (pH 3.0)/C18/Methyl formate | Mouse brain tissue (25–75 mg) | HPLC-ESI-QqQ | [89,90] | |
SPE | 10% MeOH/Polymeric RP/MeOH | Human cells-animal tissues | HPLC-ESI-QTRAP | [91] | |
1. OPE, 2. SPE | 1. MeOH + BHT; 2. < 8% MeOH/Polymeric RP/MeOH + BHT | Mice brain tissue | UHPLC-ESI-QTRAP | [85] | |
SPE | 0.12 M PP buffer + 5 mM MgCl2 + BHT/Polymeric RP/MeOH | Human CSF and rat cortex | UPLC-ESI-QqQ | [92] | |
Fatty Esters | |||||
OPE | MeOH - 0.1% FA (0.8:1) | Plasma (20 µL)-urine (5 µL)-CSF (20 µL) | UHPLC-HESI-QTRAP | [93] | |
1. OPE, 2. OPE | 1. MeOH - H2O (4:1) + 0.1% FA; 2. MeOH - 0.1% FA (0.8:1) | Human brain tissue (10 mg) | UHPLC-HESI-Q-Orbitrap | [93] | |
OPE | iPrOH | Serum (10 µL) | HPLC-ESI-QqQ | [94] | |
OPE | AbsoluteIDQ p180 Kit | Serum (10 µL) | HPLC-ESI-QqQ | [95] | |
OPE | AbsoluteIDQ p180 Kit | Plasma | UPLC-ESI-QqQ | [96] | |
OPE | ACN + Deriv. with DnsHz | Plasma | UHPLC-ESI-QqQ | [97] | |
1. LLE, 2. SPE | 1. CHCl3 - MeOH - PBS (2:1:1); 2./CHCl3/Silica NP/EtOAc | Adipose tissue (150 mg) | HPLC-ESI-QqQ | [98] | |
1. LLE, 2. SPE | 1. CHCl3 - MeOH - PBS (2:1:0.86); 2./CHCl3/Silica NP/EtOAc | Serum or plasma (200 µL) | HPLC-ESI-QqQ | [98] | |
1. LLE, 2. SPE | 1. Bligh and Dyer, CHCl3-MeOH - H2O (2:1:1); 2. 0.1% NH4OH in ACN/AEC/1% FA in Acetone + AMPP | Plant leaves (100 mg) | UHPLC-ESI-QqQ | [99] | |
SPE | 0.1% NH4OH in ACN (1:2)/AEC/1% FA in Acetone + Deriv. DMED and d4-DMED | Mice adipose tissue (100 mg) | UHPLC-ESI-QqQ | [100] | |
1. LLE, 2. SPE | 1. Modified Bligh and Dyer, CHCl3 - MeOH (1:1); 2. CHCl3/Silica NP/EtOAc | Plasma (100 µL), liver | nanoESI-QqQ | [101] | |
Fatty amides | |||||
SPE | 10% MeOH/Polymeric RP/MeOH | Human cell lines or animal tissues | HPLC-ESI-QTRAP | [91] | |
SPE | MeOH - H2O (1:2.3)/C18/MeOH | Rat brain | HPLC-ESI-QqQ | [102] | |
Glycerolipids | |||||
Monoradylglycerols | |||||
OPE | MeOH + Deriv. with d4-NPB and 3-NPB | Cells-Tissue (60 mg)-Serum (50 µL) | UPLC-ESI-QTOF | [103] | |
OPE | iPrOH | Shark liver oil (10 mg) | HPLC-ESI-QqQ | [83] | |
1. Filter pre-conc. 2. LLE | 1. Whatman GF/F filters, 2. CH2Cl2 - MeOH - H2O (1.5:3:1) | Oceanic water (5–10 L) | DI-ESI- FT-ICR MS | [84] | |
LLE | CHCl3 - MeOH - 25 M LiCl (1:1:1) | Plasma (25 µL) | DI-ESI-QTOF | [104] | |
Diradylglycerols | |||||
1. OPE, 2. LLE | 1. 70% iPrOH, 2. Bligh and Dyer | Feces (2 mg) | FIA-ESI-Q-Orbitrap | [105] | |
OPE | iPrOH | Shark liver oil (10 mg) | HPLC-ESI-QqQ | [83] | |
LLE | Modified Bligh and Dyer, CHCl3 - MeOH - H2O (1:1:0.8) | Bacterial cells (OD: 0.3, 0.5, 0.8, 1.3) | HPLC-ESI-LTQ-Orbitrap | [106] | |
