The Implication of Vibrio Bacteria in the Winter Mortalities of the Critically Endangered Pinna nobilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Histological Procedure
2.3. Microbiological Methods
2.3.1. Culture Media
2.3.2. Bacterial Isolation
2.3.3. Antibiogram
2.4. Molecular Identification of Pathogens
3. Results
3.1. Molecular Identification of Pathogenic Bacteria
3.2. Antibiograms
3.3. Histological Evaluation of the Inflammatory Responses
4. Discussion
4.1. Molecular Characterization of Vibrio Species
4.2. Microbiological Characterisation of Vibrio Species and Susceptibility in Antibiotics
4.3. Potential Impacts on Mortalities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casillo, A.; Lanzetta, R.; Parrilli, M.; Corsaro, M.M. Exopolysaccharides from marine and marine extremophilic bacteria: Structures, properties, ecological roles and applications. Mar. Drugs 2018, 16, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcfall-ngai, M.J. Unseen Forces: The Influence of Bacteria on Animal Development. Dev. Biol. 2002, 242, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offret, C.; Rochard, V.; Laguerre, H.; Mounier, J.; Huchette, S.; Brillet, B.; Le Chevalier, P.; Fleury, Y. Protective Efficacy of a Pseudoalteromonas Strain in European Abalone, Haliotis tuberculata, Infected with Vibrio harveyi ORM4. Probiotics Antimicro. Prot. 2019, 11, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Offret, C.; Paulino, S.; Gauthier, O.; Ch, K.; Bidault, A.; Corporeau, C.; Miner, P.; Petton, B.; Pernet, F.; Fabioux, C.; et al. The marine intertidal zone shapes oyster and clam digestive bacterial microbiota. FEMS Microbiol. Ecol. 2020, 96, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Garnier, M.; Labreuche, Y.; Garcia, C.; Robert, M.; Nicolas, J.L. Evidence for the involvement of pathogenic bacteria in summer mortalities of the pacific oyster Crassostrea Gigas. Microb. Ecol. 2007, 53, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husmann, G.; Philipp, E.E.R.; Rosenstiel, P.; Vazquez, S.; Abele, D. Immune response of the Antarctic bivalve Laternula elliptica to physical stress and microbial exposure. J. Exp. Mar. Bio. Ecol. 2011, 398, 83–90. [Google Scholar] [CrossRef]
- Matozzo, V.; Marin, M.G. Bivalve immune responses and climate changes: Is there a relationship? Invertebr. Surviv. J. 2011, 8, 70–77. [Google Scholar]
- Destoumieux-garzón, D.; Canesi, L.; Oyanedel, D.; Travers, M.; Charrière, G.M.; Pruzzo, C.; Vezzulli, L. Vibrio—bivalve interactions in health and disease. Environ. Microbiol. 2020, 22, 4323–4341. [Google Scholar] [CrossRef] [PubMed]
- Paul-pont, I.; Montaudouin, X.D.; Gonzalez, P.; Jude, F.; Raymond, N.; Paillard, C.; Baudrimont, M. Interactive effects of metal contamination and pathogenic organisms on the introduced marine bivalve Ruditapes philippinarum in European populations. Environ. Pollut. 2010, 158, 3401–3410. [Google Scholar] [CrossRef]
