Effect of TetR Family Transcriptional Regulator PccD on Phytosterol Metabolism of Mycolicibacterium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Cultivation Conditions
2.2. Construction of Recombinant Strains
2.3. Isolation of RNA and Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) Analyses
2.4. Protein Overexpression and Purification
2.5. Gel Migration Experiment (EMSA)
2.6. DNase I Footprinting
2.7. Determination and Analytical Methods
2.7.1. Cell Growth and Bacterial Viability Detection
2.7.2. Determination of Intracellular Propionyl-CoA
2.7.3. Analysis of Product AD
2.7.4. Statistical Analysis Methods for Data in the Article
3. Results and Discussion
3.1. Genome Analysis Shows That the PCC Gene Operon Is Conserved in Actinomycetes
3.2. The Transcription Factor PccD Directly Inhibits the Expression of pccA and pccB Genes
3.3. Transcription Factor PccD Binds to Promoter Regions Upstream of pccA and pccB Genes
3.4. Regulation of Propionyl-CoA Metabolism by Transcription Factor PccD
3.5. Deletion of the pccD Gene in Msp Improves AD Yield
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, H.; Wang, Y.; Jiang, K.; Chen, X.; Zhang, W.; Zhang, Y.; Deng, Z.; Qu, X. A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors. Angew. Chem. Int. Ed. 2020, 60, 5414–5420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, P.; Pan, D.; Zhou, X. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in Mycolicibacterium and the Application of Fermentation Biotechnology in C-19 Steroid Production. Int. J. Mol. Sci. 2023, 24, 5236. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Y.; Shen, Y.; Zhang, X.; Zhang, Z.; Xu, S.; Luo, J.; Xia, M.; Wang, M. Economical Production of Androstenedione and 9α-Hydroxyandrostenedione Using Untreated Cane Molasses by Recombinant Mycobacteria. Bioresour. Technol. 2019, 290, 121750. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Zhang, X.; Rao, Z.; Xu, M.; Yang, T.; Xu, Z.; Yang, S. Identification of Steroid C27 Monooxygenase Isoenzymes Involved in Sterol Catabolism and Stepwise Pathway Engineering of Mycobacterium Neoaurum for Improved Androst-1,4-Diene-3,17-Dione Production. J. Ind. Microbiol. Biotechnol. 2019, 46, 635–647. [Google Scholar] [CrossRef]
- Szentirmai, A. Microbial Physiology of Sidechain Degradation of Sterols. J. Ind. Microbiol. 1990, 6, 101–115. [Google Scholar] [CrossRef]
- Shaw, L.; Engel, P.C. The Suicide Inactivation of Ox Liver Short-Chain Acyl-CoA Dehydrogenase by Propionyl-CoA. Formation of an FAD Adduct. Biochem. J. 1985, 230, 723–731. [Google Scholar] [CrossRef]
- Schwab, M.A.; Sauer, S.W.; Okun, J.G.; Nijtmans, L.G.J.; Rodenburg, R.J.T.; van den Heuvel, L.P.; Dröse, S.; Brandt, U.; Hoffmann, G.F.; Ter Laak, H.; et al. Secondary Mitochondrial Dysfunction in Propionic Aciduria: A Pathogenic Role for Endogenous Mitochondrial Toxins. Biochem. J. 2006, 398, 107–112. [Google Scholar] [CrossRef]
- Gregersen, N. The Specific Inhibition of the Pyruvate Dehydrogenase Complex from Pig Kidney by Propionyl-CoA and Isovaleryl-CoA. Biochem. Med. 1981, 26, 20–27. [Google Scholar] [CrossRef]
- Brock, M.; Buckel, W. On the Mechanism of Action of the Antifungal Agent Propionate. Eur. J. Biochem. 2004, 271, 3227–3241. [Google Scholar] [CrossRef]
