Parallel Farby–Perot Interferometers in an Etched Multicore Fiber for Vector Bending Measurements
Abstract
:1. Introduction
2. Principle and Fabrication
2.1. Principle
2.2. Fabrication
3. Experiment Results and Discussion
3.1. Characterization
3.2. Vector Bending Measurement
3.3. Temperature Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Liu, Y. Review of optical fiber bending/curvature sensor. Measurement 2018, 130, 161–176. [Google Scholar] [CrossRef]
- Ma, J.J.; Asundi, A. Structural health monitoring using a fiber optic polarimetric sensor and a fiber optic curvature sensor-static and dynamic test. Smart Mater. Struct. 2001, 10, 181–188. [Google Scholar] [CrossRef]
- Amanzadeh, M.; Aminossadati, S.M.; Kizil, M.S.; Rakic, A.D. Recent developments in fibre optic shape sensing. Measurement 2018, 128, 119–137. [Google Scholar] [CrossRef]
- Bai, H.D.; Li, S.; Barreiros, J.; Tu, Y.Q.; Pollock, C.R.; Shepherd, R.F. Stretchable distributed fiber-optic sensors. Science 2020, 370, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Meerbeek, I.M.V.; Sa, C.M.D.; Shepherd, R.F. Soft optoelectronic sensory foams with proprioception. Sci. Robot 2018, 3, eaau2489. [Google Scholar] [CrossRef]
- Dong, K.; Peng, X.; Wang, Z.L. Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Adv. Mater. 2020, 32, 1902549. [Google Scholar] [CrossRef]
- Xiang, L.; Zeng, X.W.; Xia, F.; Jin, W.L.; Liu, Y.D.; Hu, Y.F. Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System Integration. ACS Nano 2020, 14, 6449–6469. [Google Scholar] [CrossRef]
- Saggio, G.; Orengo, G. Flex sensor characterization against shape and curvature changes. Sens. Actuators A-Phys. 2018, 273, 221–231. [Google Scholar] [CrossRef]
- Lee, B.G.; Lee, S.M. Smart Wearable Hand Device for Sign Language Interpretation System with Sensors Fusion. IEEE Sens. J. 2018, 18, 1224–1232. [Google Scholar] [CrossRef]
- Barrera, D.; Madrigal, J.; Sales, S. Tilted fiber Bragg gratings in multicore optical fibers for optical sensing. Opt. Lett. 2017, 42, 1460–1463. [Google Scholar] [CrossRef]
- Hou, M.X.; Yang, K.M.; He, J.; Xu, X.Z.; Ju, S.; Guo, K.K.; Wang, Y.P. Two-dimensional vector bending sensor based on seven-core fiber Bragg gratings. Opt. Express 2018, 26, 23770–23781. [Google Scholar] [CrossRef]
- Bao, W.J.; Sahoo, N.; Sun, Z.Y.; Wang, C.L.; Liu, S.; Wang, Y.P.; Zhang, L. Selective fiber Bragg grating inscription in four-core fiber for two-dimension vector bending sensing. Opt. Express 2020, 28, 26461–26469. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.Y.; Zhou, W.J.; Qiao, X.G.; Albert, J. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings. Sci. Rep. 2015, 5, 17415. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Madrigal, J.; Chen, H.L.; Barrera, D.; Sales, S. Multicore fiber-Bragg-grating-based directional curvature sensor interrogated by a broadband source with a sinusoidal spectrum. Opt. Lett. 2017, 42, 3710–3713. [Google Scholar] [CrossRef] [PubMed]
- Barrera, D.; Madrigal, J.; Sales, S. Long Period Gratings in Multicore Optical Fibers for Directional Curvature Sensor Implementation. J. Lightw. Technol. 2018, 36, 1063–1068. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, W.G.; Chen, L.; Zhang, Y.X.; Geng, P.C.; Zhang, Y.S.; Yan, T.Y.; Yu, L.; Hu, W.; Li, Y.P. Two-dimensional microbend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber. Opt. Lett. 2017, 42, 4938–44941. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Chai, Q.; Tan, T.; Mu, B.X.; Liu, Q.; Liu, Y.L.; Ren, J.; Zhang, J.Z.; Oh, K.; Lewis, E.; et al. Directional Bending Sensor Based on a Dual Side-Hole Fiber Mach–Zehnder Interferometer. IEEE Photon. Technol. Lett. 2018, 30, 375–378. [Google Scholar] [CrossRef]
