Hydrosols of Veronica Species—Natural Source of Free Volatile Compounds with Potential Pharmacological Interest
Abstract
:1. Introduction
2. Results
2.1. Free Volatile Compounds of Ten Veronica Species
2.1.1. Free Volatile Compounds of the Hydrosols Obtained by Hydrodistillation
2.1.2. Free Volatile Compounds of the Hydrosols Obtained by Microwave-Assisted Extraction
2.2. Comparison of the Composition of Free Volatile Compounds from Hydrosols and Lipophilic Layer
2.3. Antioxidant Activity
3. Discussion
4. Materials and Methods
4.1. Isolation of Free Volatile Compounds
4.2. Preparation of the Samples and Analyses of Hydrosols by Gas Chromatography and Mass Spectrometry
4.3. Antioxidant Activity of Essential Oils and Hydrosols
4.3.1. ORAC (Oxygen Radical Absorbance Capacity)
4.3.2. Measurement of the DPPH Radical Scavenging Activity
4.4. PCA Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garagounis, C.; Delkis, N.; Papadopoulou, K.K. Unraveling the Roles of Plant Specialized Metabolites: Using Synthetic Biology to Design Molecular Biosensors. New Phytol. 2021, 231, 1338–1352. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea; Cambridge University Press: London, UK, 1972; Volume 3. [Google Scholar]
- Salehi, B.; Shetty, M.S.; Anil Kumar, N.V.; Živković, J.; Calina, D.; Docea, A.O.; Emamzadeh-Yazdi, S.; Kılıç, C.S.; Goloshvili, T.; Nicola, S.; et al. Veronica Plants—Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology. Molecules 2019, 24, 2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, H.; Chen, K.X.; Zhang, L.Q.; Li, Y.M. Review of the Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Veronica. Am. J. Chin. Med. 2019, 47, 1193–1221. [Google Scholar] [CrossRef] [PubMed]
- Dunkić, V.; Nazlić, M.; Ruščić, M.; Vuko, E.; Akrap, K.; Topić, S.; Milović, M.; Vuletić, N.; Puizina, J.; Jurišić Grubešić, R.; et al. Hydrodistillation and Microwave Extraction of Volatile Compounds: Comparing Data for Twenty-One Veronica Species from Different Habitats. Plants 2022, 11, 902. [Google Scholar] [CrossRef]
- Rao, B.R.R. Hydrosols and Water-Soluble Essential Oils: Medicinal and Biological Properties. In Recent Progress in Medicinal Plants: Essential Oils I; Studium Press LLC: Houston, TX, USA, 2013; Volume 36, pp. 119–140. [Google Scholar]
- D’Amato, S.; Serio, A.; López, C.C.; Paparella, A. Hydrosols: Biological Activity and Potential as Antimicrobials for Food Applications. Food Control 2018, 86, 126–137. [Google Scholar] [CrossRef]
- Hamedi, A.; Moheimani, S.M.; Sakhteman, A.; Etemadfard, H.; Moein, M. An Overview on Indications and Chemical Composition of Aromatic Waters (Hydrosols) as Functional Beverages in Persian Nutrition Culture and Folk Medicine for Hyperlipidemia and Cardiovascular Conditions. J. Evid.-Based Complement. Altern. Med. 2017, 22, 544–561. [Google Scholar] [CrossRef]
- Ilieva, Y.; Dimitrova, L.; Georgieva, A.; Vilhelmova-Ilieva, N.; Zaharieva, M.M.; Kokanova-Nedialkova, Z.; Dobreva, A.; Nedialkov, P.; Kussovski, V.; Kroumov, A.D.; et al. In Vitro Study of the Biological Potential of Wastewater Obtained after the Distillation of Four Bulgarian Oil-Bearing Roses. Plants 2022, 11, 1073. [Google Scholar] [CrossRef]
- Shen, X.; Chen, W.; Zheng, Y.; Lei, X.; Tang, M.; Wang, H.; Song, F. Chemical Composition, Antibacterial and Antioxidant Activities of Hydrosols from Different Parts of Areca catechu L. and Cocos nucifera L. Ind. Crops Prod. 2017, 96, 110–119. [Google Scholar] [CrossRef]