- Wongkittichote, P.; Mew, N.A.; Chapman, K.A. Propionyl-CoA Carboxylase—A Review. Mol. Genet. Metab. 2017, 122, 145–152. [Google Scholar] [CrossRef]
- Rhee, K.Y.; Carvalho, L.P.S.; Bryk, R.; Ehrt, S.; Marrero, J.; Park, S.W.; Schnappinger, D.; Venugopal, A.; Nathan, C. Central Carbon Metabolism in Mycobacterium Tuberculosis: An Unexpected Frontier. Trends Microbiol. 2011, 19, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; VanderVen, B.C.; Fahey, R.J.; Russell, D.G. Intracellular Mycobacterium Tuberculosis Exploits Host-Derived Fatty Acids to Limit Metabolic Stress. J. Biol. Chem. 2013, 288, 6788–6800. [Google Scholar] [CrossRef] [PubMed]
- Hayden, J.D.; Brown, L.R.; Gunawardena, H.P.; Perkowski, E.F.; Chen, X.; Braunstein, M. Reversible Acetylation Regulates Acetate and Propionate Metabolism in Mycobacterium Smegmatis. Microbiology 2013, 159, 1986–1999. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Elias, E.J.; Upton, A.M.; Cherian, J.; McKinney, J.D. Role of the Methylcitrate Cycle in Mycobacterium Tuberculosis Metabolism, Intracellular Growth, and Virulence. Mol. Microbiol. 2006, 60, 1109–1122. [Google Scholar] [CrossRef]
- Savvi, S.; Warner, D.F.; Kana, B.D.; McKinney, J.D.; Mizrahi, V.; Dawes, S.S. Functional Characterization of a Vitamin B12-Dependent Methylmalonyl Pathway in Mycobacterium Tuberculosis: Implications for Propionate Metabolism during Growth on Fatty Acids. J. Bacteriol. 2008, 190, 3886–3895. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, M.; Ye, B.-C. TetR Family Transcriptional Regulator PccD Negatively Controls Propionyl Coenzyme A Assimilation in Saccharopolyspora Erythraea. J. Bacteriol. 2017, 199, e00281-17. [Google Scholar] [CrossRef]
- Roth, A.T.; Philips, J.A.; Chandra, P. The Role of Cholesterol and Its Oxidation Products in Tuberculosis Pathogenesis. Immunometabolism 2024, 6, e00042. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, X.; Wang, X.; Wang, L.; Xia, M.; Luo, J.; Shen, Y.; Wang, M. Improving Phytosterol Biotransformation at Low Nitrogen Levels by Enhancing the Methylcitrate Cycle with Transcriptional Regulators PrpR and GlnR of Mycobacterium Neoaurum. Microb. Cell Fact. 2020, 1, 13. [Google Scholar] [CrossRef]
- Eoh, H.; Rhee, K.Y. Methylcitrate Cycle Defines the Bactericidal Essentiality of Isocitrate Lyase for Survival of Mycobacterium Tuberculosis on Fatty Acids. Proc. Natl. Acad. Sci. USA 2014, 111, 4976–4981. [Google Scholar] [CrossRef]
- Griffin, J.E.; Pandey, A.K.; Gilmore, S.A.; Mizrahi, V.; McKinney, J.D.; Bertozzi, C.R.; Sassetti, C.M. Cholesterol Catabolism by Mycobacterium Tuberculosis Requires Transcriptional and Metabolic Adaptations. Chem. Biol. 2012, 19, 218–227. [Google Scholar] [CrossRef]
- Liu, M.; Xiong, L.-B.; Tao, X.; Liu, Q.-H.; Wang, F.-Q.; Wei, D.-Z. Metabolic Adaptation of Mycobacterium Neoaurum ATCC 25795 in the Catabolism of Sterols for Producing Important Steroid Intermediates. J. Agric. Food Chem. 2018, 66, 12141–12150. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.-J.; Wang, L.; Liu, H.-H.; Liu, Y.-J.; Ren, Y.-H.; Wang, F.-Q.; Wei, D.