Modeling for High-Frequency Spurious Responses in Incredible High-Performance Surface Acoustic Wave Devices
Abstract
:1. Introduction
2. Experimental Method
2.1. Characteristics of I.H.P. SAW Devices
2.2. Traditional Single-Mode COM Model
2.3. ECOM Model
2.4. Model Verification
3. Results and Discussion
3.1. Simulation of Changing the Structural Parameters of the Resonators
3.2. Simulation of Ladder-Type SAW Filters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weigel, R.; Morgan, D.P.; Owens, J.M.; Ballato, A.; Lakin, K.M.; Hashimoto, K.; Ruppel, C.C.W. Microwave acoustic materials, devices, and applications. IEEE Trans. Microw. Theory Tech. 2002, 50, 738–749. [Google Scholar] [CrossRef]
- Yang, Y.; Dejous, C.; Hallil, H. Trends and Applications of Surface and Bulk Acoustic Wave Devices: A Review. Micromachines 2023, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Balteanu, F.; Modi, H.; Choi, Y.; Lee, J.; Drogi, S.; Khesbak, S. 5G RF Front End Module Architectures for Mobile Applications. In Proceedings of the 49th European Microwave Conference (EuMC), Paris, France, 1–3 October 2019; pp. 252–255. [Google Scholar]
- Sahu, A.; Aaen, P.H.; Devabhaktuni, V.K. Advanced technologies for next-generation RF front-end modules. Int. J. Rf Microw. Comput.—Aided Eng. 2019, 29, e21700. [Google Scholar] [CrossRef]
- Chen, P.; Li, G.X.; Zhu, Z.Y. Development and Application of SAW Filter. Micromachines 2022, 13, 656. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.Y.; Bao, J.F. COM-Based Perturbation Analysis of Nonlinear Signal Generation in IHP SAW Resonators. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022. [Google Scholar]
- Kimura, T.; Omura, M.; Kishimoto, Y.; Hashimoto, K.Y. Applicability Investigation of SAW Devices in the 3 to 5 GHz range. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 846–848. [Google Scholar]
- Nakagawa, R.; Iwamoto, H.; Takai, T. Low Velocity IHP SAW Using Al/Pt Electrodes for Miniaturization. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 2083–2086. [Google Scholar]
- Takai, T.; Iwamoto, H.; Takamine, Y.; Nakao, T.; Hiramoto, M.; Koshino, M.I.H.P. SAW technology and its application to micro acoustic components. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; p. 1. [Google Scholar]
- Takamine, Y.; Takai, T.; Iwamoto, H.; Nakao, T.; Koshino, M. A Novel 3.5 GHz Low-Loss Bandpass Filter Using IHP SAW Resonators. In Proceedings of the Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 1342–1344. [Google Scholar]
- Wong, Y.P.; Matsuoka, N.; Qiu, L.Y.; Hashimoto, K. Analysis of SAW Slowness Shape on IHP SAW Structures. In Proceedings of the IEEE International Ultrasonics Symposium (IEEE IUS), Las Vegas, NV, USA, 7–11 September 2020. [Google Scholar]
- Wu, X.Q.; He, Y.W.; Shi, B.; Li, W.P.; Bao, J.F.; Hashimoto, K.Y. A Simple Technique to Evaluate Lateral Leakage and Transverse Mode Behaviors of Reflectors in SH-Type SAW Resonator. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022. [Google Scholar]
- Solal, M.; Gratier, J.; Aigner, R.; Gamble, K.; Abbott, B.; Kook, T.; Chen, A.; Steiner, K. Transverse modes suppression and loss reduction for buried electrodes SAW devices. In Proceedings of the 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010; pp. 624–628. [Google Scholar]
