Genesis of the Qingchayuan Flake Graphite Deposit in the Huangling Dome of Yangtze Block, South China
Abstract
:1. Introduction
2. Regional Geological Setting
3. Qingchayuan Flake Graphite Deposit
4. Analytical Methods
4.1. Petrography Observation and Analysis
4.2. Fixed Carbon
4.3. Major Elements
4.4. Carbon and Sulfur Isotope Analysis
5. Results
5.1. Ore Mineralogy
5.2. Fixed Carbon
5.3. Major Elements
5.4. Carbon Isotopes
5.5. Sulfur Isotopes
6. Discussion
6.1. Origin of Flake Graphite Deposit Indicated by Carbon Isotopes
6.2. Origin of Flake Graphite Deposit Indicated by Sulfur Isotopes
6.3. Genesis of the Qingchayuan Flake Graphite Deposit
7. Conclusions
- 1.
- The δ13C values of the graphite samples, ranging from −22.80 to −26.72‰, confirm a biogenic origin. This isotopic signature aligns with organic carbon found in sedimentary deposits and provides strong evidence for biological processes involved in the genesis of the Qingchayuan deposit.
- 2.
- The δ34S values, spanning from −10.67 to −14.58‰, indicate that the sulfur in the deposit originates primarily from organic-rich sedimentary rocks, with potential minor contributions from granitic sources. This signature links the deposit to biological sulfur cycling and further substantiates the biogenic origin of the graphite.
- 3.
- The genesis of the Qingchayuan flake graphite deposit involved an initial phase of the sedimentary deposition of organic materials, subsequently subjected to high-grade regional metamorphism, including migmatization. The intense metamorphism not only transformed carbon-rich sediments into crystalline graphite but also significantly enhanced the size and quality of graphite flakes.
- 4.
- Further explorations in the Huangling Dome and adjacent regions could expand the resource base, as similar tectonic and sedimentary settings may host comparable graphite deposits. Detailed studies of regional migmatization patterns and isotopic compositions will aid in identifying zones with an optimal flake graphite quality, aiding future resource assessments.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hazen, R.M.; Downs, R.T.; Jones, A.P.; Kah, L. Carbon Mineralogy and Crystal Chemistry. Rev. Mineral. Geochem. 2013, 75, 7–46. [Google Scholar] [CrossRef]
- Buseck, P.R.; Beyssac, O. From Organic Matter to Graphite: Graphitization. Elements 2014, 10, 421–426. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, H.; Yang, H.; Cao, Y.; Zhang, B.; Wang, H.; Wang, W. General Distribution and Demand-Supply Tendency for Worldwide Graphite Resources. Multipurp. Util. Miner. Resour. 2018, 13, 26–29, (In Chinese with English abstract). [Google Scholar]
- National Minerals Information Center. Mineral Commodity Summaries 2024; USGS: Reston, VA, USA, 2024. [Google Scholar] [CrossRef]
- Luque, F.J.; Huizenga, J.M.; Crespo-Feo, E.; Wada, H.; Ortega, L.; Barrenechea, J.F. Vein Graphite Deposits: Geological Settings, Origin, and Economic Significance. Miner. Depos. 2014, 49, 261–277. [Google Scholar] [CrossRef]
- Cen, D.; Cheng, T.; Cheng, F.; Yu, Y. Experimental Research on the Protection of Large Flake Graphite in Heilongjiang Province. CARBON Tech. 2017, 36, 40–44, (In Chinese with English abstract). [Google Scholar]
- Nassar, N.T.; Fortier, S.M. Methodology and Technical Input for the 2021 Review and Revision of the U.S. Critical Minerals List; U.S. Geological Survey Open-File Report 2021–1045; U.S. Geological Survey: Reston, VA, USA, 2021. [Google Scholar]
- Australian Government. Critical Minerals Strategy 2023–2030. 64p. Available online: https://www.industry.gov.au/sites/default/files/2023-06/critical-minerals-strategy-2023-2030.pdf (accessed on 1 July 2023).
- European Parliament and the Council of the European Union. Proposal for a Regulation of the European Parliament and of the Council Establishing a Framework for Ensuring a Secure and Sustainable Supply of Critical Raw Materials and Amending Regulations (EU) 168/2013, (EU) 2018/858, 2018/1724 and (EU) 2019/1020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52023PC0160 (accessed on 1 April 2023).
- Natural Resources Canada. The Canadian Critical Minerals Strategy. Natural Resources Canada Report M34-82/2022E. 2022. 58p. Available online: https://www.canada.ca/content/dam/nrcan-rncan/site/critical-minerals/Critical-minerals-strategyDec09.pdf (accessed on 27 October 2024).