LLE | Modified Matyash, MTBE - MeOH - H2O (3:0.9:0.75) | Skeletal muscle (50 mg) | HPLC-API-QqQ | [107] | |
1. Filter pre-conc. 2. LLE | 1. Whatman GF/F filters, 2. CH2Cl2 - MeOH - H2O (1.5:3:1) | Oceanic water (5–10 L) | DI-ESI- FT-ICR MS | [84] | |
Triradylglycerols | |||||
LLE | Modified Bligh and Dyer, CH2Cl2 - MeOH - H2O (1.5:3:1) | Serum (30 µL) | HPLC-HESI-Orbitrap | [108] | |
OPE | EtOH - MTBE - DCM (70:15:15) | Size-fractionated serum (20 µL) | UPLC-ESI-QTRAP | [35] | |
LLE | Modified Bligh and Dyer, CHCl3 - MeOH - H2O (1:1:0.8) | Bacterial cells (OD: 0.3, 0.5, 0.8, 1.3) | HPLC-ESI-LTQ-Orbitrap | [106] | |
OPE | Acetone | Vegetal Oil (40 mg) | HPLC-ESI-Quadrupole | [109] | |
1. Filter pre-conc. 2. LLE | 1. Whatman GF/F filters, 2. CH2Cl2 - MeOH - H2O (1.5:3:1) | Oceanic water (5–10 L) | DI-ESI- FT-ICR MS | [84] | |
1. OPE, 2. LLE | 1. 70% iPrOH, 2. Bligh and Dyer | Feces (2 mg) | FIA-ESI-Q-Orbitrap | [105] | |
Glycosyldiradylglycerols | |||||
1. pre-treat, 2. LLE | 1. iPrOH (75 °C) + BHT; 2. CHCl3 - MeOH (2:1) | Vegetal tissue (2–3 plant rosettes) | ESI-QqQ | [110] | |
LLE | Bligh and Dyer | Algae tissue (30 L culture) | UPLC-ESI-QTOF | [111] | |
Glycerophospholipids | |||||
Glycerophosphocholines | |||||
OPE | AbsoluteIDQ p150 Kit | Plasma (10 µL) | FIA-ESI-QTRAP | [112] | |
OPE | ACN | Plasma (20 µL) | UPLC-ESI-QTRAP | [113] | |
OPE | MeOH + BHT | Plasma (10 µL) | HPLC-ESI-QTRAP | [114] | |
LLE | CH2Cl2 - MeOH (2:1) | Cytosol (100 µL) | UPLC-ESI-QTRAP | [115] | |
LLE | Modified Folch, CHCl3 - MeOH - 0.15 M NaCl (2:1:0.8) + BHT | Lenses | ESI-QqQ | [116] | |
LLE | Modified Bligh and Dyer, CHCl3 - MeOH - 0.1N HCl (1:1:1) | Human cells (2 × 106) | UPLC-ESI-QTOF | [117,118] | |
µChip-SPE | Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH | Bacterial cells (10µL) | nanoESI-QTOF | [119] | |
OPE | EtOH - MTBE - DCM (7:1.5:1.5) | Size-fractionated serum (20 µL) | UPLC-ESI-QTRAP | [35] | |
LLE | Bligh and Dyer | Algae tissue (30 L culture) | UPLC-ESI-QTOF | [111] | |
Glycerophosphoethanolamines | |||||
OPE | ACN | Plasma (20 µL) | UPLC-ESI-QTRAP | [113] | |
OPE | MeOH + BHT | Plasma (20 µL) | HPLC-ESI-QTRAP | [114] | |
LLE | CH2Cl2 - MeOH (2:1) | Cytosol (100 µL) | UPLC-ESI-QTRAP | [115] | |
LLE | Modified Folch, CHCl3 - MeOH - 0.15 M NaCl (2:1:0.8) + BHT | Lenses | DI-ESI-QqQ | [116] | |
LLE | Modified Bligh and Dyer, CHCl3 - MeOH - 0.1N HCl (1:1:1) | Human cells (2 X 106) | UPLC-ESI-QTOF | [117,118] | |