- Aćimović, M.; Tešević, V.; Smiljanić, K.; Cvetković, M.; Stanković, J.; Kiprovski, B.; Sikora, V. Hydrolates: By-Products of Essential Oil Distillation: Chemical Composition, Biological Activity and Potential Uses. Adv. Technol. 2020, 9, 54–70. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2017; ISBN 978-1-932633-21-4. [Google Scholar]
- Paparella, A.; Shaltiel-harpaza, L.; Ibdah, M. Β-Ionone: Its Occurrence and Biological Function and Metabolic Engineering. Plants 2021, 10, 754. [Google Scholar] [CrossRef]
- Cid-Pérez, T.S.; Ávila-Sosa, R.; Ochoa-Velasco, C.E.; Rivera-Chavira, B.E.; Nevárez-Moorillón, G.V. Antioxidant and Antimicrobial Activity of Mexican Oregano (Poliomintha longiflora) Essential Oil, Hydrosol and Extracts Fromwaste Solid Residues. Plants 2019, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Mendes, C.E.; Flach, A.; da Costa, L.A.M.A.; Denardin, R.B.N.; de Moura, N.F. Chemical Composition and Multivariate Analysis of the Volatile Oil of Dalbergia frutescens (Vell.) Britton (Fabaceae). J. Braz. Chem. Soc. 2014, 25, 1326–1330. [Google Scholar] [CrossRef]
- Sugier, D.; Olesińska, K.; Sugier, P.; Wójcik, M. Chemical Composition of Essential Oil from Flower Heads of Arnica Chamissonis Less. Under a Nitrogen Impact. Molecules 2019, 24, 4454. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Cao, H.B.; Li, W.J.; Zhao, L. The CXCL12 (SDF-1)/CXCR4 Chemokine Axis: Oncogenic Properties, Molecular Targeting, and Synthetic and Natural Product CXCR4 Inhibitors for Cancer Therapy. Chin. J. Nat. Med. 2018, 16, 801–810. [Google Scholar] [CrossRef]
- Huang, X.Q.; Li, R.; Fu, J.; Dudareva, N. A Peroxisomal Heterodimeric Enzyme Is Involved in Benzaldehyde Synthesis in Plants. Nat. Commun. 2022, 13, 1352. [Google Scholar] [CrossRef]
- Neto, L.J.D.L.; Ramos, A.G.B.; de Freitas, T.S.; Barbosa, C.R.D.S.; de Sousa Júnior, D.L.; Siyadatpanah, A.; Nejat, M.; Wilairatana, P.; Coutinho, H.D.M.; da Cunha, F.A.B. Evaluation of Benzaldehyde as an Antibiotic Modulator and Its Toxic Effect against Drosophila Melanogaster. Molecules 2021, 26, 5570. [Google Scholar] [CrossRef]
- Rubab, M.; Chelliah, R.; Saravanakumar, K.; Barathikannan, K.; Wei, S.; Kim, J.R.; Yoo, D.; Wang, M.H.; Oh, D.H. Bioactive Potential of 2-Methoxy-4-Vinylphenol and Benzofuran from Brassica oleracea L. Var. Capitate f, Rubra (Red Cabbage) on Oxidative and Microbiological Stability of Beef Meat. Foods 2020, 9, 568. [Google Scholar] [CrossRef]
- Jeong, J.B.; Hong, S.C.; Jeong, H.J.; Koo, J.S. Anti-Inflammatory Effect of 2-Methoxy-4-Vinylphenol via the Suppression of NF-ΚB and MAPK Activation, and Acetylation of Histone H3. Arch. Pharm. Res. 2011, 34, 2109–2116. [Google Scholar] [CrossRef]
- Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and Anti-Inflammatory Activity of Caryophyllene Oxide from Annona squamosa L. Bark. Phytomedicine 2010, 17, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.C.; Hsu, K.P.; Ho, C.L. Composition, In Vitro Anti-Mildew Fungal Activities of the Heartwood Essential Oil of Chamaecyparis formosensis from Taiwan. Nat. Prod. Commun. 2018, 13, 1363–1366. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, G.P.P.K.; Alvaro, M.V. Linalool—A Review of a Biologically Active Compound of Commercial Importance. Nat. Prod. Commun. 