Bioremediation Potential of Rhodococcus qingshengii PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil Collection and Treatments
2.2. DNA Extraction, Library Construction, and Sequencing
2.3. Statistical Analysis
2.4. Co-Occurrence Network Analysis and Community Assembly
2.5. Data Availability
3. Results
3.1. Effects of Sodium Selenite and Strain PM1 on Soil Physicochemical Properties
3.2. Dynamics of Residual Sodium Selenite in Each Soil Treatment
3.3. Effects of Sodium Selenite and Strain PM1 on Soil Bacterial Community Composition and Alpha Diversity
3.4. Effects of Sodium Selenite and Strain PM1 on Soil Bacterial Beta Diversity
3.5. Effects of Sodium Selenite and Strain PM1 on Soil Bacterial Co-Occurrence Networks
3.6. Ecological Processes Governing Bacterial Community Assembly
4. Discussion
4.1. Effects of Sodium Selenite and Strain PM1 on Bacterial Diversity
4.2. Co-Occurrence Network Analysis of Soil Microbial Community
4.3. Stochastic and Deterministic Processes Structure Bacterial Community Assembly
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rua, R.M.; Nogales, F.; Carreras, O.; Ojeda, M.L. Selenium, selenoproteins and cancer of the thyroid. J. Trace Elem. Med. Biol. 2023, 76, 127115. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-M.; Wang, X.-L.; Jin, X.-M.; Huang, J.-Q.; Wang, L.-S. The effect of selenium on antioxidant system in aquaculture animals. Front. Physiol. 2023, 14, 1153511. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Lun, L.; Rashid, A.; Zada, N.; Chen, B.; Shahab, A.; Li, P.; Ali, M.U.; Lin, S.; Wong, M.H. A critical analysis of sources, pollution, and remediation of selenium, an emerging contaminant. Environ. Geochem. Health 2023, 45, 1359–1389. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Biswas, A.; Michalke, B.; Dhillon, K.S.; Naidu, R. Selenium: A global contaminant of significant concern to environment and human health. In Inorganic Contaminants and Radionuclides; Elsevier: Amsterdam, The Netherlands, 2024; pp. 427–480. [Google Scholar]
- Pal, P.; Malhotra, M. Emerging technologies for selenium separation and recovery from aqueous systems: A review for sustainable management strategy. Can. J. Chem. Eng. 2023, 101, 2859–2877. [Google Scholar] [CrossRef]
- Gan, X.; Huang, J.-C.; Zhang, M.; Zhou, C.; He, S.; Zhou, W. Remediation of selenium-contaminated soil through combined use of earthworm Eisenia fetida and organic materials. J. Hazard. Mater. 2021, 405, 124212. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A.; Pilon-Smits, E.; deSouza, M.; Lin, Z.-Q.; Terry, N. Remediation of selenium-polluted soils and waters by phytovolatilization. In Phytoremediation of Contaminated Soil and Water; CRC Press: Boca Raton, FL, USA, 2020; pp. 61–83. [Google Scholar]
- Börsig, N.; Scheinost, A.C.; Schild, D.; Neumann, T. Mechanisms of selenium removal by partially oxidized magnetite nanoparticles for wastewater remediation. Appl. Geochem. 2021, 132, 105062. [Google Scholar] [CrossRef]
- Wang, D.; Rensing, C.; Zheng, S. Microbial reduction and resistance to selenium: Mechanisms, applications and prospects. J. Hazard. Mater. 2022, 421, 126684. [Google Scholar] [CrossRef]
- Lashani, E.; Moghimi, H.; Turner, R.J.; Amoozegar, M.A. Selenite bioreduction by a consortium of halophilic/halotolerant bacteria and/or yeasts in saline media. Environ. Pollut. 2023, 331, 121948. [Google Scholar] [CrossRef]
- Lin, C.; Liang, S.; Yang, X.; Yang, Q. Toxicity monitoring signals analysis of selenite using microbial fuel cells. Sci. Total Environ. 2023, 862, 160801. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Z.; Zhao, Y.; Peng, M. Unveiling the vital role of soil microorganisms in selenium cycling: A review. Front. Microbiol. 2024, 15, 1448539. [Google Scholar] [CrossRef]
- Wang, F.; Gong, T.; Du, M.; Xiao, X.; Jiang, Z.; Hu, W.; Wang, Y.; Cheng, Y. Whole genome sequencing and analysis of selenite-reducing bacteria Bacillus paralicheniformis SR14 in response to different sugar supplements. AMB Express 2023, 13, 93. [Google Scholar] [CrossRef]
- Yuan, Z.; Fang, Y.; He, M.; Wang, X.; Pan, F. An Optimized Method for the Bioremediation of Se Pollution and the Biosynthesis of Se Nanoparticles with Sodium Selenite-Reducing Bacteria Stenotrophomonas sp. EGS12. J. Biobased Mater. Bioenergy 2024, 18, 810–818. [Google Scholar] [CrossRef]