µChip-SPE | Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH | Bacterial cells (10 µL) | nanoESI-QTOF | [119] | |
OPE | EtOH - MTBE - DCM (7:1.5:1.5) | Size-fractionated serum (20 µL) | UPLC-ESI-QTRAP | [35] | |
LLE | Bligh and Dyer | Algae tissue (30 L culture) | UPLC-ESI-QTOF | [111] | |
Glycerophosphoserines | |||||
OPE | ACN | Plasma (20 µL) | UPLC-ESI-QTRAP | [113] | |
LLE | CH2Cl2 - MeOH (2:1) | Cytosol (100 µL) | UPLC-ESI-QTRAP | [115] | |
LLE | Bligh and Dyer | Human cells (0.4 × 106) | ESI-QTRAP | [120] | |
LLE | Modified Folch, CHCl3 - MeOH - 0.15 M NaCl (2:1:0.8) + BHT | Lenses | ESI-QqQ | [116] | |
µChip-SPE | Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH | Bacterial cells (10µL) | nanoESI-QTOF | [119] | |
Glycerophosphoglycerols | |||||
OPE | ACN | Plasma (20 µL) | UPLC-ESI-QTRAP | [113] | |
LLE | Modified Bligh and Dyer, CHCl3 - MeOH - 0.1N HCl (1:1:1) | Human cells (0.4 × 106) | UPLC-ESI-QTOF | [117,118] | |
µChip-SPE | Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH | Bacterial cells (10 µL) | nanoESI-QTOF | [119] | |
LLE | Modified Bligh and Dyer, CHCl3 - MeOH - H2O (1:1:0.8) | Bacterial cells (OD: 0.3, 0.5, 0.8, 1.3) | UPLC-ESI-QqQ | [106] | |
LLE | Bligh and Dyer | Algae tissue (30 L culture) | UPLC-ESI-QTOF | [111] | |
Glycerophosphoinositols | |||||
OPE | ACN | Plasma (20 µL) | UPLC-ESI-QTRAP | [113] | |
LLE | CH2Cl2 - MeOH (2:1) | Cytosol (100 µL) | UPLC-ESI-QTRAP | [115] | |
LLE | Modified Bligh and Dyer, CHCl3 - MeOH - 0.1N HCl (1:1:1) | Human cells (2 × 106) | UPLC-ESI-QTOF | [117,118] | |
µChip-SPE | Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH | Bacteria Cells (10 µL) | nanoESI-QTOF | [119] | |
OPE | EtOH - MTBE - DCM (7:1.5:1.5) | Size-fractionated serum (20 µL) | UPLC-ESI-QTRAP | [35] | |
Glycerophosphates | |||||
OPE | ACN | Plasma (20 µL) | UPLC-ESI-QTRAP | [113] | |
µChip-SPE | Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH | Bacterial cells (10µL) | nanoESI-QTOF | [119] | |
Glycerophosphoglycerophosphoglycerols | |||||
LLE | Modified Bligh and Dyer, CHCl3 - MeOH - H2O (1:1:0.8) | Bacterial cells (OD: 0.3, 0.5, 0.8, 1.3) | HPLC-ESI-QTOF | [106] | |
Oxidized glycerophospholipids | |||||
µHP-SPE | MeOH/C18 spin column/MeOH - 0.2% FA (82:18) | Plasma (20 µL) | HPLC-ESI-QTRAP | [121] | |
Sphingolipids | |||||
Sphingoid bases | |||||
LLE | Modified Bligh and Dyer, CHCl3 - MeOH -H2O (1.8:2:0.8) + 0.1% TFA | Plasma (50 µL) | UHPLC-ESI-QqQ | [122] | |
