Sequence Analysis of New Tuf Molecular Types of ‘Candidatus Phytoplasma Solani’ in Iranian Vineyards
Abstract
:1. Introduction
2. Results
2.1. PCR-RFLP and Phylogenetic Analysis
2.2. Mutation Detection
3. Discussion
4. Materials and Methods
4.1. Plant Samples and DNA Extraction
4.2. PCR Amplification, RFLP and Sequencing
4.3. Phylogenetic Analysis
4.4. Data Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Endeshaw, T.; Murolo, S.; Romanazzi, G.; Neri, D. Effects of Bois noir on carbon assimilation, transpiration, stomatal conductance of leaves and yield of grapevine (Vitis vinifera) cv. Chardonnay. Physiol. Plant 2012, 145, 286–295. [Google Scholar] [CrossRef]
- Romanazzi, G.; Murolo, S.; Feliziani, E. A new approach to manage phytoplasma diseases: Field treatments with resistance inducers to contain grapevine Bois noir. Phytopathology 2013, 103, 785–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaglino, F.; Zhao, Y.; Casati, P.; Bulgari, D.; Bianco, P.A.; Wei, W.; Davis, R.E. ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur- and Bois noir-related diseases of plants. Int. J. Syst. Evol. Microbiol. 2013, 63, 2879–2894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maixner, M. Transmission of German grapevine yellows (Vergilbungskrankheit) by the planthopper Hyalesthes obsoletus (Auchenorrhyncha: Cixiidae). Vitis 1994, 33, 103–104. [Google Scholar]
- Cvrković, T.; Jović, J.; Mitrović, M.; Krstić, O.; Toševski, I. Experimental and molecular evidence of Reptalus panzeri as a natural vector of Bois noir. Plant Pathol. 2014, 63, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Langer, M.; Maixner, M. Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis 2004, 43, 191–199. [Google Scholar]
- Johannesen, J.; Foissac, X.; Kehrli, P.; Maixner, M. Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen. PLoS ONE 2012, 7, e51809. [Google Scholar] [CrossRef] [Green Version]
- Aryan, A.; Brader, G.; Mörtel, J.; Pastar, M.; Riedle-Bauer, M. An abundant ‘Candidatus Phytoplasma solani’ tuf b strain is associated with grapevine, stinging nettle and Hyalesthes obsoletus. Eur. J. Plant Pathol. 2014, 140, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, E.; Murolo, S.; Ravari, S.B.; Salehi, M.; Romanazzi, G. Molecular typing of ‘Candidatus Phytoplasma solani’ in Iranian vineyards. Plant Dis. 2019, 103, 2412–2416. [Google Scholar] [CrossRef]
- Plavec, J.; Križanac, I.; Budinšćak, Ž.; Škorić, D.; Musić, M.Š. A case study of FD and BN phytoplasma variability in Croatia: Multigene sequence analysis approach. Eur. J. Plant Pathol. 2015, 142, 591–601. [Google Scholar] [CrossRef]
- Atanasova, B.; Jakovljević, M.; Spasov, D.; Jović, J.; Mitrović, M.; Toševski, I.; Cvrković, T. The molecular epidemiology of Bois noir grapevine yellows caused by ‘Candidatus Phytoplasma solani’ in the Republic of Macedonia. Eur. J. Plant Pathol. 2015, 142, 759–770. [Google Scholar] [CrossRef] [Green Version]
- Kosovac, A.; Radonjić, S.; Hrnčić, S.; Krstić, O.; Toševski, I.; Jović, J. Molecular tracing of the transmission routes of Bois noir in Mediterranean vineyards of Montenegro and experimental evidence for the epidemiological role of Vitex agnus-castus (Lamiaceae) and associated Hyalesthes obsoletus (Cixiidae). Plant Pathol. 2016, 65, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Balakishiyeva, G.; Bayramova, J.; Mammadov, A.; Salar, P.; Danet, J.-L.; Ember, I.; Verdin, E.; Foissac, X.; Huseynova, I. Important genetic diversity of ‘Candidatus Phytoplasma solani’ related strains associated with Bois noir grapevine yellows and planthoppers in Azerbaijan. Eur. J. Plant Pathol. 2018, 151, 937–946. [Google Scholar] [CrossRef]