- Huang, C.; Wang, H.; Shi, X.; Wang, Y.; Li, P.; Yin, H.; Shao, Y. Two new selenite reducing bacterial isolates from paddy soil and the potential Se biofortification of paddy rice. Ecotoxicology 2021, 30, 1465–1475. [Google Scholar] [CrossRef]
- Peng, M.; Zhang, D.; Wang, C.; Jiang, Z.; Huang, X.; Zhou, F.; Huang, F.; Wang, Z. Complete genome sequence of Rhodococcus qingshengii strain PM1, isolated from a selenium-rich mine in China. Microbiol. Resour. Announc. 2023, 12, e01007–e01022. [Google Scholar] [CrossRef]
- Luo, X.; Wu, C.; Lin, Y.; Li, W.; Deng, M.; Tan, J.; Xue, S. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J. Environ. Sci. 2023, 125, 662–677. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, X.; Hu, Y.; Li, F.; Cheng, H. Soil bacterial community structure in the habitats with different levels of heavy metal pollution at an abandoned polymetallic mine. J. Hazard. Mater. 2023, 442, 130063. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, Z.; Zhang, Z. Effects of heavy metal pollution and soil physicochemical properties on the Sphagnum farmland soil microbial community structure in Southern Guizhou, China. Int. J. Phytoremediation 2023, 25, 1762–1773. [Google Scholar] [CrossRef]
- Firincă, C.; Zamfir, L.-G.; Constantin, M.; Răut, I.; Capră, L.; Popa, D.; Jinga, M.-L.; Baroi, A.M.; Fierăscu, R.C.; Corneli, N.O. Microbial Removal of Heavy Metals from Contaminated Environments Using Metal-Resistant Indigenous Strains. J. Xenobiotics 2023, 14, 51–78. [Google Scholar] [CrossRef]
- Wang, X.; Teng, Y.; Wang, X.; Xu, Y.; Li, R.; Sun, Y.; Hu, W.; Zhao, L.; Ren, W.; Luo, Y. Effects of combined pollution of organic pollutants and heavy metals on biodiversity and soil multifunctionality in e-waste contaminated soil. J. Hazard. Mater. 2022, 440, 129727. [Google Scholar] [CrossRef]
- Rath, S.; Das, S. Oxidative stress-induced DNA damage and DNA repair mechanisms in mangrove bacteria exposed to climatic and heavy metal stressors. Environ. Pollut. 2023, 339, 122722. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Li, Y.; Xiao, P.; Liu, S.; Shao, J.; Cai, Y.; Yan, X.; Fan, L. Biochar amendment reduces biological nitrogen fixation and nitrogen use efficiency in cadmium-contaminated paddy fields. J. Environ. Manag. 2023, 344, 118338. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ning, D. Stochastic community assembly: Does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 2017, 81, e00002-17. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xiong, J.; Liu, L.; Wang, F.; Cao, W.; Xu, W. Microbial interactions strengthen deterministic processes during community assembly in a subtropical estuary. Sci. Total Environ. 2024, 906, 167499. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Chen, S.; Zhang, W.; Zheng, X.; Ding, H.; Fang, Y. Converse (deterministic and stochastic) ecological process drive soil bacterial and fungal community assembly in subtropical forest. Appl. Soil Ecol. 2024, 193, 105129. [Google Scholar] [CrossRef]
- Li, H.; Luo, Q.-P.; Zhao, S.; Zhou, Y.-Y.; Huang, F.-Y.; Yang, X.-R.; Su, J.-Q. Effect of phenol formaldehyde-associated microplastics on soil microbial community, assembly, and functioning. J. Hazard. Mater. 2023, 443, 130288. [Google Scholar] [CrossRef]
- Chave, J. Neutral theory and community ecology. Ecol. Lett. 2004, 7, 241–253. [Google Scholar] [CrossRef]
- Fargione, J.; Brown, C.S.; Tilman, D. Community assembly and invasion: An experimental test of neutral versus niche processes. Proc. Natl. Acad. Sci. USA 2003, 100, 8916–8920. [Google Scholar] [CrossRef]
- Graham, E.B.; Knelman, J.E. Implications of soil microbial community assembly for ecosystem restoration: Patterns, process, and potential. Microb. Ecol. 2023, 85, 809–819. [Google Scholar] [CrossRef]
- Li, M.; Yao, J.; Sunahara, G.; Duran, R.; Liu, B.; Cao, Y.; Li, H.; Pang, W.; Liu, H.; Jiang, S. Assembly processes of bacterial and fungal communities in metal (loid) s smelter soil. J. Hazard. Mater. 2023, 451, 131153. [Google Scholar] [CrossRef]
- Zhong, X.; Chen, Z.; Ding, K.; Liu, W.-S.; Baker, A.J.; Fei, Y.-H.; He, H.; Wang, Y.; Jin, C.; Wang, S. Heavy metal contamination affects the core microbiome and assembly processes in metal mine soils across Eastern China. J. Hazard. Mater. 2023, 443, 130241. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, X.; Zhao, C.; Zhou, F.; Peng, M. Integrative Muti-omics analysis reveals selenite reduction mechanisms of Rhodococcus qingshengii PM1. unpublished results.