LLE | Bligh and Dyer, CHCl3 - MeOH - H2O (1:2:0.8) | B Cells (80 µL cell suspension) | HPLC-ESI-QTRAP | [123] | |
LLE | MTBE - MeOH - H2O (3:0.9:0.8) | Plasma-Red blood cells (50 µL) | UHPLC-ESI-QqQ | [124] | |
LLE + Transesterification | 0.25M MeONa in MeOH - MTBE - H2O (1.3:4:1) + AcOH (pH 7) | Serum (40 µL) | UHPLC-ESI-QqQ | [125] | |
LLE + Sap. | CH2Cl2 - MeOH - KOH 1M in MeOH (1:2:0.3) | Cells (106)-Tissue (1–10 mg) | LC-MS/MS techniques | [126] | |
LLE | CH 2Cl2 - MeOH (1:1) with 0.25% DEA | Plasma (25 µL) | HPLC-ESI-QqQ | [127] | |
LLE | ButOH - 40 mM Na2HPO4 + CA (pH4) (1:1) | Plasma (75 µL) | HPLC-ESI-QTRAP | [128] | |
Ceramides | |||||
LLE | Modified Bligh and Dyer, CHCl3 - MeOH -H2O (1.8:2:0.8) + 0.1% TFA | Plasma (50 µL) | UHPLC-ESI-QqQ | [122] | |
LLE | Bligh and Dyer, CHCl3 - MeOH - H2O (1:2:0.8) | B Cells (80 µL cell suspension) | HPLC-ESI-QTRAP | [123] | |
LLE + Sap. | CHCl3 - MeOH - 1M KOH in MeOH (1:2:0.3) | Cells (106)-Tissue (1–10 mg) | LC-MS/MS techniques | [126] | |
LLE | CH2Cl2 - MeOH (1:1) with 0.25% DEA | Plasma (25 µL) | HPLC-ESI-QqQ | [127] | |
LLE + Transesterification | 0.25M MeONa in MeOH - MTBE - H2O (1.3:4:1) + AcOH (pH 7) | Serum (40 µL) | UHPLC-ESI-QqQ | [125] | |
LLE | ButOH - 40 mM Na2HPO4 + CA (pH4) (1:1) | Plasma (75 µl) | HPLC-ESI-QTRAP | [128] | |
1. OPE, 2. SPE | 1.MeOH, 2.Hex-iPrOH (11:1)/aminopropyl silica cartridges/Hex-CHCl3-MeOH (80:10:10) | Skin (Three patches) | UHPLC-ESI-QTOF | [129] | |
Phosphosphingolipids | |||||
LLE | Modified Bligh and Dyer, CHCl3 - MeOH -H2O (1.8:2:0.8) + 0.1% TFA | Plasma (50 µL) | UHPLC-ESI-QqQ | [122] | |
LLE | CHCl3 - MeOH - 1M KOH in MeOH (1:2:0.3) | Cells (106)-Tissue (1–10 mg) | LC-MS/MS techniques | [126] | |
LLE + Transesterification | 0.25M MeONa in MeOH - MTBE - H2O (1.3:4:1) + AcOH (pH 7) | Serum (40 µL) | UHPLC-ESI-QqQ | [125] | |
OPE | MeOH | Whole blood (15 µL on DBS) | UHPLC-ESI-TOF | [130] | |
OPE | AbsoluteIDQ p150 Kit | Plasma (10 µL) | FIA-ESI-QTRAP | [112] | |
Neutral glycosphingolipids | |||||
LLE | Bligh and Dyer, CHCl3 - MeOH - H2O (1:2:0.8) | B Cells (80 µL cell suspension) | HPLC-ESI-QTRAP | [123] | |
LLE | CHCl3 - MeOH - 1M KOH in MeOH (1:2:0.3) | Cells (106)-Tissue (1–10 mg) | LC-MS/MS techniques | [126] | |
LLE | ButOH - 40 mM Na2HPO4 + CA (pH 4) (1:1) | Plasma (75 µL) | HPLC-ESI-QTRAP | [128] | |
LLE | MTBE - MeOH - H2O (3:0.9:0.8) | Plasma-Red blood cells (50 µL) | UHPLC-ESI-QqQ | [124] | |
Acidic glycosphingolipids | |||||
LLE | CHCl3 - MeOH - H2O (0.8:1:1) + Deriv. with PAEA and DMTMM to aq. phase | Plasma (20 µL) | UHPLC-ESI-QTRAP | [131] | |