2014, 9, 1934578X0800300727. [Google Scholar]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. Solvent-Free Microwave Extraction of Essential Oil from Aromatic Herbs: Comparison with Conventional Hydro-Distillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Paolini, J.; Leandri, C.; Desjobert, J.M.; Barboni, T.; Costa, J. Comparison of Liquid-Liquid Extraction with Headspace Methods for the Characterization of Volatile Fractions of Commercial Hydrolats from Typically Mediterranean Species. J. Chromatogr. A 2008, 1193, 37–49. [Google Scholar] [CrossRef]
- Moradi, S.; Fazlali, A.; Hamedi, H. Microwave-Assisted Hydro-Distillation of Essential Oil from Rosemary: Comparison with Traditional Distillation. Avicenna J. Med. Biotechnol. 2018, 10, 22–28. [Google Scholar]
- Sourmaghi, M.H.S.; Kiaee, G.; Golfakhrabadi, F.; Jamalifar, H.; Khanavi, M. Comparison of Essential Oil Composition and Antimicrobial Activity of Coriandrum sativum L. Extracted by Hydrodistillation and Microwave-Assisted Hydrodistillation. J. Food Sci. Technol. 2015, 52, 2452–2457. [Google Scholar] [CrossRef] [Green Version]
- Popović, M.; Jukić Špika, M.; Veršić Bratinčević, M.; Ninčević, T.; Matešković, A.; Mandušić, M.; Rošin, J.; Nazlić, M.; Dunkić, V.; Vitanović, E. Essential Oil Volatile Fingerprint Differentiates Croatian Cv. Oblica from Other Olea europaea L. Cultivars. Molecules 2021, 26, 3533. [Google Scholar] [CrossRef]
- Craft, J.D.; Satyal, P.; Setzer, W.N. The Chemotaxonomy of Common Sage (Salvia officinalis) Based on the Volatile Constituents. Medicines 2017, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, X.; Jiang, Q.; Sun, H.; Jiang, J.; Chen, S.; Guan, Z.; Fang, W.; Chen, F. GC-MS Analysis of the Volatile Constituents in the Leaves of 14 Compositae Plants. Molecules 2018, 23, 166. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, C.; Lazzaro, L.; Calamassi, R.; Calamai, L.; Romoli, R.; Fico, G.; Foggi, B.; Mariotti Lippi, M. A Volatolomic Approach for Studying Plant Variability: The Case of Selected Helichrysum Species (Asteraceae). Phytochemistry 2016, 130, 128–143. [Google Scholar] [CrossRef]
- Mocan, A.; Vodnar, D.C.; Vlase, L.; Crișan, O.; Gheldiu, A.M.; Crișan, G. Phytochemical Characterization of Veronica officinalis L., V. teucrium L. and V. orchidea Crantz from Romania and Their Antioxidant and Antimicrobial Properties. Int. J. Mol. Sci. 2015, 16, 21109–21127. [Google Scholar] [CrossRef]
- Valyova, M.; Hadjimitova, V.; Stoyanov, S.; Ganeva, Y.; Petkov, I. Free Radical Scavenging Activity of Extracts from Bulgarian Veronica officinalis L. and GC-MS Analysis of Ethanol Extract. Internet J. Aesthetic Antiaging Med. 2008, 2, 2–6. [Google Scholar] [CrossRef]
- Harput, U.S.; Saracoglu, I.; Genc, Y. Comparative Bioactivity Studies on Four Veronica Species. Fabad J. Pharm. Sci. 2009, 34, 67–72. [Google Scholar]
- Sharifi-Rad, J.; Sharifi-Rad, M.; Salehi, B.; Iriti, M.; Roointan, A.; Mnayer, D.; Soltani-Nejad, A.; Afshari, A. In Vitro and in Vivo Assessment of Free Radical Scavenging and Antioxidant Activities of Veronica persica Poir. Cell. Mol. Biol. 2018, 64, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Dunkić, V.; Kosalec, I.; Kosir, I.; Potočnik, T.; Cerenak, A.; Koncic, M.; Vitali, D.; Muller, I.; Kopricanec, M.; Bezić, N.; et al. Antioxidant and Antimicrobial Properties of Veronica spicata L. (Plantaginaceae). Curr. Drug. Targets 2015, 16, 1660–1670. [Google Scholar] [CrossRef]