- Saulnier, D.; de Decker, S.; Haffner, P.; Cobret, L.; Robert, M.; Garcia, C. A large-scale epidemiological study to identify bacteria pathogenic to Pacific Oyster Crassostrea gigas and correlation between virulence and metalloprotease-like activity. Microb. Ecol. 2010, 59, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Darriba, S. First haplosporidan parasite reported infecting a member of the Superfamily Pinnoidea (Pinna nobilis) during a mortality event in Alicante (Spain, Western Mediterranean). J. Invertebr. Pathol. 2017, 148, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Luis, M.; Álvarez, E.; Barrajón, A.; García-March, J.R.; Grau, A.; Hendriks, I.E.; Jiménez, S.; Kersting, D.; Moreno, D.; Pérez, M.; et al. SOS Pinna nobilis: A mass mortality event in western Mediterranean Sea. Front. Mar. Sci. 2017, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Catanese, G.; Grau, A.; Valencia, J.M.; Garcia-March, J.R.; Vázquez-Luis, M.; Alvarez, E.; Deudero, S.; Darriba, S.; Carballal, M.J.; Villalba, A. Haplosporidium pinnae sp. nov., a haplosporidan parasite associated with mass mortalities of the fan mussel, Pinna nobilis, in the Western Mediterranean Sea. J. Invertebr. Pathol. 2018, 157, 9–24. [Google Scholar] [CrossRef]
- Carella, F.; Aceto, S.; Pollaro, F.; Miccio, A.; Iaria, C.; Carrasco, N.; Prado, P.; De Vico, G. A mycobacterial disease is associated with the silent mass mortality of the pen shell Pinna nobilis along the Tyrrhenian coastline of Italy. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Panarese, R.; Tedesco, P.; Chimienti, G.; Latrofa, M.S.; Quaglio, F.; Passantino, G.; Buonavoglia, C.; Gustinelli, A.; Tursi, A.; Otranto, D. Haplosporidium pinnae associated with mass mortality in endangered Pinna nobilis (Linnaeus 1758) fan mussels. J. Invertebr. Pathol. 2019, 164, 32–37. [Google Scholar] [CrossRef]
- Katsanevakis, S. The cryptogenic parasite Haplosporidium pinnae invades the Aegean Sea and causes the collapse of Pinna nobilis populations. Aquat. Invasions 2019, 14, 150–164. [Google Scholar] [CrossRef]
- Lattos, A.; Giantsis, I.A.; Karagiannis, D.; Michaelidis, B. First detection of the invasive Haplosporidian and Mycobacteria parasites hosting the endangered bivalve Pinna nobilis in Thermaikos Gulf, North Greece. Mar. Environ. Res. 2020, 155, 104889. [Google Scholar] [CrossRef] [PubMed]
- Kersting, D.; Benabdi, M.; Čižmek, H.; Grau, A.; Jimenez, C.; Katsanevakis, S.; Öztürk, B.; Tuncer, S.; Tunesi, L.; Vázquez-Luis, M.; et al. Pinna nobilis, Fan Mussel. IUCN Red List Threat. Species 2019, 2019, e.T160075998A160081499. [Google Scholar] [CrossRef]
- Zotou, M.; Gkrantounis, P.; Karadimou, E.; Tsirintanis, K.; Sini, M.; Poursanidis, D.; Azzolin, M.; Dailianis, T.; Kytinou, E.; Issaris, Y.; et al. Pinna nobilis in the Greek seas (NE Mediterranean): On the brink of extinction? Mediterr. Mar. Sci. 2020, 21, 575–591. [Google Scholar] [CrossRef]
- Öndes, F.; Alan, V.; Akçalı, B.; Güçlüsoy, H. Mass mortality of the fan mussel, Pinna nobilis in Turkey (eastern Mediterranean). Mar. Ecol. 2020, 41, 1–5. [Google Scholar] [CrossRef]
- Özalp, H.B.; Kersting, D.K. A pan-Mediterranean extinction? Pinna nobilis mass mortality has reached the Turkish straits system. Mar. Biodivers. 2020, 50, 81. [Google Scholar] [CrossRef]
- Hrvoje, Č.; Barbara, Č.; Gra, R.; Grau, A.; Catanese, G. An emergency situation for pen shells in the Mediterranean: The Adriatic Sea, one of the last Pinna nobilis shelters, is now affected by a mass mortality event. J. Invertebr. Pathol. 2020, 173, 1–5. [Google Scholar] [CrossRef]
- Šarić, T.; Župan, I.; Aceto, S.; Villari, G.; Palić, D.; De Vico, G.; Carella, F. Epidemiology of noble pen shell (Pinna nobilis l. 1758) mass mortality events in adriatic sea is characterised with rapid spreading and acute disease progression. Pathogens 2020, 9, 776. [Google Scholar] [CrossRef]