- Li, C.; Wang, D.-H.; Zhao, H.; Pei, H.-X.; Li, X.-W.; Zhou, L.-M.; Du, A.-D.; Qu, W.-J. Minerogenetic Regularity of Graphite Deposits in China. Miner. Depos. 2015, 34, 1223–1236, (In Chinese with English abstract). [Google Scholar]
- Wang, L.; Fan, J.; Li, L.; Kang, L. Graphite Resource and Metallogenic Regularities of Crystalline Graphite in China. J. Geol. 2017, 41, 310–317, (In Chinese with English abstract). [Google Scholar]
- Qiu, F.; Gao, J.; Pei, Y.; Zhang, M. Geological Characteristics and Metallogenic Regularity of Graphite Ore of Huangling Anticline. Resour. Environ. Eng. 2015, 29, 280–285, (In Chinese with English abstract). [Google Scholar]
- Zhao, J.H.; Zhou, M.F.; Yan, D.P.; Zheng, J.P.; Li, J.W. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology 2011, 39, 299–302. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F.; Wu, Y.B.; Zheng, J.P.; Wang, W. Coupled Evolution of Neoproterozoic Arc Mafic Magmatism and Mantle Wedge in the Western Margin of the South China Craton. Contrib. Mineral. Petrol. 2019, 174, 36. [Google Scholar] [CrossRef]
- Gao, S.; Ling, W.; Qiu, Y.; Lian, Z.; Hartmann, G.; Simon, K. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochim. Cosmochim. Acta 1999, 63, 2071–2088. [Google Scholar] [CrossRef]
- Peng, S.; Kusky, T.M.; Jiang, X.F.; Wang, L.; Wang, J.P.; Deng, H. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China’s Amalgamation History with the Rodinian Supercontinent. Gondwana Res. 2012, 21, 577–594. [Google Scholar] [CrossRef]
- Yin, C.; Lin, S.; Davis, D.W.; Zhao, G.; Xiao, W.; Li, L.; He, Y. 2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China: Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia. Lithos 2013, 182–183, 200–210. [Google Scholar] [CrossRef]
- Zhang, S.B.; Zheng, Y.F. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Res. 2013, 23, 1241–1260. [Google Scholar] [CrossRef]
- Ji, W.; Lin, W.; Faure, M.; Chu, Y.; Wu, L.; Wang, F.; Wang, J.; Wang, Q. Origin and Tectonic Significance of the Huangling Massif within the Yangtze Craton, South China. J. Asian Earth Sci. 2014, 86, 59–75. [Google Scholar] [CrossRef]
- Deng, H.; Peng, S.; Polat, A.; Kusky, T.; Jiang, X.; Han, Q.; Wang, L.; Huang, Y.; Wang, J.; Zeng, W.; et al. Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for Evolving Tectonic Settings. Precambrian Res. 2017, 289, 75–94. [Google Scholar] [CrossRef]
- Gao, S.; Qiu, Y.; Ling, W. SHRIMP Single Zircon U-Pb Dating of the Kongling High-Grade Metamorphic Terrain: Evidence For>3.2 Ga Old Continental Crust in the Yangtze Craton. Sci. China (Ser. D) 2001, 44, 326–335. [Google Scholar] [CrossRef]
- Gao, S.; Yang, J.; Zhou, L.; Li, M.; Hu, Z.; Guo, J.; Yuan, H.; Gong, H.; Xiao, G.; Wei, J. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 GA Granitoid Gneisses. Am. J. Sci. 2011, 311, 153–182. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, S. Formation and Evolution of the Chinese Marine Basins. Chin. Sci. Bull. 2007, 52, 1–11. [Google Scholar] [CrossRef]
- Xiong, Q.; Zheng, J.; Yu, C.; Su, Y.; Tang, H.; Zhang, Z. Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang: Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chin. Sci. Bull. 2009, 54, 436–446. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for Names of Rock-Forming Minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Guo, W.; Chen, M.; Yan, B.; Yang, H.; Zeng, K.; Wan, C.; Liu, L.; Si, X.; Wang, T.; Fan, J.; et al. Geochemical Characteristics and Provenance Analysis of Ore-Bearing Rock in the Graphite Deposit of Huangling Anticline, Western Hubei. J. Guilin Univ. Technol. 2020, 40, 457–469, (In Chinese with English abstract). [Google Scholar]