- Živković, J.; Ćebović, T.; Maksimović, Z. In Vivo and in Vitro Antioxidant Effects of Three Veronica Species. Cent. Eur. J. Biol. 2012, 7, 559–568. [Google Scholar] [CrossRef]
- Grubešić, R.J.; Nazlić, M.; Miletić, T.; Vuko, E.; Vuletić, N.; Ljubenkov, I.; Dunkić, V. Antioxidant Capacity of Free Volatile Compounds from Olea europaea l. Cv. Oblica Leaves Depending on the Vegetation Stage. Antioxidants 2021, 10, 1832. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook. Available online: https://webbook.nist.gov/ (accessed on 12 March 2021).
- Ertas, A.; Boga, M.; Kizil, M.; Ceken, B.; Goren, A.C.; Hasimi, N.; Demirci, S.; Topcu, G.; Kolak, U. Chemical Profile and Biological Activities of Veronica Thymoides Subsp. Pseudocinerea. Pharm. Biol. 2015, 53, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Li, F. Analysis of Chemical Constituents of Essential Oil in Veronica linariifolia by Gas Chromatography-Mass Spectrometry. Chin. J. Anal. Chem. 2002, 30, 822–825. [Google Scholar]
- Nazlić, M.; Kremer, D.; Grubešić, R.J.; Soldo, B.; Vuko, E.; Stabentheiner, E.; Ballian, D.; Bogunić, F.; Dunkić, V. Endemic Veronica saturejoides Vis. ssp. Saturejoides–Chemical Composition and Antioxidant Activity of Free Volatile Compounds. Plants 2020, 9, 1646. [Google Scholar]
- Fredotović, Ž.; Šprung, M.; Soldo, B.; Ljubenkov, I.; Budić-Leto, I.; Bilušić, T.; Cikeš-Čulić, V.; Puizina, J. Chemical Composition and Biological Activity of Allium cepa L. and Allium × Cornutum (Clementi Ex Visiani 1842) Methanolic Extracts. Molecules 2017, 22, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; dos Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free Radical Method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Payet, B.; Sing, A.S.C.; Smadja, J. Assessment of Antioxidant Activity of Cane Brown Sugars by ABTS and DPPH Radical Scavenging Assays: Determination of Their Polyphenolic and Volatile Constituents. J. Agric. Food Chem. 2005, 53, 10074–10079. [Google Scholar] [CrossRef]
- Yen, G.-C.; Duh, P.-D. Scavenging Effect of Methanolic Extracts of Peanuts Hulls on Free-Radical and Active-Oxygen Species. J. Agric. Food Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
V. acinifolia | V. anagallis-aquatica | V. anagalloides | V. catenata | V. arvensis | V. cymbalaria | V. hederifolia | V. officinalis | V. persica | V. polita | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Component | RIa | RIb | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD |
Monoterpene hydrocarbons | 1.12 | - | - | - | 4.75 | - | 11.68 | - | 3.45 | 6.17 | ||
α-Thujene | 924 | 1012 | 1.12 ± 0.02 | - | - | - | 4.75 ± 0.01 | - | 11.68 ± 0.01 | - | 3.45 ± 0.01 | 6.17 ± 0.01 |
Oxygenated monoterpenes | 2.51 | 13.45 | 9.14 | 15.97 | - | 1.42 | 6.09 | 11.76 | 2.85 | 10.36 | ||
γ-Terpinene | 1057 | 1225 | - | - | 3.11 ± 0.01 | - | - | - | - | - | - | - |
Linalool | 1095 | 1506 | 0.95 ± 0.01 | 3.35 ± 0.01 | 0.76 ± 0.01 | 4.76 ± 0.01 | - | 1.15 ± 0.01 | 3.54 ± 0.01 | 4.21 ± 0.01 | 1.94 ± 0.01 | 2.35 ± 0.01 |
β-Thujone | 1121 | 1438 | - | - | - | - | - | - | - | 7.55 ± 0.01 | - | - |
Terpinen-4-ol | 1174 | 1686 | 0.75 ± 0.01 | 4.78 ± 0.01 | 4.54 ± 0.1 | 3.22 ± 0.01 | - | 0.27 ± 0.01 | - | - | 0.91 ± 0.01 | 8.01 ± 0.01 |