- Cinar, M.; Bilecenoglu, M.; Yokes, M.; Guclusoy, H. Pinna nobilis in the south Marmara Islands (Sea of Marmara); it still remains uninfected by the epidemic and acts as egg laying substratum for an alien invader. Mediterr. Mar. Sci. 2021, 22, 161–168. [Google Scholar] [CrossRef]
- Carella, F.; Antuofermo, E.; Farina, S.; Salati, F.; Mandas, D.; Prado, P.; Panarese, R.; Marino, F.; Fiocchi, E.; Pretto, T.; et al. In the Wake of the Ongoing Mass Mortality Events: Co-occurrence of Mycobacterium, Haplosporidium and Other Pathogens in Pinna nobilis Collected in Italy and Spain (Mediterranean Sea). Front. Mar. Sci. 2020, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Prado, P.; Carrasco, N.; Catanese, G.; Grau, A.; Cabanes, P.; Carella, F.; García-March, J.R.; Tena, J.; Roque, A.; Bertomeu, E.; et al. Presence of Vibrio mediterranei associated to major mortality in stabled individuals of Pinna nobilis L. Aquaculture 2020, 519, 734899. [Google Scholar] [CrossRef]
- Andree, K.B.; Carrasco, N.; Carella, F.; Furones, D.; Prado, P. Vibrio mediterranei, a potential emerging pathogen of marine fauna: Investigation of pathogenicity using a bacterial challenge in Pinna nobilis and development of a species-specific PCR. J. Appl. Microbiol. 2020, 130, 617–631. [Google Scholar] [CrossRef]
- Pavlinec, Ž.; Zupičić, I.G.; Oraić, D.; Petani, B.; Mustać, B.; Mihaljević, Ž.; Beck, R.; Zrnčić, S. Assessment of predominant bacteria in noble pen shell (Pinna nobilis) collected in the Eastern Adriatic Sea. Environ. Monit. Assess. 2020, 192, 581. [Google Scholar] [CrossRef]
- Scarpa, F.; Sanna, D.; Azzena, I.; Mugetti, D.; Cerruti, F.; Hosseini, S.; Cossu, P.; Pinna, S.; Grech, D.; Cabana, D.; et al. Multiple non-species-specific pathogens possibly triggered the mass mortality in Pinna nobilis. Life 2020, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Box, A.; Capó, X.; Tejada, S.; Catanese, G.; Grau, A.; Deudero, S.; Sureda, A.; Valencia, J.M. Reduced antioxidant response of the fan mussel Pinna nobilis related to the presence of haplosporidium pinnae. Pathogens 2020, 9, 932. [Google Scholar] [CrossRef]
- Lattos, A.; Giantsis, I.A.; Karagiannis, D.; Theodorou, J.A.; Michaelidis, B. Gut Symbiotic Microbial Communities in the IUCN Critically Endangered Pinna nobilis Suffering from Mass Mortalities, Revealed by 16S rRNA Amplicon NGS. Pathogens 2020, 9, 1002. [Google Scholar] [CrossRef]
- Rabaoui, L.; Tlig-Zouari, S.; Katsanevakis, S.; Ben Hassine, O.K. Modelling population density of Pinna nobilis (Bivalvia) on the eastern and southeastern coast of Tunisia. J. Molluscan Stud. 2010, 76, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Luis, M.; Borg, J.A.; Morell, C.; Banach-Esteve, G.; Deudero, S. Influence of boat anchoring on Pinna nobilis: A field experiment using mimic units. Mar. Freshw. Res. 2015, 66, 786–794. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, M.P.; Patel, J.B.; Burnhman, C.-A.; ZImmer, B.L. Clinical and Laboratory Standards Institute Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Standard, Approval CDM-A. M07 Methods Dilution Antimicrob. Susceptibility Tests Bact. Grow Aerob. 2018, 91. Available online: https://kaldur.landspitali.is/focal/gaedahandbaekur/gnhsykla.nsf/5e27f2e5a88c898e00256500003c98c2/4c17737f339875620025756e003852bb/$FILE/M07Ed11E%20Methods%20for%20Dilution%20Antimicrobial%20Susceptibility%20Tests%20for%20Bacteria%20That%20Grow%20Aerobically.pdf (accessed on 1 April 2021).