- Ember, I.; Bodor, P.; Zsófi, Z.; Pálfi, Z.; Ladányi, M.; Pásti, G.; Bisztray, G.D. Bois noir affects the yield and wine quality of Vitis vinifera L. cv. ‘Chardonnay’. Eur. J. Plant Pathol. 2018, 152, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Foissac, X.; Carle, P.; Fabre, A.; Salar, P.; Danet, J.L. Candidatus Phytoplasma solani’ genome project and genetic diversity in Mediterranean basin. In Proceedings of the 3rd European Bois noir Workshop, Barcelona, Spain, 22–23 March 2013; pp. 11–13. [Google Scholar]
- Browning, K.S. The plant translational apparatus. Plant Mol. Biol. 1996, 32, 107–144. [Google Scholar] [CrossRef]
- Schneider, B.; Gibb, K.S.; Seemuller, E. Sequence and RFLP analysis of the gene coding for the elongation factor TU of several phytoplasma strains for differentiation and classification of phytoplasmas. Microbiology 1997, 143, 3381–3389. [Google Scholar] [CrossRef] [Green Version]
- Filer, D.; Furano, A.V. Portions of the gene encoding elongation factor Tu are highly conserved in prokaryotes. J. Biol. Chem. 1980, 255, 728–734. [Google Scholar]
- Credi, R.; Terlizzi, F.; Milanesi, L.; Bondavalli, R.; Cavallini, G.; Montermini, A.; Dradi, D. Wild host plants of stolbur phytoplasma and its vector, Hyalesthes obsoletus, at sites of grapevine Bois noir occurrence in Emilia-Romagna, Italy. In Proceedings of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine, Stellenbosch, South Africa, 3–7 April 2006. [Google Scholar]
- Romanazzi, G.; D’Ascenzo, D.; Murolo, S. Tussilago farfara: A new natural host of stolbur phytoplasma. Plant Pathol. 2009, 58, 392. [Google Scholar] [CrossRef]
- Marchi, G.; Cinelli, T.; Rizzo, D.; Stefani, L.; Goti, E.; Della Bartola, M.; Materazzi, A. Occurrence of different phytoplasma infections in wild herbaceous dicots growing in vineyards affected by Bois noir in Tuscany (Italy). Phytopathol. Mediterr. 2015, 54, 504–515. [Google Scholar]
- Mori, N.; Quaglino, F.; Tessari, F.; Pozzebon, A.; Bulgari, D.; Casati, P.; Bianco, P.A. Investigation on ‘Bois noir’ epidemiology in northeastern Italian vineyards through a multidisciplinary approach. Ann. Appl. Biol. 2015, 166, 75–89. [Google Scholar] [CrossRef]
- Oliveri, C.; Pacifico, D.; D’Urso, V.; La Rosa, R.; Marzachì, C.; Tessitori, M. Bois noir phytoplasma variability in a Mediterranean vineyard system: New plant host and putative vectors. Australas. Plant Pathol. 2015, 44, 235–244. [Google Scholar] [CrossRef]
- Sharon, R.; Soroker, V.; Wesley, S.; Zahavi, T.; Harari, A.; Weintraub, P. Vitex agnus-castus is a preferred host plant for Hyalesthes obsoletus. J. Chem. Ecol. 2005, 31, 1051–1063. [Google Scholar] [CrossRef]
- Kosovac, A.; Jakovljević, M.; Krstić, O.; Cvrković, T.; Mitrović, M.; Toševski, I.; Jović, J. Role of plant-specialized Hyalesthes obsoletus associated with Convolvulus arvensis and Crepis foetida in the transmission of ‘Candidatus Phytoplasma solani’-inflicted Bois noir disease of grapevine in Serbia. Eur. J. Plant Pathol. 2019, 153, 183–195. [Google Scholar] [CrossRef]
- Sanchez, B.; Bressollier, P.; Urdaci, M.C. Exported proteins in probiotic bacteria: Adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunol. Med. Microbiol. 2008, 54, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kainulainen, V.; Korhonen, T.K. Dancing to another tune-adhesive moonlighting proteins in bacteria. Biology 2014, 3, 178–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebner, K.; Singewald, N. The role of substance P in stress and anxiety responses. Amino Acids 2006, 31, 251–272. [Google Scholar] [CrossRef]