α-Terpineol | 1184 | 1660 | 0.81 ± 0.1 | - | - | 7.54 ± 0.01 | - | - | 2.55 ± 0.03 | - | - | - |
trans-p-Mentha-1(7),8-dien-2-ol | 1187 | 1803 | - | 5.32 ± 0.01 | 0.73 ± 0.15 | 0.45 ± 0.03 | - | - | - | - | - | - |
Sesquiterpene hydrocarbons | 14.51 | 3.18 | 2.25 | 12.55 | 11.67 | 7.11 | 7.77 | 4.17 | 11.15 | 16.11 | ||
α-Copaene | 1377 | 1484 | 0.75 ± 0.1 | - | - | - | - | - | - | - | - | - |
β-Elemene | 1389 | 1593 | - | - | - | - | - | - | - | - | - | 0.68 ± 0.03 |
E-Caryophyllene * | 1424 | 1585 | 7.15 ± 0.01 | 0.78 ± 0.01 | 1.31 ± 0.01 | 4.11 ± 0.01 | 1.63 ± 0.01 | 1.05 ± 0.02 | 4.11 ± 0.01 | 1.85 ± 0.01 | 1.44 ± 0.01 | 15.43 ± 0.01 |
allo-Aromadendrene | 1465 | 1662 | - | - | 0.56 ± 0.01 | 1.23 ± 0.01 | 2.52 ± 0.01 | - | 2.26 ± 0.01 | 2.32 ± 0.01 | 6.52 ± 0.01 | - |
β-Chamigrene | 1478 | 1724 | - | - | - | - | 1.62 ± 0.1 | - | - | - | - | - |
Germacrene D | 1481 | 1692 | 6.86 ± 0.01 | 0.95 ± 0.01 | 0.38 ± 0.02 | 3.87 ± 0.02 | 3.47 ± 0.1 | 3.72 ± 0.01 | 0.75 ± 0.02 | - | 0.63 ± 0.01 | - |
δ-Selinene | 1492 | 1756 | 2.75 ± 0.01 | 1.45 ± 0.01 | - | 3.34 ± 0.01 | 2.43 ± 0.01 | 0.78 ± 0.01 | 0.65 ± 0.1 | - | 1.55 ± 0.01 | - |
δ-Cadinene | 1517 | 1745 | - | - | - | - | - | 1.56 ± 0.01 | - | - | 1.01 ± 0.01 | - |
Oxygenated sesquiterpenes | 30.85 | 7.69 | 12.92 | 16.42 | 24.06 | 46.2 | 14.56 | 14.4 | 30.81 | 24.8 | ||
Spathulenol | 1577 | 2101 | 1.15 ± 0.01 | 0.44 ± 0.01 | 1.32 ± 0.01 | - | - | - | 0.88 ± 0.01 | - | - | - |
Caryophyllene oxide * | 1581 | 1955 | 26.43 ± 0.01 | 3.56 ± 0.01 | 6.35 ± 0.01 | - | 7.92 ± 0.01 | 26.24 ± 0.01 | 6.32 ± 0.01 | 8.15 ± 0.01 | 22.73 ± 0.01 | 12.15 ± 0.01 |
Viridiflorol | 1592 | 2099 | - | 0.75 ± 0.01 | - | - | - | - | - | - | - | 0.82 ± 0.03 |
γ-Eudesmol | 1632 | 2175 | - | - | - | - | 6.38 ± 0.01 | 0.48 ± 0.01 | - | 0.56 ± 0.01 | - | 1.31 ± 0.01 |
α-Muurolol | 1645 | 2181 | - | 0.62 ± 0.01 | 3.22 ± 0.01 | 14.88 ± 0.01 | 9.76 ± 0.01 | 15.17 ± 0.01 | 2.48 ± 0.01 | 1.02 ± 0.01 | 7.21 ± 0.01 | 0.75 ± 0.01 |
α-Cadinol | 1655 | 2208 | - | 0.62 ± 0.01 | 3.22 ± 0.01 | 14.88 ± 0.01 | - | 15.17 ± 0.01 | - | 0.98 ± 0.1 | 0.34 ± 0.05 | - |
α-Bisabolol | 1685 | 2210 | 0.74 ± 0.01 | - | 0.58 ± 0.1 | - | - | 3.36 ± 0.01 | 3.13 ± 0.01 | 1.03 ± 0.01 | - | 0.63 ± 0.01 |
α-Bisabolol oxide | 1748 | 2511 | 0.88 ± 0.07 | - | - | - | - | - | - | 0.81 ± 0.01 | - | 0.88 ± 0.01 |
Hexahydrofarnesyl acetone * | 1839 | 2113 | 1.65 ± 0.01 | 2.32 ± 0.01 | 2.45 ± 0.01 | 1.54 ± 0.01 | - | 0.95 ± 0.01 | 1.75 ± 0.01 | 1.85 ± 0.01 | 0.53 ± 0.01 | 8.26 ± 0.01 |
Phenolic compounds | 6.71 | 8.33 | 20.84 | 4.84 | 3.13 | 8.29 | 10.04 | 13.87 | 8.95 | 2.73 | ||
Thymol * | 1289 | 2154 | - | - | - | - | - | 3.44 ± 0.01 | 4.12 ± 0.02 | - | - | - |
p-Vinyl guaicol | 1313 | 2156 | 1.43 ± 0.01 | 3.91 ± 0.01 | 1.52 ± 0.01 | 4.10 ± 0.01 | 2.11 ± 0.01 | - | 3.68 ± 0.01 | 2.75 ± 0.01 | 6.04 ± 0.01 | 2.73 ± 0.01 |
2-Methoxy-4-vinylphenol | 1317 | 2145 | - | - | - | - | - | - | - | 11.12 ± 0.01 | - | - |
Thymol acetate | 1349 | - | 0.85 ± 0.01 | - | - | - | - | - | - | - | - | - |
Methyl eugenol | 1403 | 2005 | 4.43 ± 0.01 | 4.42 ± 0.01 | 16.71 ± 0.01 | 0.74 ± 0.01 | 1.02 ± 0.05 | - | 1.38 ± 0.01 | 2.20 ± 0.01 | - | |
(Z)-Methyl isoeugenol | 1451 | 2070 | - | - | 2.61 ± 0.01 | - | - | 4.85 ± 0.01 | 0.86 ± 0.05 | - | 0.71 ± 0.01 | - |
Acids, alcohols and esters | 37.98 | 60.6 | 49.68 | 45.49 | 50.1 | 32.06 | 46.61 | 40.27 | 37.31 | 34.48 | ||