- Frank, J.A.; Reich, C.I.; Sharma, S.; Weisbaum, J.S.; Wilson, B.A.; Olsen, G.J. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 2008, 74, 2461–2470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasfi, H.; Travers, M.A.; de Lorgeril, J.; Habib, C.; Sannie, T.; Sorieul, L.; Gerard, J.; Avarre, J.C.; Haffner, P.; Tourbiez, D.; et al. A European epidemiological survey of Vibrio splendidus clade shows unexplored diversity and massive exchange of virulence factors. World J. Microbiol. Biotechnol. 2015, 31, 461–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-haim, Y.; Banim, E.; Kushmaro, A. Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi. Environ. Microbiol. 1999, 1, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Banin, E.; Khare, S.K.; Naider, F.; Rosenberg, E. Proline-Rich Peptide from the Coral Pathogen Vibrio shiloi That Inhibits Photosynthesis of Zooxanthellae. Appl. Environ. Microbiol. 2001, 67, 1536–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasa, A.; Diéguez, A.L.; Romalde, J.L. Vibrio toranzoniae sp. nov., a new member of the Splendidus clade in the genus Vibrio. Syst. Appl. Microbiol. 2013, 36, 96–100. [Google Scholar] [CrossRef]
- Banerjee, S.K.; Farber, J.M. Trend and pattern of antimicrobial resistance in molluscan Vibrio species sourced to Canadian estuaries. bioRxiv 2018, 62, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ottaviani, D.; Bacchiocchi, I.; Masini, L.; Leoni, F.; Carraturo, A.; Giammarioli, M.; Sbaraglia, G. Antimicrobial susceptibility of potentially pathogenic halophilic vibrios isolated from seafood. Int. J. Antimicrob. Agents 2001, 18, 135–140. [Google Scholar] [CrossRef]
- Beaz-Hidalgo, R.; Balboa, S.; Romalde, J.L.; Figueras, M.J. Diversity and pathogenecity of Vibrio species in cultured bivalve molluscs. Environ. Microbiol. Rep. 2010, 2, 34–43. [Google Scholar] [CrossRef]
- Sawabe, T.; Ogura, Y.; Matsumura, Y.; Feng, G.; Rohul Amin, A.K.M.; Mino, S.; Nakagawa, S.; Sawabe, T.; Kumar, R.; Fukui, Y.; et al. Updating the Vibrio clades defined by multilocus sequence phylogeny: Proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front. Microbiol. 2013, 4, 414. [Google Scholar] [CrossRef] [Green Version]
- Prado, S.; Dubert, J.; Barja, J.L. Characterization of pathogenic vibrios isolated from bivalve hatcheries in Galicia, NW Atlantic coast of Spain. Description of Vibrio tubiashii subsp. europaensis subsp. nov. Syst. Appl. Microbiol. 2015, 38, 26–29. [Google Scholar] [CrossRef]
- Pierce, M.L.; Ward, J.E. Microbial Ecology of the Bivalvia, with an Emphasis on the Family Ostreidae Microbial Ecology of the Bivalvia, with an Emphasis on the Family Ostreidae. J. Shellfish Res. 2018, 37, 793–806. [Google Scholar] [CrossRef]
- Bernasconi, R.; Stat, M.; Koenders, A.; Paparini, A.; Bunce, M.; Huggett, M.J.; Meyer, J.L. Establishment of Coral-Bacteria Symbioses Reveal Changes in the Core Bacterial Community With Host Ontogeny. Front. Microbiol. 2019, 10, 1529. [Google Scholar] [CrossRef] [PubMed]