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’hara, R.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 1.17-4. 2010. Available online: http://cran.r-project.org/package=vegan (accessed on 24 December 2023).
- Deng, Y.; Jiang, Y.H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular ecological network analyses. BMC Bioinform. 2012, 13, 113. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Web and Social Media, Buffalo, NY, USA, 24 December 2023. [Google Scholar]
- Yuan, M.M.; Guo, X.; Wu, L.; Zhang, Y.; Xiao, N.; Ning, D.; Shi, Z.; Zhou, X.; Wu, L.; Yang, Y. Climate warming enhances microbial network complexity and stability. Nat. Clim. Chang. 2021, 11, 343–348. [Google Scholar] [CrossRef]
- Ning, D.; Deng, Y.; Tiedje, J.M.; Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl. Acad. Sci. USA 2019, 116, 16892–16898. [Google Scholar] [CrossRef] [PubMed]
- Sloan, W.T.; Lunn, M.; Woodcock, S.; Head, I.M.; Nee, S.; Curtis, T.P. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 2006, 8, 732–740. [Google Scholar] [CrossRef]
- Stegen, J.C.; Lin, X.; Fredrickson, J.K.; Chen, X.; Kennedy, D.W.; Murray, C.J.; Rockhold, M.L.; Konopka, A. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013, 7, 2069–2079. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, S.; Liu, X.; Yao, P.; Ge, T.; Zhang, X.-H. Spatiotemporal dynamics of the archaeal community in coastal sediments: Assembly process and co-occurrence relationship. ISME J. 2020, 14, 1463–1478. [Google Scholar] [CrossRef]
- Ning, D.; Yuan, M.; Wu, L.; Zhang, Y.; Guo, X.; Zhou, X.; Yang, Y.; Arkin, A.P.; Firestone, M.K.; Zhou, J. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 2020, 11, 4717. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Singh, B.K.; Maestre, F.T. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett. 2017, 20, 1295–1305. [Google Scholar] [CrossRef]
- Větrovský, T.; Baldrian, P. An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. Biol. Fertil. Soils 2015, 51, 827–837. [Google Scholar] [CrossRef]
- El Baz, S.; Baz, M.; Barakate, M.; Hassani, L.; El Gharmali, A.; Imziln, B. Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. Sci. World J. 2015, 2015, 761834. [Google Scholar] [CrossRef] [PubMed]
- Sazykin, I.; Khmelevtsova, L.; Azhogina, T.; Sazykina, M. Heavy metals influence on the bacterial community of soils: A review. Agriculture 2023, 13, 653. [Google Scholar] [CrossRef]
- Alvarez, A.; Saez, J.M.; Costa, J.S.D.; Colin, V.L.; Fuentes, M.S.; Cuozzo, S.A.; Benimeli, C.S.; Polti, M.A.; Amoroso, M.J. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 2017, 166, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, S.; Tang, L.; Pan, X.; Pu, X.; Li, R.; Shen, C. Contribution of heavy metal in driving microbial distribution in a eutrophic river. Sci. Total Environ. 2020, 712, 136295. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.A.; Zhelezova, A.D.; Chernov, T.I.; Dedysh, S.N. Linking ecology and systematics of acidobacteria: Distinct habitat preferences of the Acidobacteriia and Blastocatellia in tundra soils. PLoS ONE 2020, 15, e0230157. [Google Scholar] [CrossRef]