Isopentyl acetate | 863 | 1127 | - | - | - | - | 10.41 ± 0.01 | - | - | - | - | - |
Benzaldehyde | 952 | 1508 | 5.89 ± 0.1 | 9.32 ± 0.01 | 4.17 ± 0.01 | 9.47 ± 0.01 | - | 14.98 ± 0.01 | 16.32 ± 0.01 | 2.15 ± 0.01 | - | - |
Benzene acetaldehyde | 1036 | 1633 | 7.38 ± 0.01 | 16.78 ± 0.01 | 26.52 ± 0.01 | 26.31 ± 0.01 | 13.52 ± 0.01 | 12.84 ± 0.01 | 9.31 ± 0.01 | 10.69 ± 0.01 | 11.03 ± 0.01 | 8.41 ± 0.01 |
n-Nonanal | 1100 | 1389 | 1.73 ± 0.02 | - | 2.38 ± 0.01 | - | 2.56 ± 0.01 | - | 4.37 ± 0.01 | 0.46 ± 0.1 | 1.37 ± 0.01 | 0.72 ± 0.01 |
Hexyl 2-methyl butanoate | 1233 | 1425 | 1.43 ± 0.1 | - | 3.97 ± 0.01 | - | - | - | - | - | 0.46 ± 0.1 | - |
n-Decanol | 1266 | 1711 | 0.64 ± 0.01 | - | 1.46 ± 0.01 | - | 1.54 ± 0.01 | - | - | - | 2.22 ± 0.01 | - |
2,4-Decadienal | 1304 | 1764 | - | - | - | - | - | - | - | - | 0.74 ± 0.02 | - |
(E)-β-Damascenone | 1384 | 1819 | 7.86 ± 0.01 | 25.65 ± 0.01 | 3.12 ± 0.01 | 2.15 ± 0.01 | 11.21 ± 0.01 | 2.42 ± 0.01 | 7.42 ± 0.01 | 6.34 ± 0.01 | 9.32 ± 0.01 | 10.46 ± 0.01 |
β-Ionone | 1487 | 1935 | 12.33 ± 0.1 | 8.85 ± 0.01 | 7.86 ± 0.01 | 7.56 ± 0.01 | 8.94 ± 0.01 | 1.82 ± 0.01 | 8.53 ± 0.01 | 13.78 ± 0.01 | 11.73 ± 0.01 | 11.25 ± 0.01 |
Methyl salicylate | 1188 | 1755 | - | - | - | - | - | - | - | 4.93 ± 0.01 | - | - |
Hexadecanoic acid * | 1959 | 2912 | 0.72 ± 0.05 | - | 0.20 ± 0.05 | - | 1.92 ± 0.01 | - | 0.66 ± 0.01 | 1.92 ± 0.01 | 0.44 ± 0.01 | 3.64 ± 0.01 |
Total identification (%) | 93.68 | 93.25 | 94.83 | 95.27 | 93.71 | 95.08 | 96.75 | 84.01 | 94.52 | 94.65 |
V. acinifolia | V. anagallis-aquatica | V. anagalloides | V. catenata | V. arvensis | V. cymbalaria | V. hederifolia | V. officinalis | V. persica | V. polita | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Component | RIa | RIb | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD | FVC ± SD |
Monoterpene hydrocarbons | - | 4.11 | 2.75 | 7.46 | 10.95 | - | 6.85 | - | 6.01 | 4.52 | ||
α-Thujene | 924 | 1012 | - | 1.69 ± 0.01 | - | 7.46 ± 0.01 | 3.43 ± 0.01 | - | 6.85 ± 0.01 | - | 6.01 ± 0.01 | 4.52 ± 0.01 |
α-Pinene * | 935 | 1017 | - | 2.42 ± 0.01 | 2.75 ± 0.01 | - | - | - | - | - | - | - |
β -Phellandrene | 1002 | 1195 | - | - | - | - | 7.52 ± 0.01 | - | - | - | - | - |
Oxygenated monoterpenes | 2.64 | 13.15 | 6.1 | 3.9 | 7.53 | 3.76 | 5.21 | 9.46 | 10.43 | 6.61 | ||
γ-Terpinene | 1057 | 1225 | - | 2.65 ± 0.01 | 3.52 ± 0.01 | - | - | - | - | - | - | - |
Linalool | 1095 | 1506 | - | 3.11 ± 0.01 | 0.83 ± 0.05 | 3.15 ± 0.01 | 7.53 ± 0.01 | 1.67 ± 0.03 | 5.21 ± 0.01 | 6.11 ± 0.01 | 6.68 ± 0.01 | 3.18 ± 0.01 |
β-Thujone | 1121 | 1438 | - | - | - | - | - | - | - | 3.35 ± 0.01 | - | - |
Terpinen-4-ol | 1174 | 1686 | 2.64 ± 0.01 | 4.17 ± 0.01 | 1.75 ± 0.01 | 0.75 ± 0.01 | - | 2.09 ± 0.01 | - | - | 3.75 ± 0.01 | 3.43 ± 0.01 |
trans-p-Mentha-1(7),8-dien-2-ol | 1187 | 1803 | - | 3.22 ± 0.01 | - | - | - | - | - | - | - | - |
Sesquiterpene hydrocarbons | 11.2 | 1.94 | 6.53 | 3.66 | 7.71 | 3.52 | 11.6 | 4.18 | 7.7 | 14.66 | ||
α-Copaene | 1377 | 1484 | - | - | - | - | 0.63 ± 0.1 | - | - | - | - | - |
β-Elemene | 1389 | 1593 | 4.84 ± 0.01 | - | - | - | 3.75 ± 0.01 | - | 1.76 ± 0.01 | 0.38 ± 0.01 | 0.98 ± 0.01 | - |
E-Caryophyllene * | 1424 | 1585 | 3.34 ± 0.01 | 1.46 ± 0.01 | 1.24 ± 0.01 | 2.53 ± 0.01 | - | 1.32 ± 0.01 | 4.58 ± 0.01 | 3.37 ± 0.01 | 3.72 ± 0.01 | 11.74 ± 0.01 |