- Dishaw, L.J.; Cannon, J.P.; Litman, G.W.; Parker, W. Immune-directed support of rich microbial communities in the gut has ancient roots. Dev. Comp. Immunol. 2014, 47, 36–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C.N. Fitness Factors in Vibrios: A Mini-review. Microb. Ecol. 2013, 65, 826–851. [Google Scholar] [CrossRef]
- Romalde, J.L.; Diéguez, A.L.; Lasa, A.; Balboa, S. New Vibrio species associated to molluscan microbiota: A review. Front. Microbiol. 2014, 4, 413. [Google Scholar] [CrossRef]
- Sugumar, G.; Nakai, T.; Hirata, Y.; Matsubara, D.; Muroga, K. Vibrio splendidus biovar II as the causative agent of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. Dis. Aquat. Organ. 1998, 33, 111–118. [Google Scholar] [CrossRef]
- Lacoste, A.; Jalabert, F.; Malham, S.; Cueff, A.; Gélébart, F.; Cordevant, C.; Lange, M.; Poulet, S.A. A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis. Aquat. Organ. 2001, 46, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, F.; Gay, M.; Lambert, C.; Waechter, M.; Poubalanne, S.; Chollet, B.; Nicolas, J.L.; Berthe, F. Comparative analysis of Vibrio splendidus-related strains isolated during Crassostrea gigas mortality events. Aquat. Living Resour. 2002, 15, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Gay, M.; Renault, T.; Pons, A.M.; Le Roux, F. Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: Taxonomy and host alterations. Dis. Aquat. Organ. 2004, 62, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, J.L.; Corre, S.; Gauthier, G.; Robert, R.; Ansquer, D. Bacterial problems associated with scallop Pecten maximus larval culture. Dis. Aquat. Org. 1996, 27, 67–76. [Google Scholar] [CrossRef]
- Gomez-Leon, J.; Villamil, L.; Lemos, M.L.; Novoa, B.; Figueras, A. Isolation of Vibrio alginolyticus and Vibrio splendidus from Aquacultured Carpet Shell Clam (Ruditapes decussatus) Larvae Associated with Mass Mortalities. Appl. Environ. Microbiol. 2005, 71, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Kesarcodi-Watchon, A.; Kaspar, H.; Lategan, M.J.; Gibson, L. Two pathogens of Greenshell mussel larvae, Perna canaliculus: Vibrio splendidus and a V. coralliilyticus/neptunius-like isolate. J. Fish Dis. 2009, 32, 499–507. [Google Scholar] [CrossRef]
- Liu, R.; Qiu, L.; Yu, Z.; Zi, J.; Yue, F.; Wang, L.; Zhang, H.; Teng, W.; Liu, X.; Song, L. Identification and characterisation of pathogenic Vibrio splendidus from Yesso scallop (Patinopecten yessoensis) cultured in a low temperature environment. J. Invertebr. Pathol. 2013, 114, 144–150. [Google Scholar] [CrossRef]
- Rojas, R.; Miranda, C.D.; Opazo, R.; Romero, J. Characterization and pathogenicity of Vibrio splendidus strains associated with massive mortalities of commercial hatchery-reared larvae of scallop Argopecten purpuratus (Lamarck, 1819). J. Invertebr. Pathol. 2015, 124, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Oden, E.; Burioli, E.A.V.; Trancart, S.; Pitel, P.H.; Houssin, M. Multilocus sequence analysis of Vibrio splendidus related-strains isolated from blue mussel Mytilus sp. during mortality events. Aquaculture 2016, 464, 420–427. [Google Scholar] [CrossRef]