- Luque, F.J.; Crespo-Feo, E.; Barrenechea, J.F.; Ortega, L. Carbon Isotopes of Graphite: Implications on Fluid History. Geosci. Front. 2012, 3, 197–207. [Google Scholar] [CrossRef]
- Craig, H. The Geochemistry of the Stable Carbon Isotopes. Geochim. Cosmochim. Acta 1953, 3, 53–92. [Google Scholar] [CrossRef]
- Barrenechea, J.F.; Luque, F.J.; Millward, D.; Ortega, L.; Beyssac, O.; Rodas, M. Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data. Contrib. Mineral. Petrol. 2009, 158, 37–51. [Google Scholar] [CrossRef]
- Dissanayake, C.B. Origin of Vein Graphite in High-Grade Metamorphic Terrains: Role of Organic Matter and Sediment Subduction. Miner. Depos. 1994, 29, 57–67. [Google Scholar] [CrossRef]
- Zhang, H.F.; Zhai, M.G.; Santosh, M.; Wang, H.Z.; Zhao, L.; Ni, Z.Y. Paleoproterozoic Granulites from the Xinghe Graphite Mine, North China Craton: Geology, Zircon U-Pb Geochronology and Implications for the Timing of Deformation, Mineralization and Metamorphism. Ore Geol. Rev. 2014, 63, 478–497. [Google Scholar] [CrossRef]
- Valley, J.W.; O’Neil, J.R. 13C12C Exchange between Calcite and Graphite: A Possible Thermometer in Grenville Marbles. Geochim. Cosmochim. Acta 1981, 45, 411–419. [Google Scholar] [CrossRef]
- Wada, H. Microscale Isotopic Zoning in Calcite and Graphite Crystals in Marble. Nature 1988, 331, 61–63. [Google Scholar] [CrossRef]
- Yan, M.; Zhang, D.; Huizenga, J.M.; Wei, J.; Li, H.; Li, G.; Huang, X.; Zhang, X.; Zhao, S. Mineralogical and Isotopic Characterization of Graphite Deposits in the Western Part of the North Qaidam Orogen and East Kunlun Orogen, Northeast Tibetan Plateau, China. Ore Geol. Rev. 2020, 126, 103788. [Google Scholar] [CrossRef]
- Schidlowski, M. Carbon Isotopes as Biogeochemical Recorders of Life over 3.8 Ga of Earth History: Evolution of a Concept. Precambrian Res. 2001, 106, 117–134. [Google Scholar] [CrossRef]
- Zhang, C.; Santosh, M. Coupled Laser Raman Spectroscopy and Carbon Stable Isotopes of Graphite from the Khondalite Belt of Kerala, Southern India. Lithos 2019, 334–335, 245–253. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Zhang, H.; Zhang, H.; Li, Y. Metamorphism, Geochemistry, and Carbon Source on Sedimentary-Metamorphic Graphite Deposits in Eastern Shandong, China. Geol. J. 2020, 55, 3748–3769. [Google Scholar] [CrossRef]
- Taner, M.F.; Drever, C.; Yakymchuk, C.; Longstaffe, F.J. Origin of Graphite in the Southwestern Grenville Province. Can. Mineral. 2017, 55, 1041–1055. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, Y.; Liu, L. Genesis of the Tianping Flake Graphite Deposit at the Western Margin of Yangtze Block, SW China. Ore Geol. Rev. 2021, 139, 104434. [Google Scholar] [CrossRef]
- Herlec, U.; Spangenberg, J.E.; Lavrič, J.V. Sulfur Isotope Variations from Orebody to Hand-Specimen Scale at the Mežica Lead-Zinc Deposit, Slovenia: A Predominantly Biogenic Pattern. Miner. Depos. 2010, 45, 531–547. [Google Scholar] [CrossRef]
- Monster, J.; Appel, P.W.U.; Thode, H.G.; Schidlowski, M.; Carmichael, C.M.; Bridgwater, D. Sulfur Isotope Studies in Early Archaean Sediments from Isua, West Greenland: Implications for the Antiquity of Bacterial Sulfate Reduction. Geochim. Cosmochim. Acta 1979, 43, 405–413. [Google Scholar] [CrossRef]
- Seal, R.R. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
- Rye, R.O.; Ohmoto, H. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Econ. Geol. 1974, 69, 826–842. [Google Scholar] [CrossRef]
- Yin, G.; Ni, S. Isotope Geochemistry; Geological Publishing House: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Machel, H.G. Relationships between Sulphate Reduction and Oxidation of Organic Compounds to Carbonate Diagenesis, Hydrocarbon Accumulations, Salt Domes, and Metal Sulphide Deposits. Carbonates Evaporites 1989, 4, 137–151. [Google Scholar] [CrossRef]