1. LLE, 2. SPE | 1. Modified Folch, CHCl3 - MeOH -H2O (2:1:0.6) 2.C18/MeOH to aq. phase | Plasma (200 µL)-Human tissues (25 mg) | HPLC-ESI-QTOF | [132] | |
LLE | CH2Cl2 - MeOH (1:1) with 0.25% DEA | Plasma (25 µL) | HPLC-ESI-QqQ | [127] | |
Sterol lipids | |||||
Sterols | |||||
SPE | Hex - Et2O (99:1)/NP silica cartridge/Hex - Et2O (99:1) | Sunflower oils (200 mg) | ESI-QTRAP-QqQ | [133] | |
SPE | iPrOH/Polymeric RP/MeOH - 0.02% FA (10:90) | Plasma-Serum-CSF (100 µL) | HPLC-ESI-QTRAP | [134] | |
LLE | Bligh and Dyer like method + Deriv. with AcCl - CHCl3 (1:5) | Ocular Tissue | HPLC-ESI-QTrap-Orbitrap | [135] | |
1. OPE + Esterif. 2. LLE | 1. iPrOH 70% + 5M NaOH (1M HCl), 2. iOct - Reaction Mix. (2:1) + Deriv. with MSTFA | Feces (2 g) | GC-QqQ | [136] | |
1. OPE + Esterif. 2. LLE | 1. iPrOH 70%+5M NaOH (1M HCl), 2. iOct-Reaction Mix.(2:1)+Deriv. with DMG+DMAP | Feces (2 g) | UHPL-HESI-Q-Orbitrap | [137] | |
LLE | Hex - iPrOH - 0.47M Na2SO4 (2:3:1.5) + BHT | Atherosclerotic plaques (10 mg) | HPLC-APCI-QqQ | [138] | |
1. OPE, 2. LLE | 1. 50 mM Tris-HCl (pH 7.5), 150 mM NaCl and 2mM EGTA, 2. Modified Bligh and Dyer, CHCl3 - MeOH - Sample (1:1:0.9) | Silkworm tissues | HPLC-ESI-QqQ | [139] | |
Steroids | |||||
LLE | MTBE | Serum (100 µl) | HPLC-ESI-QTRAP | [140] | |
SLE | Acetate buffer (pH 5.2)/Diat. Earth/CH2Cl2 + Deriv. with MSTFA - NH4I − DTE (500:4:2) | Serum (100 µl) | GC-QqQ | [141] | |
SPE | 5% H3PO4/Polymeric RP/MeOH | Plasma (100 µL) | HPLC-ESI-TripleTOF | [142] | |
Bile acids and derivatives | |||||
OPE | Methanol | Rat serum (10 μL) | UPLC-ESI-QTRAP/QTOF | [143] | |
A. OPE or D. LLE | A. ACN; D: ACN - 400 g/L NH4SO4 - H2O (1:1:0.35) | Serum (100 µL) | HPLC-ESI-QqQ | [144] | |
PD-SPE | Ostro 96 well plates/cold ACN with 1% of FA | Plasma-Serum (100 µL) | UHPLC-ESI-QqQ | [145] | |
SPE | iPrOH/Polymeric RP/MeOH - 0.02% FA (10:90) | Plasma-Serum-CSF (100 µL) | HPLC-ESI-QTRAP | [134] | |
OPE | iPrOH | Feces (1 g) | HPLC-ESI-QqQ | [146] | |
1. OPE, 2. SPE | 1. Saline solution - (60 °C) Ethanol (1:1); 2. Extract - H2O (1:10)/Polymeric RP/MeOH | Rat brain tissue (1.5–1.8 g) | HPLC-ESI-QqQ | [147] | |
Prenol lipids | |||||
Isoprenoids | |||||
LLE | Et2O - PBS (pH = 7.4) - EtOH (1:1:0.2) | Feces (0.3–0.5 g) | HPLC-DAD | [148] | |
OPE | ACN - MeOH - H2O (2:1:1) | Natural rubber (1.5 g) | HPLC-ESI-QqQ | [149] | |
OPE | Methanol - H2O (1:1) | Bacterial cells (1.5 mL, OD: 5) | HPLC-ESI-TOF | [150] | |