- Parisi, M.G.; Maisano, M.; Cappello, T.; Oliva, S.; Mauceri, A.; Toubiana, M.; Gammarata, M. Responses of marine mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) after infection with the pathogen Vibrio splendidus. Comp. Biochem. Physiol. Part C 2019, 221, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, X.; Yan, B.; Bi, K.; Qin, L. Vibrio harveyi as a causative agent of mass mortalities of megalopa in the seed production of swimming crab Portunus trituberculatus. Aquacult. Int. 2014, 22, 661–672. [Google Scholar] [CrossRef]
- Alabi, A.O.; Jones, D.A.; Latchford, J.W. The efficacy of immersion as opposed to oral vaccination of Penaeus indicus larvae against Vibrio harveyi. Aquaculture 1999, 178, 1–11. [Google Scholar] [CrossRef]
- Hashem, M.; El-barbary, M. Vibrio harveyi infection in Arabian Surgeon fish (Acanthurus sohal) of Red Sea at Hurghada, Egypt. Egypt. J. Aquat. Res. 2013, 39, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Firmino, J.; Furones, M.D.; Andree, K.B.; Sarasquete, C.; Ortiz-Delgado, J.B.; Asencio-Alcudia, G.; Gisbert, E. Contrasting outcomes of Vibrio harveyi pathogenicity in gilthead seabream, Sparus aurata and European seabass, Dicentrachus labrax. Aquaculture 2019, 511, 734210. [Google Scholar] [CrossRef]
- Wei, Z.; Xin, L.; Zhang, W.; Bai, C.; Wang, C. Isolation and characterization of Vibrio harveyi as a major pathogen associated with mass mortalities of ark clam, Scapharca broughtonii, in summer. Aquaculture 2019, 511, 734248. [Google Scholar] [CrossRef]
- Liu, X.; Ji, C.; Zhao, J.; Wang, Q.; Li, F.; Wu, H. Metabolic profiling of the tissue-specific responses in mussel Mytilus galloprovincialis towards Vibrio harveyi challenge. Fish Shellfish Immunol. 2014, 39, 372–377. [Google Scholar] [CrossRef]
- Deepika, A.; Sreedharan, K.; Rajendran, K.V. Responses of some innate immune-genes involved in the toll-pathway in black tiger shrimp (Penaeus monodon) to Vibrio harveyi infection and on exposure to ligands in vitro. J. World Aquac. Soc. 2020, 51, 1419–1429. [Google Scholar] [CrossRef]
- Thompson, F.L.; Hoste, B.; Thompson, C.C.; Huys, G.; Swings, J. The coral bleaching Vibrio shiloi Kushmaro et al. 2001 is a later synonym of Vibrio mediterranei Pujalte and Garay 1986. Syst. Appl. Microbiol. 2001, 24, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Liu, Q.; He, Y.; Tao, Z.; Xu, M.; Luo, Q.; Chen, J. Isolation and identification of Vibrio mediterranei 117-T6 as a pathogen associated with yellow spot disease of Pyropia (Bangiales, Rhodophyta). Aquaculture 2020, 526, 735372. [Google Scholar] [CrossRef]
- Pujalte, M.J.; Garay, E. Proposal of Vibrio mediterranei sp. nov.: A New Marine Member of the Genus Vibrio. Int. J. Syst. Bact. 1986, 36, 278–281. [Google Scholar] [CrossRef]
- Liu, R.; Chen, H.; Zhang, R.; Zhou, Z.; Hou, Z.; Gao, D.; Zhang, H.; Wang, L.; Song, L. Comparative transcriptome analysis of Vibrio splendidus JZ6 reveals the mechanism of its pathogenicity at low temperatures. Appl. Environ. Microbiol. 2016, 82, 2050–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giantsis, I.A.; Mucci, N.; Randi, E.; Abatzopoulos, T.J.; Apostolidis, A.P. Microsatellite variation of mussels (Mytilus galloprovincialis) in central and eastern Mediterranean: Genetic panmixia in the Aegean and the Ionian Seas. J. Mar. Biol. Assoc. UK 2014, 94, 797–809. [Google Scholar] [CrossRef]