- Gousia, J.; Ishfaq, S.; Uqab, B.; Mudasir, S. Actinomycetes as Biofertilisers for Sustainable Agriculture. In Microbiomes for the Management of Agricultural Sustainability; Springer: Cham, Switzerland, 2023; pp. 183–192. [Google Scholar]
- Hu, S.; Xu, C.; Lu, P.; Wu, M.; Chen, A.; Zhang, M.; Xie, Y.; Han, G. Widespread distribution of the DyP-carrying bacteria involved in the aflatoxin B1 biotransformation in Proteobacteria and Actinobacteria. J. Hazard. Mater. 2024, 478, 135493. [Google Scholar] [CrossRef]
- Barron, S.; Mus, F.; Peters, J.W. Nitrogen-Fixing Gamma Proteobacteria Azotobacter vinelandii—A Blueprint for Nitrogen-Fixing Plants? Microorganisms 2024, 12, 2087. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, X.; Huang, X.; Huang, C.; Wang, H.; Yin, H.; Shao, Y.; Li, P. Linking microbial community composition to farming pattern in selenium-enriched region: Potential role of microorganisms on Se geochemistry. J. Environ. Sci. 2022, 112, 269–279. [Google Scholar] [CrossRef]
- Pedrinho, A.; Mendes, L.W.; de Araujo Pereira, A.P.; Araujo, A.S.F.; Vaishnav, A.; Karpouzas, D.G.; Singh, B.K. Soil microbial diversity plays an important role in resisting and restoring degraded ecosystems. Plant Soil 2024, 500, 325–349. [Google Scholar] [CrossRef]
- Shukla, P.K.; Misra, P.; Maurice, N.; Ramteke, P.W. Heavy metal toxicity and possible functional aspects of microbial diversity in heavy metal-contaminated sites. In Microbial Genomics in Sustainable Agroecosystems; Springer: Singapore, 2019; Volume 2, pp. 255–317. [Google Scholar]
- Louca, S.; Polz, M.F.; Mazel, F.; Albright, M.B.; Huber, J.A.; O’Connor, M.I.; Ackermann, M.; Hahn, A.S.; Srivastava, D.S.; Crowe, S.A. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2018, 2, 936–943. [Google Scholar] [CrossRef]
- Zhu, Z.; Bai, Y.; Lv, M.; Tian, G.; Zhang, X.; Li, L.; Jiang, Y.; Ge, S. Soil fertility, microbial biomass, and microbial functional diversity responses to four years fertilization in an apple orchard in North China. Hortic. Plant J. 2020, 6, 223–230. [Google Scholar] [CrossRef]
- Nizamani, M.M.; Hughes, A.C.; Qureshi, S.; Zhang, Q.; Tarafder, E.; Das, D.; Acharya, K.; Wang, Y.; Zhang, Z.-G. Microbial biodiversity and plant functional trait interactions in multifunctional ecosystems. Appl. Soil Ecol. 2024, 201, 105515. [Google Scholar] [CrossRef]
- Allison, S.D.; Martiny, J.B. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 2008, 105, 11512–11519. [Google Scholar] [CrossRef]
- Aqeel, M.; Ran, J.; Hu, W.; Irshad, M.K.; Dong, L.; Akram, M.A.; Eldesoky, G.E.; Aljuwayid, A.M.; Chuah, L.F.; Deng, J. Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions. Chemosphere 2023, 318, 137924. [Google Scholar] [CrossRef]
- Winterbach, W.; Mieghem, P.V.; Reinders, M.; Wang, H.; Ridder, D.d. Topology of molecular interaction networks. BMC Syst. Biol. 2013, 7, 90. [Google Scholar] [CrossRef]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Tu, Q.; Zhi, X. Functional molecular ecological networks. MBio 2010, 1, e00169-10. [Google Scholar] [CrossRef]