- Iwamoto, H.; Takai, T.; Takamine, Y.; Nakao, T.; Fuyutsume, T.; Koshino, M. Transverse Modes in IHP SAW Resonator and Their Suppression Method. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018. [Google Scholar]
- Wong, Y.P.; He, Y.W.; Matsuoka, N.; Liang, Q.; Bao, J.F.; Hashimoto, K. IHP SAW Transverse Edge Design for Energy Confinement with Suppressed Scattering Loss and Transverse Mode. In Proceedings of the IEEE International Ultrasonics Symposium (IEEE IUS), Xi’an, China, 11–16 September 2021. [Google Scholar]
- Goto, R.; Fujiwara, J.; Nakamura, H.; Hashimoto, K. Multimode coupling of modes model for spurious responses on SiO2LiNbO3 substrate. Jpn. J. Appl. Phys. 2018, 57, 07LD20. [Google Scholar] [CrossRef]
- Huang, Y.L.; Bao, J.F.; Li, X.Y.; Zhang, B.F.; Tang, G.B.; Omori, T.; Hashimoto, K.Y. Influence of Coupling Between Rayleigh and SH SAWs on Rotated Y-Cut LiNbO3 to Their Propagations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.; Ammann, S.; Pernpeintner, M.; Johnson, J.; Ebner, T.; Wagner, K. Multi-mode P-matrix models for the description of interacting modes in TCSAW and LSAW devices. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018. [Google Scholar]
- Tang, G.B.; Goto, R.; Nakamura, H. Modeling and Suppression Method for Guided Mode in TC-SAW Devices. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 2087–2090. [Google Scholar]
- Pang, J.Y.; Wang, S.B.; Tang, Z.F.; Qin, Y.M.; Tao, X.F.; You, X.H.; Zhu, J.K. A new 5G radio evolution towards 5G-Advanced. Sci. China Inf. Sci. 2022, 65, 191301. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Du, Y.; Wei, K.J.; Han, K.F.; Xu, X.Y.; Wei, G.M.; Tong, W.; Zhu, P.Y.; Ma, J.L.; Wang, J.; et al. Vision, application scenarios, and key technology trends for 6G mobile communications. Sci. China-Inf. Sci. 2022, 65, 151301. [Google Scholar] [CrossRef]
- Goyal, A.; Kumar, K. LTE-Advanced Carrier Aggregation for Enhancement of Bandwidth. In Proceedings of the International Conference on VLSI, Communications, and Signal Processing (VCAS), Motilal Nehru Natl Inst Technol Allahabad, Prayagraj, India, 29 November–1 December 2018; pp. 341–351. [Google Scholar]
- Xu, H.P.; Fu, S.L.; Su, R.X.; Liu, P.S.; Wang, R.; Zeng, F.; Song, C.; Wang, W.B.; Pan, F. Dual-Passband SAW Filter Based on a 32°YX-LN/SiO2/SiC Multilayered Substrate. Micromachines 2023, 14, 479. [Google Scholar] [CrossRef]
- Plessky, V.; Koskela, J. Coupling-of-modes analysis of saw devices. Int. J. High Speed Electron. 2000, 10, 2–22. [Google Scholar] [CrossRef]
- Ruppel, C.C.W.; Ruile, W.; Scholl, G.; Wagner, K.C.; Manner, O. Review of models for low-loss filter design and applications. In Proceedings of the 1994 Proceedings of IEEE Ultrasonics Symposium, Cannes, France, 31 October–3 November 1994; Volume 311, pp. 313–324. [Google Scholar]
- Wu, T.T.; Wang, S.M.; Chen, Y.Y.; Wu, T.Y.; Chang, P.Z.; Huang, L.S.; Wang, C.L.; Wu, C.W.; Lee, C.K. Inverse determination of coupling of modes parameters of surface acoustic wave resonators. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Brief Commun. Rev. Pap. 2002, 41, 6610–6615. [Google Scholar] [CrossRef]
- Wu, Z.H.; Liu, Y.M.; Shi, B.; Bao, J.F.; Hashimoto, K.Y. COM-based Modeling of SAW Scattering at Reflector Outer Edges in IHP SAW Resonator. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022. [Google Scholar]
- Morgan, D.P. Cascading formulas for identical transducer P-matrices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 985–987. [Google Scholar] [CrossRef]