Sample ID | Code | Tissue | Sampling Date | Sampling Site | Geographical Coordinates (N) | Geographical Coordinates (E) | Sampling Depth | Temperature of Sampling Site (°C) | Habitat Type | H. pinnae PCR | Mycobacterium sp. PCR | Vibrio spp. PCR | Most Probable Taxonomy | Genbank A.N. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | GR129 | M | 25 February 2020 | Maliakos gulf | 38.905781 | 22.613020 | 4–8 m | 14.2 | Soft substrate with C. nodosa meadows | + | + | + | V. splendidus | 1 MW715032 |
2 | GR131 | P | 25 February 2020 | Maliakos gulf | 38.905781 | 22.613020 | 4–8 m | 14.2 | Soft substrate with C. nodosa meadows | + | + | V. splendidus | MW715032 | |
5 | GR132 | G | 25 February2020 | Maliakos gulf | 38.905781 | 22.613020 | 4–8 m | 14.2 | Soft substrate with C. nodosa meadows | + | + | V. splendidus | 2 MW715031 | |
4 | GR133 | G | 25 February 2020 | Maliakos gulf | 38.905781 | 22.613020 | 4–8 m | 14.2 | Soft substrate with C. nodosa meadows | + | + | V. splendidus | 3 MW715028 | |
6 | GR134 | M, G, GA | 25 February2020 | Maliakos gulf | 38.905781 | 22.613020 | 4–8 m | 14.2 | Soft substrate with C. nodosa meadows | + | + | V. splendidus | 2 MW715031 | |
7 | GR139 | M, G | 25 February2020 | Maliakos gulf | 38.905781 | 22.613020 | 4-8 m | 14.2 | Soft substrate with C. nodosa meadows | + | + | V. gigantis | MW715031 | |
3 | GR142 | P | 25 February 2020 | Maliakos gulf | 38.905781 | 22.613020 | 4–8 m | 14.2 | Soft substrate with C. nodosa meadows | + | + | + | V. alginolyticus | MW715030 |
4 | GR144 | G, GA, P | 17 March 2020 | Kalloni gulf | 39.095818 | 26.149199 | 4–8 m | 15.5 | Soft Substrate | + | + | V. splendidus | 2 MW715031 | |
2 | GR145 | M, P, GA, G | 17 March 2020 | Kalloni gulf | 39.095818 | 26.149199 | 4–8 m | 15.5 | Soft Substrate | + | + | V. splendidus | 2 MW715031 | |
3 | GR146 | M, P, GA, G | 17 March 2020 | Kalloni gulf | 39.095818 | 26.149199 | 4–8 m | 15.5 | Soft Substrate | + | + | V. gigantis | MW715029 | |
5 | GR147 | GA, P | 17 March 2020 | Kalloni gulf | 39.095818 | 26.149199 | 4–8 m | 15.5 | Soft Substrate | + | + | V. splendidus | MW715028 | |
1 | GR180 | M, GA | 17 March 2020 | Kalloni gulf | 39.095818 | 26.149199 | 4–8 m | 15.5 | Soft Substrate | + | + | V. owensii | MW715027 | |
1 | GR181 | M, G | 17 March 2020 | Kalloni gulf | 39.095818 | 26.149199 | 4–8 m | 15.5 | Soft Substrate | + | + | V. harveyi | MW715026 | |
9 | GR245 | GA, P | 15 April 2020 | Maliakos gulf | 38.905781 | 22.613020 | 4–8 m | 16.5 | Soft substrate with C. nodosa meadows | + | + | + | V. splendidus | 3 MW715028 |
8 | GR246 | GA | 15 April 2020 | Maliakos gulf | 38.905781 | 22.613020 | 4–8 m | 16.5 | Soft substrate with C. nodosa meadows | + | + | V. mediterranei | MW715025 | |
2 | GR247 | GA | 5 May 2020 | Kalloni gulf | 39.095818 | 26.149199 | 4–8 m | 16.1 | Soft Substrate | + | + | V. crassostreae | MW715024 | |