- Connell, J. Response: Intermediate-disturbance hypothesis. Science 1979, 204, 1345. [Google Scholar] [CrossRef]
- Kang, S.; Ma, W.; Li, F.Y.; Zhang, Q.; Niu, J.; Ding, Y.; Han, F.; Sun, X. Functional redundancy instead of species redundancy determines community stability in a typical steppe of Inner Mongolia. PLoS ONE 2015, 10, e0145605. [Google Scholar] [CrossRef]
- Bissett, A.; Brown, M.V.; Siciliano, S.D.; Thrall, P.H. Microbial community responses to anthropogenically induced environmental change: Towards a systems approach. Ecol. Lett. 2013, 16, 128–139. [Google Scholar] [CrossRef]
- Zhou, Y.; Bastida, F.; Liu, Y.; Liu, Y.; Xiao, Y.; Song, P.; Wang, T.; Li, Y. Selenium fertigation with nanobubbles influences soil selenium residual and plant performance by modulation of bacterial community. J. Hazard. Mater. 2022, 423, 127114. [Google Scholar] [CrossRef]
- Shi, S.; Nuccio, E.E.; Shi, Z.J.; He, Z.; Zhou, J.; Firestone, M.K. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett. 2016, 19, 926–936. [Google Scholar] [CrossRef]
- Wei, H.; Peng, C.; Yang, B.; Song, H.; Li, Q.; Jiang, L.; Wei, G.; Wang, K.; Wang, H.; Liu, S. Contrasting soil bacterial community, diversity, and function in two forests in China. Front. Microbiol. 2018, 9, 1693. [Google Scholar]
- Deng, Y.; Zhang, P.; Qin, Y.; Tu, Q.; Yang, Y.; He, Z.; Schadt, C.W.; Zhou, J. Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. Environ. Microbiol. 2016, 18, 205–218. [Google Scholar] [CrossRef]
- Calatayud, J.; Andivia, E.; Escudero, A.; Melián, C.J.; Bernardo-Madrid, R.; Stoffel, M.; Aponte, C.; Medina, N.G.; Molina-Venegas, R.; Arnan, X. Positive associations among rare species and their persistence in ecological assemblages. Nat. Ecol. Evol. 2020, 4, 40–45. [Google Scholar] [CrossRef]
- Hoek, T.A.; Axelrod, K.; Biancalani, T.; Yurtsev, E.A.; Liu, J.; Gore, J. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 2016, 14, e1002540. [Google Scholar] [CrossRef]
- Coyte, K.Z.; Schluter, J.; Foster, K.R. The ecology of the microbiome: Networks, competition, and stability. Science 2015, 350, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Deng, Y.; Zhang, P.; Xue, K.; Liang, Y.; Van Nostrand, J.D.; Yang, Y.; He, Z.; Wu, L.; Stahl, D.A. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl. Acad. Sci. USA 2014, 111, E836–E845. [Google Scholar] [PubMed]
- Wang, K.; Hu, H.; Yan, H.; Hou, D.; Wang, Y.; Dong, P.; Zhang, D. Archaeal biogeography and interactions with microbial community across complex subtropical coastal waters. Mol. Ecol. 2019, 28, 3101–3118. [Google Scholar] [CrossRef] [PubMed]
- Dini-Andreote, F.; Stegen, J.C.; Van Elsas, J.D.; Salles, J.F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl. Acad. Sci. USA 2015, 112, E1326–E1332. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, H.; Cheng, X.; Wu, M.; Song, Y.; Liu, X.; Loni, P.C.; Tuovinen, O.H. Different responses of bacteria and fungi to environmental variables and corresponding community assembly in Sb-contaminated soil. Environ. Pollut. 2022, 298, 118812. [Google Scholar] [CrossRef]