-Z. Characterization and Engineering Control of the Effects of Reactive Oxygen Species on the Conversion of Sterols to Steroid Synthons in Mycobacterium Neoaurum. Metab. Eng. 2019, 56, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Reeves, A.; Brikun, I.; Cernota, W.; Leach, B.; Gonzalez, M.; Markweber, J. Engineering of the Methylmalonyl-CoA Metabolite Node of Saccharopolyspora Erythraea for Increased Erythromycin Production. Metab. Eng. 2007, 9, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Fan, Y.; Wei, L.; Hu, F.; Hua, Q. Effects of the Methylmalonyl-CoA Metabolic Pathway on Ansamitocin Production in Actinosynnema Pretiosum. Appl. Biochem. Biotechnol. 2016, 181, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.S.; Yoo, Y.J.; Park, J.W.; Park, S.R.; Han, A.R.; Ban, Y.H.; Kim, E.J.; Kim, E.; Yoon, Y.J. A Combined Approach of Classical Mutagenesis and Rational Metabolic Engineering Improves Rapamycin Biosynthesis and Provides Insights into Methylmalonyl-CoA Precursor Supply Pathway in Streptomyces Hygroscopicus ATCC 29253. Appl. Microbiol. Biotechnol. 2011, 91, 1389–1397. [Google Scholar] [CrossRef]
- Wang, W.; Tang, H.; Cui, X.; Wei, W.; Wu, J.; Ye, B.-C. Engineering of a TetR Family Transcriptional Regulator BkdR Enhances Heterologous Spinosad Production in Streptomyces Albus B4 Chassis. Appl. Environ. Microbiol. 2024, 90, e00838-24. [Google Scholar] [CrossRef]
- Balhana, R.J.C.; Swanston, S.N.; Coade, S.; Withers, M.; Sikder, M.H.; Stoker, N.G.; Kendall, S.L. bkaR Is a TetR-Type Repressor That Controls an Operon Associated with Branched-Chain Keto-Acid Metabolism in Mycobacteria. FEMS Microbiol. Lett. 2013, 345, 132–140. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Y.; Ye, B.-C. PccD Regulates Branched-Chain Amino Acid Degradation and Exerts a Negative Effect on Erythromycin Production in Saccharopolyspora Erythraea. Appl. Environ. Microbiol. 2018, 84, e00049-18. [Google Scholar] [CrossRef]
- Lyu, M.; Cheng, Y.; Han, X.; Wen, Y.; Song, Y.; Li, J.; Chen, Z. AccR, a TetR Family Transcriptional Repressor, Coordinates Short-Chain Acyl Coenzyme A Homeostasis in Streptomyces Avermitilis. Appl. Environ. Microbiol. 2020, 86, e00508-20. [Google Scholar] [CrossRef]
- Browning, D.F.; Busby, S.J.W. The Regulation of Bacterial Transcription Initiation. Nat. Rev. Microbiol. 2004, 2, 57–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, X.; Yao, Y.; Xu, Q.; Shi, H.; Wang, K.; Feng, W.; Shen, Y. Coexpression of VHb and MceG Genes in Mycobacterium sp. Strain LZ2 Enhances Androstenone Production via Immobilized Repeated Batch Fermentation. Bioresour. Technol. 2021, 342, 125965. [Google Scholar] [CrossRef] [PubMed]
- Stover, C.K.; de la Cruz, V.F.; Fuerst, T.R.; Burlein, J.E.; Benson, L.A.; Bennett, L.T.; Bansal, G.P.; Young, J.F.; Lee, M.H.; Hatfull, G.F.; et al. New Use of BCG for Recombinant Vaccines. Nature 1991, 351, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Parish, T.; Stoker, N.G. Use of a Flexible Cassette Method to Generate a Double Unmarked Mycobacterium Tuberculosis tlyA plcABC Mutant by Gene Replacement. Microbiology 2000, 146, 1969–1975. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-Z.; Wu, Z.-H.; Gao, S.-J.; Zhang, W. Rational Modification of Tricarboxylic Acid Cycle for Improving L-Lysine Production in Corynebacterium Glutamicum. Microb. Cell Fact. 2018, 17, 105. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Strains, Plasmids, and Primers | Significant Properties | Source or Purpose | References |