4 | GR252 | P | 5 May 2020 | Kalloni gulf | 39.095818 | 26.149199 | 4–8 m | 16.1 | Soft Substrate | + | + | V. crassostreae | MW715023 |
Code | Vibrio Species | Virulence Genes | |||
---|---|---|---|---|---|
ompU | Vsm | ompU | rtx | ||
GR129 | V. splendidus | + | + | ||
GR131 | V. splendidus | - | - | ||
GR132 | V. splendidus | + | - | ||
GR133 | V. splendidus | + | + | ||
GR134 | V. splendidus | + | + | ||
GR144 | V. splendidus | + | + | ||
GR145 | V. splendidus | + | - | ||
GR147 | V. splendidus | + | - | ||
GR245 | V. splendidus | + | + | ||
GR246 | V. mediterranei | + | + |
STRAIN | Cephalosporins | Penicillins | Aminoglycosides | Macrolide | Sulfonamide | Phenicol | Fluoroquinolones | Tetracycline | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KF | CTX | AMP | AMC | K | N | GM | S | E | SXT | FFC | CIP | UB | NOR | TE | |
144 | S | S | R | S | S | S | S | S | S | S | S | S | S | S | S |
245 | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
131 | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
132 | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
139 | S | S | R | S | S | R | S | S | S | S | S | S | S | S | S |
129 | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
142 | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
146 | S | S | R | S | S | R | S | S | S | S | S | S | S | S | S |
181 | S | S | R | R | S | S | S | S | S | S | S | S | S | S | S |
180 | S | S | R | R | S | S | S | S | S | S | S | S | S | S | S |
133 | S | S | S | S | S | R | S | S | S | S | S | S | S | S | S |
134 | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
145 | S | S | R | S | S | S | S | S | S | S | S | S | S | S | S |
147 | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
246 | S | S | R | R | R | R | S | R | S | S | S | S | S | S | S |
247 | R | S | R | R | S | R | S | R | R | S | S | S | S | S | S |
252 | R | S | R | R | S | R | S | R | R | S | S | S | S | S | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lattos, A.; Bitchava, K.; Giantsis, I.A.; Theodorou, J.A.; Batargias, C.; Michaelidis, B. The Implication of Vibrio Bacteria in the Winter Mortalities of the Critically Endangered Pinna nobilis. Microorganisms 2021, 9, 922. https://doi.org/10.3390/microorganisms9050922
Lattos A, Bitchava K, Giantsis IA, Theodorou JA, Batargias C, Michaelidis B. The Implication of Vibrio Bacteria in the Winter Mortalities of the Critically Endangered Pinna nobilis. Microorganisms. 2021; 9(5):922. https://doi.org/10.3390/microorganisms9050922
Chicago/Turabian StyleLattos, Athanasios, Konstantina Bitchava, Ioannis A. Giantsis, John A. Theodorou, Costas Batargias, and Basile Michaelidis. 2021. "The Implication of Vibrio Bacteria in the Winter Mortalities of the Critically Endangered Pinna nobilis" Microorganisms 9, no. 5: 922. https://doi.org/10.3390/microorganisms9050922
APA StyleLattos, A., Bitchava, K., Giantsis, I. A., Theodorou, J. A., Batargias, C., & Michaelidis, B. (2021). The Implication of Vibrio Bacteria in the Winter Mortalities of the Critically Endangered Pinna nobilis. Microorganisms, 9(5), 922. https://doi.org/10.3390/microorganisms9050922