- Mao, J.; Zheng, Z.; Ma, L.; Wang, H.; Wang, X.; Zhu, F.; Xue, S.; Srivastava, P.; Sapsford, D.J. Polymetallic contamination drives indigenous microbial community assembly dominated by stochastic processes at Pb-Zn smelting sites. Sci. Total Environ. 2024, 947, 174575. [Google Scholar] [CrossRef]
- Li, X.; Wan, W.; Zheng, L.; Wang, A.; Luo, X.; Huang, Q.; Chen, W. Community assembly mechanisms and co-occurrence patterns of nitrite-oxidizing bacteria communities in saline soils. Sci. Total Environ. 2021, 772, 145472. [Google Scholar] [CrossRef]
- Xu, Q.; Ling, N.; Quaiser, A.; Guo, J.; Ruan, J.; Guo, S.; Shen, Q.; Vandenkoornhuyse, P. Rare bacteria assembly in soils is mainly driven by deterministic processes. Microb. Ecol. 2022, 83, 137–150. [Google Scholar] [CrossRef]
- Ruokolainen, L.; Ranta, E.; Kaitala, V.; Fowler, M.S. When can we distinguish between neutral and non-neutral processes in community dynamics under ecological drift? Ecol. Lett. 2009, 12, 909–919. [Google Scholar] [CrossRef] [PubMed]
Treatment | Days | NO | LO | HI | NO + PM1 | LO + PM1 | HI + PM1 | |
---|---|---|---|---|---|---|---|---|
Soil Index | ||||||||
Total nitrogen (g/kg) | D1 | 0.987 ± 0.021 b | 1.035 ± 0.05 ab | 1.083 ± 0.025 a | 1.015 ± 0.015 ab | 1.005 ± 0.037 b | 1.018 ± 0.059 ab | |
D2 | 1.072 ± 0.022 b | 1.009 ± 0.048 bc | 1.007 ± 0.036 bc | 0.967 ± 0.017 c | 1.158 ± 0.058 a | 1.024 ± 0.013 ab | ||
D3 | 1.144 ± 0.025 a | 1.015 ± 0.028 b | 1.025 ± 0.031 b | 1.136 ± 0.074 a | 1.115 ± 0.071 a | 1.091 ± 0.016 ab | ||
D4 | 1.061 ± 0.033 ab | 1.045 ± 0.069 ab | 0.967 ± 0.016 b | 1.129 ± 0.095 a | 1.09 ± 0.081 ab | 1.059 ± 0.052 ab | ||
Total phosphorus (g/kg) | D1 | 0.119 ± 0.004 ab | 0.114 ± 0.006 bc | 0.121 ± 0.009 ab | 0.112 ± 0.006 bc | 0.105 ± 0.004 c | 0.127 ± 0.005 a | |
D2 | 0.127 ± 0.004 b | 0.112 ± 0.012 bc | 0.129 ± 0.005 b | 0.101 ± 0.008 c | 0.105 ± 0.016 c | 0.145 ± 0.002 a | ||
D3 | 0.142 ± 0.006 a | 0.125 ± 0.018 ab | 0.126 ± 0.007 ab | 0.115 ± 0.009 b | 0.093 ± 0.008 c | 0.136 ± 0.012 a | ||
D4 | 0.121 ± 0.001 bc | 0.112 ± 0.015 bc | 0.13 ± 0.007 ab | 0.108 ± 0.016 b | 0.088 ± 0.005 c | 0.138 ± 0.002 a | ||
Total potassium (g/kg) | D1 | 16.13 ± 0.714 a | 16.537 ± 0.884 a | 16.077 ± 0.667 a | 16.286 ± 0.133 a | 16.598 ± 0.316 a | 16.515 ± 0.307 a | |
D2 | 16.729 ± 1.011 a | 16.457 ± 0.134 a | 16.474 ± 0.696 a | 15.807 ± 0.589 a | 16.802 ± 0.93 a | 14.843 ± 0.325 a | ||
D3 | 17.678 ± 0.576 ab | 16.733 ± 0.719 a | 16.396 ± 0.563 b | 15.348 ± 0.793 b | 16.139 ± 0.833 b | 16.719 ± 0.119 ab | ||
D4 | 16.34 ± 0.647 ab | 16.304 ± 0.264 b | 16.469 ± 0.059 ab | 16.241 ± 1.288 b | 16.433 ± 1.071 ab | 16.843 ± 0.143 a | ||
soil organic carbon (g/kg) | D1 | 23.428 ± 0.397 bc | 26.641 ± 1.123 a | 22.033 ± 0.566 bcd | 19.958 ± 2.856 d | 20.913 ± 1.767 cd | 23.962 ± 1.45 ab | |