- Marini, L.; Moretti, R.; Accornero, M. Sulfur Isotopes in Magmatic-Hydrothermal Systems, Melts, and Magmas. Rev. Mineral. Geochem. 2011, 73, 423–492. [Google Scholar] [CrossRef]
- Cui, N.; Sun, L.; Bagas, L.; Xiao, K.; Xia, J. Geological Characteristics and Analysis of Known and Undiscovered Graphite Resources of China. Ore Geol. Rev. 2017, 91, 1119–1129. [Google Scholar] [CrossRef]
- Bian, M.; Chen, S.; Liu, L.; Cheng, L.; Liu, H.; Fan, J.; Li, X.; Chen, C.; Lan, L.; Yao, J. Mineralogical Study of Crystalline Flake Graphite Ore of Huangling Faulted Dome-Shaped Core. Northwest. Geol. 2020, 53, 76–85, (In Chinese with English abstract). [Google Scholar]
- Manoel, T.N.; Dexheimer Leite, J.A. On the Origin of the Neoproterozoic Peresopolis Graphite Deposit, Paraguay Belt, Brazil. J. S. Am. Earth Sci. 2018, 84, 104–112. [Google Scholar] [CrossRef]
- Al-Ani, T.; Ahtola, T.; Cutts, K.; Torppa, A. Metamorphic Evolution of Graphite in the Paleoproterozoic Savo Schist Belt (SSB), Central Finland: Constraints from Geothermetric Modeling. Ore Geol. Rev. 2022, 141, 104672. [Google Scholar] [CrossRef]
- Engvik, A.K.; Gautneb, H.; Mørkved, P.T.; Solberg, J.K.; Erambert, M. Proterozoic Deep Carbon—Characterisation, Origin and the Role of Fluids during High-Grade Metamorphism of Graphite (Lofoten–Vesterålen Complex, Norway). Minerals 2023, 13, 1279. [Google Scholar] [CrossRef]
- Gautneb, H.; Rønning, J.S.; Engvik, A.K.; Henderson, I.H.C.; Larsen, B.E.; Solberg, J.K.; Ofstad, F.; Gellein, J.; Elvebakk, H.; Davidsen, B. The Graphite Occurrences of Northern Norway, a Review of Geology, Geophysics, and Resources. Minerals 2020, 10, 626. [Google Scholar] [CrossRef]
Sample No. | Fixed Carbon Content (%) |
---|---|
20QCY01 | 5.64 |
20QCY03 | 13.78 |
20QCY05 | 13.54 |
20QCY06 | 5.47 |
20QCY07 | 7.02 |
20QCY08 | 3.52 |
20QCY11 | 5.84 |
Sample No. | SiO2 | Al2O3 | TFe2O3 | K2O | Na₂O | CaO | MgO | V2O3 | P2O5 | S | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|
20QCY01 | 61.77 | 13.63 | 6.85 | 2.82 | 1.28 | 1.62 | 2.70 | 0.02 | 0.10 | 1.30 | 0.63 |
20QCY05 | 60.95 | 15.10 | 5.22 | 2.79 | 0.48 | 0.70 | 2.03 | 0.02 | 0.04 | 0.04 | 0.60 |
20QCY06 | 57.39 | 14.72 | 7.76 | 4.16 | 2.19 | 2.33 | 3.89 | 0.02 | 0.10 | 1.08 | 0.82 |
20QCY08 | 59.73 | 13.73 | 7.06 | 3.58 | 1.50 | 0.90 | 3.70 | 0.02 | 0.06 | 0.03 | 0.67 |
Sample No. | δ13CV-PDB (‰) | δ34SV-CDT (‰) |
---|---|---|
20QCY01 | −22.80 | −14.58 |
20QCY02 | −24.98 | −12.38 |
20QCY03 | −24.87 | −11.77 |
20QCY04 | −26.72 | −10.67 |
Q-1 | −22.13 | Not provided |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Jiao, W.; Liu, L.; Chen, J.; Ma, Y. Genesis of the Qingchayuan Flake Graphite Deposit in the Huangling Dome of Yangtze Block, South China. Minerals 2024, 14, 1103. https://doi.org/10.3390/min14111103
Huang Y, Jiao W, Liu L, Chen J, Ma Y. Genesis of the Qingchayuan Flake Graphite Deposit in the Huangling Dome of Yangtze Block, South China. Minerals. 2024; 14(11):1103. https://doi.org/10.3390/min14111103
Chicago/Turabian StyleHuang, Yang, Weiwei Jiao, Lin Liu, Jianjun Chen, and Yuan Ma. 2024. "Genesis of the Qingchayuan Flake Graphite Deposit in the Huangling Dome of Yangtze Block, South China" Minerals 14, no. 11: 1103. https://doi.org/10.3390/min14111103
APA StyleHuang, Y., Jiao, W., Liu, L., Chen, J., & Ma, Y. (2024). Genesis of the Qingchayuan Flake Graphite Deposit in the Huangling Dome of Yangtze Block, South China. Minerals, 14(11), 1103. https://doi.org/10.3390/min14111103