---|---|---|---|
strain | |||
Mutant of BNCC191574 | Starting strain | BeNa Culture Collection (Xinyang, China) | [31] |
Escherichia coli DH5α | General cloning host Transgen | Biotech (Beijing, China) | |
E. coli BL21 (DE3) | Gene expression host | Sangon Biotech (Shanghai, China) | |
Msp-pccD | pccD overexpressed This work strain of Msp | This work | |
Msp-ΔpccD | Deletion of pccD in Msp | This work | |
plasmid | |||
pMV261 | Shuttle vector of Mycobacterium and Escherichia coli, carrying the heat shock hsp60 promoter, KanR | Overexpression of target genes | [32] |
p2NIL | Plasmid for allelic exchange, non-replicative in Mycobacterium species, KanR | Knockout plasmid construction | [33] |
pGOAL19 | lacZ, hyg, and sacB marker genes cassette, HygR | Knockout plasmid construction | [33] |
pMV261-pccD | pMV261 carrying an extra pccD for overexpression, KanR | This work | |
p2G19-pccD | p2NIL carrying the homologous arms of pccD and the selection markers from pGOAL19 | This work | |
pET-30a (+) | E. coli expression plasmid | Sangon Biotech (Shanghai, China) | |
pET-pccD | Insertion of pccD gene at pET-30a (+) multiple cloning sites for heterologous expression of PccD protein | This work | |
Primer | |||
M13-f | GTTGTAAAACGACGGCCAG | PCR preparation of probes | |
M13-r | CAGGAAACAGCTATGAC | PCR preparation of probes | |
pccD-f | GGATCCAGCTGCAGAATTCATGCCCACTGAGACTCCGCG | pccD amplification | |
pccD-r | CGCTAGTTAACTACGTCGACTCAGTGCGCGGCGGGTCAAGG | pccD amplification | |
pccD-U-f | ATAAACTACCGCATTAAAGCTTACAACACGCCGTTGTTGGCG | pccD deletion | |
pccD-U-r | CAGATCTCGATCGCCGGCCCGCTGACAC | pccD deletion | |
pccD-D-f | CGGCGATCGAGATCTGGGTCGACGTACT | pccD deletion | |
pccD-D-r | TGACACTATAGAATACATAGGATCCGTACATGACCACCGGCCGGG | pccD deletion | |
16s-f-RT/16s-r-RT | GTAGGGTCCGAGCGTTGTC/GCGTCAGTTACTGCCCAGAG | Quantitative RT-PCR | |
pccA-f-RT/pccA-r-RT | GATGGAACACGCGCTCAAAG/ACTCCTTGCTTGCGGTGATG | Quantitative RT-PCR | |
pccB-f-RT/pccB-r-RT | TGTACGACGAATGTCCC/CTTCTTGACGGTGATCGGGT | Quantitative RT-PCR | |
pccD-f-RT/pccD-r-RT | GCATTTCGCCAACAAGGAGG/TCGATGAGTCTGTCCAGTGC | Quantitative RT-PCR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Pan, D.; Li, F.; Liu, Y.; Huang, Y.; Zhou, X.; Zhang, Y. Effect of TetR Family Transcriptional Regulator PccD on Phytosterol Metabolism of Mycolicibacterium. Microorganisms 2024, 12, 2349. https://doi.org/10.3390/microorganisms12112349
Xiao P, Pan D, Li F, Liu Y, Huang Y, Zhou X, Zhang Y. Effect of TetR Family Transcriptional Regulator PccD on Phytosterol Metabolism of Mycolicibacterium. Microorganisms. 2024; 12(11):2349. https://doi.org/10.3390/microorganisms12112349
Chicago/Turabian StyleXiao, Peiyao, Delong Pan, Fuyi Li, Yuying Liu, Yang Huang, Xiuling Zhou, and Yang Zhang. 2024. "Effect of TetR Family Transcriptional Regulator PccD on Phytosterol Metabolism of Mycolicibacterium" Microorganisms 12, no. 11: 2349. https://doi.org/10.3390/microorganisms12112349
APA StyleXiao, P., Pan, D., Li, F., Liu, Y., Huang, Y., Zhou, X., & Zhang, Y. (2024). Effect of TetR Family Transcriptional Regulator PccD on Phytosterol Metabolism of Mycolicibacterium. Microorganisms, 12(11), 2349. https://doi.org/10.3390/microorganisms12112349