- Wagner, K.; Mayer, M.; Bergmann, A.; Riha, G. A 2D P-Matrix Model for the Simulation of Waveguiding and Diffraction in SAW Components. In Proceedings of the IEEE Ultrasonics Symposium, Vancouver, BC, Canada, 3–6 October 2006; pp. 380–388. [Google Scholar]
- Ash, E.A. Surface Wave Grating Reflectors and Resonators. In Proceedings of the G-MTT 1970 International Microwave Symposium, Newport Beach, CA, USA, 11–14 May 1970; pp. 385–386. [Google Scholar]
- Hashimoto, K.; Endoh, G.; Yamaguchi, M. Coupling-of-modes modelling for fast and precise simulation of leaky surface acoustic wave devices. In Proceedings of the 1995 IEEE Ultrasonics Symposium—Proceedings—An International Symposium, Seattle, WA, USA, 7–10 November 1995; Volume 251, pp. 251–256. [Google Scholar]
- Naumenko, N.; Abbott, B. Hybrid surface-bulk mode in periodic gratings. In Proceedings of the IEEE International Ultrasonic Symposium, Atlanta, GA, USA, 7–10 October 2001; pp. 243–248. [Google Scholar]
- Komatsu, T.; Tanaka, Y.; Hashimoto, K.Y.; Omori, T.; Yamaguchi, M. Design of narrow bandwidth ladder-type filters with sharp transition bands using mutually connected resonator elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Ruppel, C.C.W. Acoustic Wave Filter Technology-A Review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1390–1400. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Period of the fingers p, (SAW wavelength ) | 1.4 (μm) |
Metallic ratios | 0.5 |
Aperture W | 25 × p |
Number of IDT finger pairs | 100 |
Number of reflector gratings | 30 |
Parameters | Value |
---|---|
Period of the fingers p (SAW wavelength ) | 1.32 (μm) |
Metallic ratios | 0.5 |
Aperture W | 20 × p |
Number of IDT finger pairs | 100 |
Number of reflector gratings | 30 |
Parameters | Value |
---|---|
Period of the fingers p (SAW wavelength ) | 1.4 (μm) |
Metallic ratios | 0.5 |
Aperture W | 25 × p (standard resonator) |
30 × p | |
35 × p | |
40 × p | |
45 × p | |
50 × p | |
100 | |
30 |
Parameters | Value |
---|---|
Period of the fingers p (SAW wavelength ) | 1.4 (μm) |
Metallic ratios | 0.5 |
Aperture W | 25 × p |
Number of IDT finger pairs | 50 |
100 (standard resonator) | |
150 | |
200 | |
Number of reflector gratings | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, G.; Shuai, Y.; Wei, Z.; Yao, J.; Luo, W.; Pan, X.; Wu, C.; Zhang, W. Modeling for High-Frequency Spurious Responses in Incredible High-Performance Surface Acoustic Wave Devices. Micromachines 2024, 15, 134. https://doi.org/10.3390/mi15010134
Jiang G, Shuai Y, Wei Z, Yao J, Luo W, Pan X, Wu C, Zhang W. Modeling for High-Frequency Spurious Responses in Incredible High-Performance Surface Acoustic Wave Devices. Micromachines. 2024; 15(1):134. https://doi.org/10.3390/mi15010134
Chicago/Turabian StyleJiang, Guanzhen, Yao Shuai, Zijie Wei, Jialin Yao, Wenbo Luo, Xinqiang Pan, Chuangui Wu, and Wanli Zhang. 2024. "Modeling for High-Frequency Spurious Responses in Incredible High-Performance Surface Acoustic Wave Devices" Micromachines 15, no. 1: 134. https://doi.org/10.3390/mi15010134
APA StyleJiang, G., Shuai, Y., Wei, Z., Yao, J., Luo, W., Pan, X., Wu, C., & Zhang, W. (2024). Modeling for High-Frequency Spurious Responses in Incredible High-Performance Surface Acoustic Wave Devices. Micromachines, 15(1), 134. https://doi.org/10.3390/mi15010134