OPE | Methanol - H2O (1:3) | Bacterial supernatant (1.5 mL) | HPLC-ESI-TOF | [150] | |
OPE | iPrOH - 100 mM NH4HCO3 (pH 7.4) (1:1) | Human cells | UPLC-ESI-QqQ | [151] | |
SPE | 2% FA/Polymeric RP/Hex - iPrOH - NH4OH (12:7:1) | Plasma (300 µL) | UPLC-ESI-QqQ | [151] | |
Quinones and hydroquinones | |||||
LLE | Saturated K2CO3 - CH2Cl2 (1:1) | Urine (Rats: 2 mL Human: 10 mL) | GC-Q | [152] | |
LLE | CHCl3 - MeOH (3:7) - cold 10% NaCl + BHT | Bacterial cells (10–50 mg) | HPLC-APCI-QTRAP | [153] | |
Saccharolipids | |||||
Acylaminosugars | |||||
1. LLE, 2. LLE | 1. 45% Phenol - H2O; 2. CHCl3 - MeOH - H2O (2:1:3) + Deriv. aq phase. | Bacterial cells (2 g/mL) | GC-Q | [154] | |
LLE | 50% Phenol - H2O | Acetone-dried bacteria | UHPLC-ESI-QTOF | [155] | |
SPE | Genlantis SoluLyse detergent/AEC/5% NH4OH in MeOH | Supernatant cell lysate (2×900 μL) | UPLC-ESI-QTRAP | [156] | |
Polyketides | |||||
Linear polyketides | |||||
LLE | EtOAc | Bacterial supernatant (10 mL) | HPLC-ESI-LTQ-Orbitrap | [157] | |
OPE | Acetone - MeOH (1:1) | Bacterial cells (10 mL culture) | HPLC-ESI-LTQ-Orbitrap | [157] | |
OPE | MeOH | Bacterial supernatant (10 mL) | UPLC-ESI-QTOF | [158] | |
Aromatic polyketides | |||||
LLE | EtOAc + 1% HCl | Enzymatic mixture (500 µL) | HPLC-ESI-LTQ-Orbitrap | [159] | |
Flavonoids | |||||
OPE | 70% MeOH + 3% FA | Digested cooked flour (1 mL) | UHPLC-HESI-QTRAP | [160] | |
LLE | EtOAc | Blood-Tissue (50 µL) | UFLC-ESI-QqQ | [161,162] | |
Polyether antibiotics | |||||
1. OPE, 2. OPE, 3. LLE, 4. SPE | 1. MeOH; 2. 80% PrOH; 3. EtOAc - H2O (1:1); 4. aq. phase/C18/80% PrOH | Microalga cells pellet (125–150 mL culture) | UPLC-nanoESI-QTOF | [163] | |
Annonaceae acetogenins | |||||
1. OPE, 2. LLE | 1. Acetone; 2. CH2Cl2 - H2O (1:1) | Avocado mesocarp (2g)-cotyledons (1g) | HPLC-ESI-TOF | [164] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldana, J.; Romero-Otero, A.; Cala, M.P. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 2020, 10, 231. https://doi.org/10.3390/metabo10060231
Aldana J, Romero-Otero A, Cala MP. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites. 2020; 10(6):231. https://doi.org/10.3390/metabo10060231
Chicago/Turabian StyleAldana, Julian, Adriana Romero-Otero, and Mónica P. Cala. 2020. "Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis" Metabolites 10, no. 6: 231. https://doi.org/10.3390/metabo10060231
APA StyleAldana, J., Romero-Otero, A., & Cala, M. P. (2020). Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites, 10(6), 231. https://doi.org/10.3390/metabo10060231