D2 | 22.313 ± 0.791 a | 17.947 ± 1.826 b | 21.847 ± 0.966 a | 17.776 ± 1.529 b | 21.963 ± 0.474 a | 24.038 ± 0.927 a | ||
D3 | 21.427 ± 0.356 b | 22.289 ± 2.214 b | 24.238 ± 0.746 b | 20.984 ± 2.001 b | 22.369 ± 2.449 b | 25.79 ± 0.407 a | ||
D4 | 22.092 ± 0.624 ab | 20.547 ± 1.492 b | 20.769 ± 0.658 b | 20.129 ± 0.664 b | 20.217 ± 1.656 b | 24.182 ± 0.662 a | ||
FDA/(μg/h/g) | D1 | 173.291 ± 0.088 a | 162.707 ± 8.967 a | 120.756 ± 35.691 b | 153.531 ± 6.618 a | 153.377 ± 8.24 a | 158.947 ± 4.007 a | |
D2 | 172.654 ± 1.516 a | 165.89 ± 9.985 a | 169.639 ± 1.836 a | 165.329 ± 22.543 a | 163.896 ± 11.913 a | 178.88 ± 18.85 a | ||
D3 | 171.225 ± 8.035 b | 212.815 ± 27.198 a | 180.88 ± 24.174 b | 164.434 ± 14.076 b | 226.992 ± 32.313 a | 217.729 ± 19.977 a | ||
D4 | 162.35 ± 11.481 a | 159.038 ± 11.327 a | 177.519 ± 17.6 a | 176.987 ± 10.692 a | 173.412 ± 4.087 a | 170.983 ± 3.82 a | ||
S-PPO/(nmol/h/g) | D1 | 109.295 ± 7.801 c | 113.981 ± 19.643 c | 147.156 ± 29.89 bc | 148.464 ± 32.805 c | 170.505 ± 30.599 ab | 197.903 ± 8.109 a | |
D2 | 136.916 ± 17.742 e | 175.618 ± 15.708 de | 217.919 ± 13.38 a | 173.438 ± 16.539 cd | 181.822 ± 10.13 b | 176.932 ± 11.727 bc | ||
D3 | 126.319 ± 28.051 b | 161.912 ± 21.256 b | 188.604 ± 9.14 ab | 184.329 ± 16.739 ab | 166.742 ± 36.842 ab | 200.646 ± 17.903 a | ||
D4 | 128.488 ± 20.969 b | 148.404 ± 34.088 b | 171.425 ± 32.597 b | 182.622 ± 12.884 ab | 188.878 ± 19.867 ab | 213.576 ± 2.693 a | ||
S-UE/(μg/d/g) | D1 | 806.489 ± 73.395 a | 795.134 ± 20.826 a | 703.71 ± 34.947 bc | 688.611 ± 25.073 ab | 559.802 ± 17.308 d | 658.454 ± 78.084 c | |
D2 | 771.215 ± 88.486 a | 696.542 ± 35.015 ab | 680.084 ± 86.636 b | 776.618 ± 80.959 ab | 618.726 ± 50.393 b | 662.824 ± 80.702 b | ||
D3 | 764.065 ± 29.394 a | 636.677 ± 40.324 b | 697.946 ± 67.998 b | 741.54 ± 43.484 ab | 641.453 ± 90.763 b | 682.97 ± 25.777 b | ||
D4 | 762.441 ± 28.119 a | 709.149 ± 23.83 a | 713 ± 20.289 ab | 749.958 ± 50.421 a | 484.428 ± 161.467 c | 594.139 ± 52.838 bc | ||
S-β-GC/(nmol/h/g) | D1 | 466 ± 6.478 b | 544.962 ± 56.584 a | 508.089 ± 13.26 b | 498.353 ± 101.958 ab | 414.989 ± 33.007 bc | 456.106 ± 68.039 b | |
D2 | 472.979 ± 28.44 b | 569.823 ± 64.04 a | 503.783 ± 18.627 a | 522.101 ± 77.591 a | 474.589 ± 8.473 b | 582.424 ± 42.806 a | ||
D3 | 535.116 ± 12.984 ab | 446.291 ± 159.617 a | 405.794 ± 9.023 b | 488.613 ± 19.56 ab | 436.045 ± 84.672 ab | 481.554 ± 63.823 ab | ||
D4 | 504.005 ± 47.579 b | 497.086 ± 14.369 a | 439.021 ± 48.118 b | 440.767 ± 8.753 b | 419.026 ± 28.101 b | 440.601 ± 50.444 b | ||
S-NR/(μmol/d/g) | D1 | 8.111 ± 1.586 b | 25.303 ± 10.171 a | 4.374 ± 12.49 c | 3.987 ± 0.145 c | 6.319 ± 0.592 bc | 5.151 ± 3.338 bc | |
D2 | 6.376 ± 3.402 ab | 9.254 ± 1.708 a | 6.19 ± 5.41 ab | 2.516 ± 1.702 b | 6.167 ± 1.157 ab | 3.493 ± 2.578 b | ||
D3 | 2.733 ± 0.913 bc | 7.245 ± 3.106 a | 1.118 ± 3.749 d | 1.877 ± 0.537 cd | 3.789 ± 1.181 a | 1.874 ± 1.618 cd | ||
D4 | 2.723 ± 1.724 b | 3.996 ± 0.338 b | 7.07 ± 1.133 a | 2.197 ± 2.906 b | 2.839 ± 0.757 b | 2.797 ± 2.004 b | ||