allo-Aromadendrene | 1465 | 1662 | 0.67 ± 0.1 | - | 1.05 ± 0.03 | 1.13 ± 0.01 | - | 0.53 ± 0.1 | 0.86 ± 0.01 | - | 0.86 ± 0.01 | 0.72 ± 0.02 |
Germacrene D | 1481 | 1692 | 2.35 ± 0.01 | 0.48 ± 0.1 | 3.23 ± 0.01 | - | 2.45 ± 0.01 | 1.67 ± 0.01 | 2.27 ± 0.01 | - | 0.75 ± 0.01 | 1.02 ± 0.01 |
δ-Selinene | 1492 | 1756 | - | - | 1.01 ± 0.01 | - | 0.88 ± 0.01 | - | 2.13 ± 0.01 | - | 1.39 ± 0.01 | 1.18 ± 0.01 |
δ-Cadinene | 1517 | 1745 | - | - | - | - | - | - | - | 0.43 ± 0.01 | - | - |
Oxygenated sesquiterpenes | 33.2 | 7.54 | 10.53 | 40.21 | 16.42 | 57.98 | 12.91 | 17.36 | 14.76 | 17.92 | ||
Spathulenol | 1577 | 2101 | 1.43 ± 0.01 | 1.04 ± 0.03 | - | 0.85 ± 0.15 | - | - | - | - | - | - |
Caryophyllene oxide * | 1581 | 1955 | 28.22 ± 0.01 | 2.76 ± 0.01 | 6.43 ± 0.01 | 2.72 ± 0.03 | 13.66 ± 0.01 | 37.12 ± 0.01 | 5.51 ± 0.01 | 15.91 ± 0.01 | 10.17 ± 0.01 | 14.17 ± 0.01 |
Viridiflorol | 1592 | 2099 | - | - | - | - | - | 4.67 ± 0.01 | - | - | - | 0.84 ± 0.03 |
γ-Eudesmol | 1632 | 2175 | - | - | - | - | 0.74 ± 0.01 | - | - | - | 2.76 ± 0.01 | - |
α-Muurolol | 1645 | 2181 | - | 3.28 ± 0.01 | - | 35.12 ± 0.01 | 2.02 ± 0.03 | 15.17 ± 0.01 | 1.91 ± 0.01 | - | - | 1.31 ± 0.01 |
α-Cadinol | 1655 | 2208 | - | - | - | - | - | - | 0.83 ± 0.01 | - | - | - |
α-Bisabolol | 1685 | 2210 | 2.67 ± 0.01 | 0.46 ± 0.01 | 1.72 ± 0.1 | - | - | - | 1.15 ± 0.01 | 0.17 ± 0.01 | 0.63 ± 0.01 | 0.43 ± 0.1 |
α-Bisabolol oxide | 1748 | 2511 | - | - | 0.92 ± 0.05 | - | - | - | 0.67 ± 0.01 | 0.62 ± 0.05 | 0.54 ± 0.01 | 0.53 ± 0.01 |
Hexahydrofarnesyl acetone * | 1839 | 2113 | 0.88 ± 0.01 | - | 1.46 ± 0.01 | 1.52 ± 0.01 | - | 1.02 ± 0.05 | 2.84 ± 0.01 | 0.66 ± 0.01 | 0.66 ± 0.1 | 0.64 ± 0.01 |
Phenolic compounds | 6.19 | 8.5 | 18.35 | 7.99 | 6.43 | 5.51 | 7.82 | 11.12 | 10.36 | 4.46 | ||
Thymol * | 1289 | 2154 | - | - | - | - | - | 3.83 ± 0.01 | 5.17 ± 0.01 | - | - | - |
p-Vinyl guaicol | 1313 | 2156 | - | 1.85 ± 0.01 | - | 4.67 ± 0.01 | 6.43 ± 0.01 | 0.77 ± 0.03 | 2.65 ± 0.01 | - | - | 4.46 ± 0.01 |
2-Methoxy-4-vinylphenol | 1317 | 2145 | - | - | - | - | - | - | - | 11.12 ± 0.01 | - | - |
Methyl eugenol | 1403 | 2005 | 5.43 ± 0.01 | 6.65 ± 0.01 | 18.35 ± 0.01 | 3.32 ± 0.01 | - | - | - | - | 8.65 ± 0.01 | - |
(Z)-Methyl isoeugenol | 1451 | 2070 | 0.66 ± 0.01 | - | - | - | - | 0.91 ± 0.01 | - | - | 1.71 ± 0.01 | - |
Acids, alcohols and esters | 40.3 | 58.66 | 49.07 | 33.13 | 44.67 | 22.87 | 50.58 | 51.77 | 45.95 | 46.44 | ||
Isopentyl acetate | 863 | 1127 | - | - | - | - | 3.78 ± 0.01 | 4.15 ± 0.01 | - | - | - | - |
Benzaldehyde | 952 | 1508 | - | 5.42 ± 0.01 | 17.35 ± 0.01 | 1.77 ± 0.01 | 4.88 ± 0.01 | 3.28 ± 0.01 | - | 1.15 ± 0.01 | 4.09 ± 0.01 | - |
Benzene acetaldehyde | 1036 | 1633 | 4.54 ± 0.01 | 18.34 ± 0.01 | 22.52 ± 0.01 | 5.56 ± 0.01 | 10.32 ± 0.01 | 5.47 ± 0.01 | 14.36 ± 0.01 | 9.69 ± 0.01 | 20.05 ± 0.01 | 10.43 ± 0.01 |
n-Nonanal | 1100 | 1389 | 0.43 ± 0.01 | - | - | - | 3.13 ± 0.01 | - | 1.44 ± 0.01 | 0.77 ± 0.01 | 0.72 ± 0.1 | 8.11 ± 0.01 |
n-Decanol | 1266 | 1711 | 3.76 ± 0.01 | 4.67 ± 0.01 | - | 2.52 ± 0.01 | - | - | - | - | 2.55 ± 0.01 | - |
(E)-β-Damascenone | 1384 | 1819 | 10.04 ± 0.01 | 20.45 ± 0.1 | 1.52 ± 0.02 | - | 8.85 ± 0.01 | - | 23.86 ± 0.01 | 11.34 ± 0.01 | 2.05 ± 0.01 | 8.01 ± 0.01 |
β-Ionone | 1487 | 1935 | 21.53 ± 0.01 | 9.78 ± 0.01 | 6.47 ± 0.01 | 10.43 ± 0.01 | 13.71 ± 0.01 | 9.11 ± 0.01 | 10.14 ± 0.01 | 17.78 ± 0.01 | 16.49 ± 0.01 | 19.21 ± 0.01 |