- Stones, D.H.; Krachler, A.M. Against the tide: The role of bacterial adhesion in host colonization. Biochem. Soc. Trans. 2016, 44, 1571–1580. [Google Scholar] [CrossRef] [Green Version]
- Harvey Kate, L.; Jarocki Veronica, M.; Charles Ian, G.; Djordjevic Steven, P. The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Front. Microbiol. 2019, 10, 2351. [Google Scholar] [CrossRef]
- Murolo, S.; Garbarino, M.; Mancini, V.; Romanazzi, G. Spatial pattern of Bois noir: Case study of a delicate balance between disease progression and recovery. Sci. Rep. 2020. [Google Scholar] [CrossRef]
- Daire, X.; Clair, D.; Reinert, W. Boudon-Padieu, E. Detection and differentiation of grapevine yellows phytoplasmas belonging to the elm yellows group and to the stolbur subgroup by PCR amplification of non-ribosomal DNA. Eur. J. Plant Pathol. 1997, 103, 507–514. [Google Scholar] [CrossRef]
- Maixner, M.; Ahrens, U.; Seemüller, E. Detection of the German grapevine yellows (Vergilbungskrankheit) MLO in grapevine, alternative hosts and a vector by a specific PCR procedure. Eur. J. Plant Pathol. 1995, 101, 241–250. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic. Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Accession Number | Nucleotide Sequence ID | Tuf Type | Nucleotide Substitution (MS Report) | Position from Tuf Start Codon | Codon Change | Amino-Acid Change | Mutation Type | Strain Reference |
---|---|---|---|---|---|---|---|---|
MT505885 | BN-a8 | tuf b5 | C>A | 415 | CTA/ATA | Lue/Ilue | NS a | Current study |
A>G | 727 | AAA/AAG | Lys/Lys | S b | ||||
MT505886 | BN-DG23 | tuf b6 | G>A | 444 | GTG/GTA | Val/Val | S | Current study |
A>G | 727 | AAA/AAG | Lys/Lys | S | ||||
KJ469707 | CrHo13-1183 | tuf a | T>C | 666 | CCG/CTG | Lue/Pro | NS | [6] |
A>G | 727 | AAA/AAG | Lys/Lys | S | ||||
KJ469708 | CrHo12-601 | tuf b1 | G>A | 727 | AAG/AAA | Lys/Lys | S | [6] |
KJ469709 | CrHo12-650 | tuf b2 | A>G | 727 | AAA/AAG | Lys/Lys | S | [8] |
LT899726 | AZ_GR15-15 | tuf b3 | A>G | 727 | AAA/AAG | Lys/Lys | S | |
T>C | 917 | TGG/CGG | Trp/Arg | NS | [13] | |||
Unpublished | I CA28-T6 | tuf b4 | C>T | 570 | ACG/ATG | Thr/Met | NS | |
G>A | 727 | AAG/AAA | Lys/Lys | S | Unpublished | |||
Unpublished | DE30003 | tuf c | A>G | 642 | CAG/CGG | Gly/Arg | NS | |
G>A | 727 | AAG/AAA | Lys/Lys | S | Unpublished |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamshidi, E.; Murolo, S.; Salehi, M.; Romanazzi, G. Sequence Analysis of New Tuf Molecular Types of ‘Candidatus Phytoplasma Solani’ in Iranian Vineyards. Pathogens 2020, 9, 508. https://doi.org/10.3390/pathogens9060508
Jamshidi E, Murolo S, Salehi M, Romanazzi G. Sequence Analysis of New Tuf Molecular Types of ‘Candidatus Phytoplasma Solani’ in Iranian Vineyards. Pathogens. 2020; 9(6):508. https://doi.org/10.3390/pathogens9060508
Chicago/Turabian StyleJamshidi, Elham, Sergio Murolo, Mohammad Salehi, and Gianfranco Romanazzi. 2020. "Sequence Analysis of New Tuf Molecular Types of ‘Candidatus Phytoplasma Solani’ in Iranian Vineyards" Pathogens 9, no. 6: 508. https://doi.org/10.3390/pathogens9060508
APA StyleJamshidi, E., Murolo, S., Salehi, M., & Romanazzi, G. (2020). Sequence Analysis of New Tuf Molecular Types of ‘Candidatus Phytoplasma Solani’ in Iranian Vineyards. Pathogens, 9(6), 508. https://doi.org/10.3390/pathogens9060508