S-POD/(nmol/h/g) | D1 | 493.4 ± 20.718 a | 470.877 ± 39.774 ab | 418.756 ± 69.792 ab | 399.856 ± 10.232 b | 368.075 ± 11.153 b | 311.197 ± 21.661 c | |
D2 | 472.452 ± 35.048 a | 431.043 ± 15.6 ab | 419.168 ± 19.954 bc | 417.587 ± 22.441 bc | 396.07 ± 26.195 c | 395.677 ± 9.571 c | ||
D3 | 480.793 ± 11.427 a | 461.878 ± 14.039 ab | 442.632 ± 18.529 ab | 424.504 ± 15.357 b | 388.964 ± 12.348 c | 468.753 ± 37.01 ab | ||
D4 | 511.5 ± 17.425 a | 504.417 ± 15.747 a | 449.667 ± 44.153 ab | 448.603 ± 12.402 b | 437.76 ± 18.726 b | 462.54 ± 38.444 b |
Adonis | ANOSIM | MRPP | ||||
---|---|---|---|---|---|---|
F | P | R | P | δ | F | |
Incubation time | 4.761 | 0.001 | 0.2976 | 0.001 | 0.313 | 0.001 |
Strain PM1 | 7.0069 | 0.001 | 0.2498 | 0.001 | 0.3246 | 0.001 |
Different dose of Na2SeO3 | 3.987 | 0.001 | 0.1876 | 0.001 | 0.3252 | 0.001 |
Network Name | Topological Properties | NO | LO | HI | NO + PM1 | LO + PM1 | HI + PM1 |
---|---|---|---|---|---|---|---|
Empirical | Similarity threshold | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 |
Total nodes | 658 | 736 | 605 | 700 | 665 | 657 | |
Total links | 981 | 1504 | 660 | 1579 | 1030 | 919 | |
Average degree (avgk) | 2.982 | 4.087 | 2.182 | 4.511 | 3.098 | 2.798 | |
Centralization of degree (CD) | 0.063 | 0.057 | 0.02 | 0.061 | 0.045 | 0.028 | |
Average path distance (GD) | 6.081 | 7.323 | 7.516 | 5.873 | 4.966 | 7.766 | |
Average clustering coefficient (avgCC) | 0.084 | 0.129 | 0.075 | 0.131 | 0.083 | 0.089 | |
Centralization Betweenness (CB) | 0.076 | 0.128 | 0.074 | 0.067 | 0.029 | 0.071 | |
Modularity | 0.64 | 0.64 | 0.84 | 0.664 | 0.703 | 0.817 | |
Random networks | Modularity | 0.613 ± 0.005 | 0.474 ± 0.005 | 0.779 ± 0.007 | 0.441 ± 0.004 | 0.587 ± 0.005 | 0.654 ± 0.005 |
Average path distance (GD) | 4.414 ± 0.062 | 3.897 ± 0.037 | 5.860 ± 0.147 | 3.785 ± 0.034 | 4.222 ± 0.061 | 4.918 ± 0.054 | |
Average clustering coefficient (avgCC) | 0.0.14 ± 0.003 | 0.029 ± 0.004 | 0.003 ± 0.002 | 0.032 ± 0.004 | 0.018 ± 0.004 | 0.007 ± 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, M.; Deng, G.; Hu, C.; Hou, X.; Wang, Z. Bioremediation Potential of Rhodococcus qingshengii PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly. Microorganisms 2024, 12, 2458. https://doi.org/10.3390/microorganisms12122458
Peng M, Deng G, Hu C, Hou X, Wang Z. Bioremediation Potential of Rhodococcus qingshengii PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly. Microorganisms. 2024; 12(12):2458. https://doi.org/10.3390/microorganisms12122458
Chicago/Turabian StylePeng, Mu, Guangai Deng, Chongyang Hu, Xue Hou, and Zhiyong Wang. 2024. "Bioremediation Potential of Rhodococcus qingshengii PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly" Microorganisms 12, no. 12: 2458. https://doi.org/10.3390/microorganisms12122458
APA StylePeng, M., Deng, G., Hu, C., Hou, X., & Wang, Z. (2024). Bioremediation Potential of Rhodococcus qingshengii PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly. Microorganisms, 12(12), 2458. https://doi.org/10.3390/microorganisms12122458