- Kong, Y.J.; Shu, X.W. In-Fiber Hybrid Cladding Waveguide by Femtosecond Inscription for Two-Dimensional Vector Bend Sensing. J. Lightw. Technol. 2021, 39, 2194–2204. [Google Scholar] [CrossRef]
- Ding, L.; Li, Y.; Zhou, C.; Hu, M.; Xiong, Y.L.; Zeng, Z.L. In-Fiber Mach-Zehnder Interferometer Based on Three-Core Fiber for Measurement of Directional Bending. Sensors 2019, 19, 205. [Google Scholar] [CrossRef]
- Yang, J.; Guan, C.Y.; Zhang, J.M.; Wang, M.J.; Yang, M.; Zhu, Z.; Wang, P.F.; Yang, J.; Yuan, L.B. Low-temperature crosstalk and surrounding refractive index insensitive vector bending sensor based on hole-assistant dual-core fiber. Appl. Opt. 2019, 58, 6597–6603. [Google Scholar] [CrossRef]
- Yang, J.; Zou, F.; Guan, C.Y.; Ye, P.; Gao, S.; Zhu, Z.; Li, P.; Shi, J.H.; Yang, J.; Yuan, L.B. Two-dimensional vector bending sensor based on a hole-assisted three-core fiber coupler. Opt. Lett. 2022, 47, 5953–5956. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.X.; Zhang, W.G.; Kong, L.X.; Li, Z.; Chen, G.T.; Yang, J.; Kang, X.X.; Yan, T.Y. Two-dimensional microbend sensor based on the 2-core fiber with hump-shaped taper fiber structure. Opt. Fiber Technol. 2019, 52, 101948. [Google Scholar] [CrossRef]
- Amorebieta, J.; Ortega-Gomez, A.; Durana, G.; Fernández, R.; Antonio-Lopez, E.; Schülzgen, A.; Zubia, J.; Amezcua-Correa, R.; Villatoro, J. Compact omnidirectional multicore fiber-based vector bending sensor. Sci. Rep. 2021, 11, 5989. [Google Scholar] [CrossRef]
- Villatoro, J.; Amorebieta, J.; Ortega-Gomez, A.; Antonio-Lopez, E.; Zubia, J.; Schülzgen, A.; Amezcua-Correa, R. Composed multicore fiber structure for direction-sensitive curvature monitoring. APL Photonics 2020, 5, 070801. [Google Scholar] [CrossRef]
- Zhang, S.X.; Liu, Y.; Guo, H.Y.; Zhou, A.; Yuan, L.B. Highly Sensitive Vector Curvature Sensor Based on Two Juxtaposed Fiber Michelson Interferometers with Vernier-Like Effect. IEEE Sens. J. 2019, 19, 2148–2154. [Google Scholar] [CrossRef]
- Blanchard, P.M.; Burnett, J.G.; Erry, G.R.G.; Greenaway, A.H.; Harrison, P.; Mangan, B.; Knight, J.C.; Russell, P.S.; Gander, M.J.; McBride, R.; et al. Two-dimensional bend sensing with a single, multi-core optical fiber. Smart Mater. Struct. 2000, 9, 132–140. [Google Scholar] [CrossRef]
- Ouyang, Y.; Guo, H.Y.; Ouyang, X.W.; Zhao, Y.J.; Zheng, Z.; Zhou, C.M.; Zhou, A. An In-Fiber Dual Air-Cavity Fabry–Perot Interferometer for Simultaneous Measurement of Strain and Directional Bend. IEEE Sens. J. 2017, 17, 3362–3366. [Google Scholar] [CrossRef]
- Qi, B.B.; Su, B.J.; Zhang, F.; Xu, O.; Qin, Y.W. Temperature-Insensitive Two-Dimensional Vector Bending Sensor Based on Fabry-Pérot Interferometer Incorporating a Seven-Core Fiber. IEEE Photon. J. 2022, 14, 6844809. [Google Scholar] [CrossRef]
- Oliveira, R.; Cardoso, M.; Rocha, A.M. Two-dimensional vector bending sensor based on Fabry-Pérot cavities in a multicore fiber. Opt. Express 2022, 30, 2230–2246. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, C.Y.; Yu, R.W.; Ji, W.; Qin, Y.; Shen, Y.C.; Chen, W.; Liu, A.Q.; Xiao, L.M. 3D printed multicore fiber-tip discriminative sensor for magnetic field and temperature measurements. Light Adv. Manuf. 2024, 5, 84–94. [Google Scholar] [CrossRef]
- Oliveira, R.; Bilro, L.; Nogueira, R. Fabry-Pérot cavities based on photopolymerizable resins for sensing applications. Opt. Mater. Express 2018, 8, 2208–2221. [Google Scholar] [CrossRef]