Methyl salicylate | 1188 | 1755 | - | - | - | - | - | - | - | 3.93 ± 0.01 | - | - |
Hexadecanoic acid * | 1959 | 2912 | - | - | 1.21 ± 0.01 | 12.85 ± 0.01 | - | 0.86 ± 0.1 | 0.78 ± 0.01 | 7.11 ± 0.01 | - | 0.68 ± 0.01 |
Total identification (%) | 93.53 | 93.9 | 93.33 | 96.35 | 93.71 | 93.64 | 94.92 | 93.89 | 95.21 | 94.61 |
Species | Clevenger | Microwave |
---|---|---|
V. acinifolia | 12.35 ± 2.14 | 3.98 ± 0.99 |
V. anagallis-aquatica | 70.72 ± 2.84 | 57.29 ± 1.17 |
V. anagalloides | 77.88 ± 9.59 | 37.17 ± 3.33 |
V. catenata | 11.23 ± 1.41 | 30.03 ± 0.79 |
V. arvensis | 28.35 ± 0.3 | 31.9 ± 1.02 |
V. cymbalaria | 102.28 ± 3.04 | 27.06 ± 2.99 |
V. hederifolia | 37.96 ± 3.31 | 86.88 ± 5.14 |
V. officinalis | 217.54 ± 14.98 | 359.9 ± 44.40 |
V. persica | 27.62 ± 0.21 | 38.23 ± 1.45 |
V. polita | 17.005 ± 1.19 | 34.42 ± 1.77 |
Species | Clevenger | Microwave |
---|---|---|
V. acinifolia | 8.09 ± 0.94 | 36.04 ± 11.19 |
V. anagallis-aquatica | 57.02 ± 4.93 | 119.6 ± 10.7 |
V. anagalloides | 43.42 ± 5.49 | 21.18 ± 8.95 |
V. catenata | 75.27 ± 9.5 | 17.83 ± 7.44 |
V. arvensis | 7.83 ± 2.16 | 15.03 ± 5.34 |
V. cymbalaria | 6.55 ± 0.98 | 7.92 ± 1.52 |
V. hederifolia | 40.39 ± 6.13 | 24.42 ± 3.14 |
V. officinalis | 4.43 ± 2.44 | 3.70 ± 1.35 |
V. persica | 17.34 ± 3.81 | 24.87 ± 4.20 |
V. polita | 48.99 ± 8.39 | 89.11 ± 9.79 |
Species | Locality | Latitude | Longitude | Altitude a.s.l. (m) | Voucher No. |
---|---|---|---|---|---|
V. acinifolia L. | Donji Karin | 44°07′18.1″ N | 15°36′13.7″ E | 119 | CROVeS-11-2021 |
V. anagallis-aquatica L. | Split | 43°31′43.5″ N | 16°28′45.2″ E | 22 | CROVeS-06-2021 |
V. anagalloides Guss. | Čikola River | 43°49′36.2″ N | 16°01′19.4″ E | 45 | CROVeS-07-2021 |
V. catenata Pennell | Trakošćan | 46°15′30.3″ N | 15°56′25.2″ E | 240 | CROVeS-09-2021 |
V. arvensis L. | Hvar Island | 43°10′42.3″ N | 16°36′43.6″ E | 38 | CROVeS-12-2021 |
V. cymbalaria Bodard | Murter Island | 43°48′36.6″ N | 15°35′07.4″ E | 37 | CROVeS-03-2021 |
V. hederifolia L. | Zagreb | 45°49′40.4″ N | 15°58′59.6″ E | 192 | CROVeS-14-2021 |
V. officinalis L. | Kamešnica Mt | 43°42′38.7″ N | 16°50′47.9″ E | 1225 | CROVeS-16-2021 |
V. persica Poir. | Samoborsko gorje | 45°49′41.6″ N | 15°40′32.9″ E | 301 | CROVeS-18-2021 |
V. polita Fr. | Kaštel Žegarski | 44°09′26.1″ N | 15°51′56.0″ E | 53 | CROVeS-19-2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazlić, M.; Akrap, K.; Kremer, D.; Dunkić, V. Hydrosols of Veronica Species—Natural Source of Free Volatile Compounds with Potential Pharmacological Interest. Pharmaceuticals 2022, 15, 1378. https://doi.org/10.3390/ph15111378
Nazlić M, Akrap K, Kremer D, Dunkić V. Hydrosols of Veronica Species—Natural Source of Free Volatile Compounds with Potential Pharmacological Interest. Pharmaceuticals. 2022; 15(11):1378. https://doi.org/10.3390/ph15111378
Chicago/Turabian StyleNazlić, Marija, Karla Akrap, Dario Kremer, and Valerija Dunkić. 2022. "Hydrosols of Veronica Species—Natural Source of Free Volatile Compounds with Potential Pharmacological Interest" Pharmaceuticals 15, no. 11: 1378. https://doi.org/10.3390/ph15111378
APA StyleNazlić, M., Akrap, K., Kremer, D., & Dunkić, V. (2022). Hydrosols of Veronica Species—Natural Source of Free Volatile Compounds with Potential Pharmacological Interest. Pharmaceuticals, 15(11), 1378. https://doi.org/10.3390/ph15111378