- Yang, A.A.; Bao, W.J.; Chen, F.Y.; Li, X.Y.; Wang, R.H.; Wang, Y.P.; Qiao, X.G. Two-dimensional displacement (bending) sensor based on cascaded Fabry–Perot interferometers fabricated in a seven-core fiber. Opt. Express 2023, 31, 7753–7763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fu, S.N.; Tang, M.; Liu, D.M. Parallel Fabry-Perot interferometers fabricated on multicore-fiber for temperature and strain discriminative sensing. Opt. Express 2020, 28, 3190–3199. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.Z.; Jiang, Q. Force sensitivity and fringe contrast characteristics of spheroidal Fabry-Perot interferometers. Opt. Express 2020, 28, 24586–24598. [Google Scholar] [CrossRef]
- Kong, L.X.; Zhang, Y.X.; Zhang, W.G.; Zhang, Y.S.; Yu, L.; Wang, S.; Geng, P.C.; Yan, T.Y. High-sensitivity and fast-response fiber-optic micro-thermometer based on a piano-concave Fabry-Perot cavity filled with PDMS. Sens. Actuators A-Phys. 2018, 281, 236–242. [Google Scholar] [CrossRef]
- Cui, J.X.; Luo, H.J.; Lu, J.N.; Cheng, X.; Tam, H.Y. Random forest assisted vector displacement sensor based on a multicore fiber. Opt. Express 2021, 29, 15852–15864. [Google Scholar] [CrossRef]
- Liao, C.R.; Hu, T.Y.; Wang, D.N. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Opt. Express 2012, 20, 22813–22818. [Google Scholar] [CrossRef]
- Cibula, E.; Donlagic, D. Low-loss semi-reflective in-fiber mirrors. Opt. Express 2010, 18, 12017–12026. [Google Scholar] [CrossRef]
- Ji, W.; Shen, Z.H.; Yu, R.W.; Wang, C.Y.; Yang, Z.Y.; Liu, L.Y.; Xu, L.; Chen, W.; Chiang, K.S.; Xiao, L.M. Spacing-Tailored Multicore Fiber Interface for Efficient FIFO Devices. J. Lightw. Technol. 2022, 40, 5682–5688. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, W.B.; Wang, J.X.; Liu, J.; Su, R.X.; Wang, X.M. Multimode optical fiber surface plasmon resonance signal processing based on the Fourier Series Fitting. Plasmonics 2016, 11, 721–727. [Google Scholar] [CrossRef]
Methods of Fabrication | The Size of the Device (μm) | Fringe Contrast (dB) | The Maximum Bending Sensitivity (pm/m−1) | The Temperature Sensitivity (pm/°C) | Ref. |
---|---|---|---|---|---|
Cold splicing | 600 | 18 | 420 | 176 (need temperature compensation) | [29] |
Dual side-hole fiber splicing | 135 | 0.9 | 242.5 | 4.1 | [27] |
Silica capillary optical fiber splicing | 225 | 13 | 200.6 | 0.67 | [28] |
Reflection mirrors fabricated by femtosecond laser | 1000 | 13.5 | 48.03 nm/mm equivalent to 2.9 nm/m−1 | 532 (need temperature compensation) | [32] |
Femtosecond laser micro-holes drilling and splicing | 26 | 8.7 | - | 0.74 | [33] |
Corrosion and splicing | 26.05 | 24 | 200.6 | 9.8 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Ji, W.; Xiong, C.; Wang, C.; Qin, Y.; Shen, Y.; Xiao, L. Parallel Farby–Perot Interferometers in an Etched Multicore Fiber for Vector Bending Measurements. Micromachines 2024, 15, 1406. https://doi.org/10.3390/mi15121406
Wang K, Ji W, Xiong C, Wang C, Qin Y, Shen Y, Xiao L. Parallel Farby–Perot Interferometers in an Etched Multicore Fiber for Vector Bending Measurements. Micromachines. 2024; 15(12):1406. https://doi.org/10.3390/mi15121406
Chicago/Turabian StyleWang, Kang, Wei Ji, Cong Xiong, Caoyuan Wang, Yu Qin, Yichun Shen, and Limin Xiao. 2024. "Parallel Farby–Perot Interferometers in an Etched Multicore Fiber for Vector Bending Measurements" Micromachines 15, no. 12: 1406. https://doi.org/10.3390/mi15121406
APA StyleWang, K., Ji, W., Xiong, C., Wang, C., Qin, Y., Shen, Y., & Xiao, L. (2024). Parallel Farby–Perot Interferometers in an Etched Multicore Fiber for Vector Bending Measurements. Micromachines, 15(12), 1406. https://doi.org/10.3390/mi15121406