Silver Nanomaterials for Wound Dressing Applications
Abstract
:1. Introduction
2. Methodology of the Review
3. Synthesis of AgNPs
4. AgNPs Immobilization into Membrane and Composite Material
4.1. Chemical-Synthesized AgNPs Incorporated into Membranes and Composite Materials
4.2. Green-Synthesized AgNPs Incorporated into Membranes and Composite Materials
4.3. Irradiation-Synthesized AgNPs Incorporated into Membranes and Composite Materials
4.4. Thermal-Synthesized AgNPs Incorporated in Membranes and Composite Materials
5. Powdered AgNPs and Topical Application
5.1. Chemical-Synthesized Powdered AgNPs and Topical Application
5.2. Green-Synthesized Powdered AgNPs and Topical Application
6. Nanofibers
6.1. Chemical Synthesis of AgNP-Containing Nanofibers
6.2. Green Synthesis of AgNPs-Containing Nanofibers
6.3. Irradiation Synthesis of Silver Nanofibers
7. AgNPs-Hydrogels
7.1. Chemical Synthesis of AgNPs-Containing Hydrogels
7.2. Green Synthesis of AgNPs-Containing Hydrogels
7.3. Irradiation Synthesis of AgNPs-Containing Hydrogels
7.4. Thermal Synthesis of AgNPs-Containing Hydrogels
8. Safety of AgNPs in Wound Dressing Applications
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AgNPs | silver nanoparticles |
AMSAS | 2-acrylamido-2-methylpropane sulfonic acid sodium salt |
BC | bacterial cellulose |
CMC | carboxymethylcellulose |
CU | curcumine |
DMA | dimethylacetamide |
DMF | dimethylformamide |
GO | graphene oxide |
HA | hyaluronic acid |
HaCaT | the immortal human keratinocyte line |
IPA | isopropanol |
KGM | konjac glucomannan |
MBA | N,N′-methylenebis(acrylamide) |
NIPAMSA | poly(N-isopropylacryamide-co-2-acrylamido-2-methylpropane sulfonic acid) |
NPs | nanoparticles |
PAA | poly(acrylic acid) |
PBG | plumbagine |
PCL | poly(caprolactone) |
PDMS | poly(dimethylsiloxane) |
PEG | poly(ethylene glycol) |
PEO | poly(ethylene oxide) |
PEOPCL | poly(ethylene oxide)-poly(caprolactone) |
PGA | polygalacturonic acid |
PMMDM | poly(methyl methacrylate-co-dopamine methacrylamide) |
PVA | poly(vinylalcohol) |
PVP | poly(vinylpyrrolidone) |
SF | silk fibroin |
References
- Augustine, R.; Zahid, A.A.; Hasan, A.; Wang, M.; Webster, T.J. CTGF loaded electrospun dual porous core-shell membrane for diabetic wound healing. Int. J. Nanomed. 2019, 14, 8573–8588. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Villen, F.; Faccendini, A.; Aguzzi, C.; Cerezo, P.; Bonferoni, M.C.; Rossi, S.; Grisoli, P.; Ruggeri, M.; Ferrari, F.; Sandri, G.; et al. Montmorillonite-Norfloxacin nanocomposite intended for healing of infected wounds. Int. J. Nanomed. 2019, 14, 5051–5060. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.C.; Gao, Y.; Wang, F.B.; Wang, Y.Y.; Cao, M.X.; Zhang, W.J.; Liang, Y.; Song, M.Y.; Jiang, G.B. Toxicity of silver nanoparticles on wound healing: A case study of zebrafish fin regeneration model. Sci. Total Environ. 2020, 717, 10. [Google Scholar] [CrossRef]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef] [Green Version]
- Percival, S.L.; Salisbury, A.M.; Chen, R. Silver, biofilms and wounds: Resistance revisited. Crit. Rev. Microbiol. 2019, 45, 223–237. [Google Scholar] [CrossRef]
- Kim, J.H.; Yang, B.; Tedesco, A.; Lebig, E.G.D.; Ruegger, P.M.; Xu, K.R.; Borneman, J.; Martins-Green, M. High levels of oxidative stress and skin microbiome are critical for initiation and development of chronic wounds in diabetic mice. Sci. Rep. 2019, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Theuretzbacher, U.; Bush, K.; Harbarth, S.; Paul, M.; Rex, J.H.; Tacconelli, E.; Thwaites, G.E. Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol. 2020, 18, 286–298. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Vishakha, K.; Das, S.; Dutta, M.; Mukherjee, D.; Mondal, J.; Mondal, S.; Ganguli, A. Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus Aureus. Colloid Surf. B Biointerfaces 2020, 190, 11. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.; Yoon, E.J.; Hong, J.S.; Shin, J.H.; Uh, Y.; Shin, K.S.; Shin, J.H.; Kim, Y.A.; Park, Y.S.; et al. Prospective observational study of the clinical prognoses of patients with bloodstream infections caused by ampicillin-susceptible but penicillin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 2019, 63, 11. [Google Scholar] [CrossRef] [Green Version]
- Kardan-Yamchi, J.; Kazemian, H.; Battaglia, S.; Abtahi, H.; Foroushani, A.R.; Hamzelou, G.; Cirillo, D.M.; Ghodousi, A.; Feizabadi, M.M. Whole genome sequencing results associated with minimum inhibitory concentrations of 14 anti-tuberculosis drugs among rifampicin-resistant isolates of mycobacterium tuberculosis from Iran. J. Clin. Med. 2020, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Natan, M.; Banin, E. From Nano to Micro: Using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev. 2017, 41, 302–322. [Google Scholar] [CrossRef] [Green Version]
- Shehabeldine, A.M.; Ashour, R.M.; Okba, M.M.; Saber, F.R. Callistemon citrinus bioactive metabolites as new inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation. J. Ethnopharmacol. 2020, 254, 12. [Google Scholar] [CrossRef]
- Halawani, E.M.; Hassan, A.M.; El-Rab, S. Nanoformulation of biogenic cefotaxime-conjugated-silver nanoparticles for enhanced antibacterial efficacy against multidrug-resistant bacteria and anticancer studies. Int. J. Nanomed. 2020, 15, 1889–1901. [Google Scholar] [CrossRef] [Green Version]
- Hamida, R.S.; Abdelmeguid, N.E.; Ali, M.A.; Bin-Meferij, M.M.; Khalil, M.I. Synthesis of silver nanoparticles using a novel cyanobacteria desertifilum sp. extract: Their antibacterial and cytotoxicity effects. Int. J. Nanomed. 2020, 15, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Lomeli-Marroquin, D.; Cruz, D.M.; Nieto-Arguello, A.; Crua, A.V.; Chen, J.J.; Torres-Castro, A.; Webster, T.J.; Cholula-Diaz, J.L. Starch-Mediated synthesis of mono-and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int. J. Nanomed. 2019, 14, 2171–2189. [Google Scholar] [CrossRef] [Green Version]
- López, R.A.; Bartomeu, G.C.; Navarro, G.S.M.; Webster, T. Novel Silver-Platinum Nanoparticles for anticancer and antimicrobial applications. Int. J. Nanomed. 2020, 15, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.C.; Zhu, H.; Wang, X.D.; Cui, D.Z.; Gao, Z.H.; Su, D.; Zhao, J.; Chen, O. Cu-Catalyzed synthesis of CdZnSe-CdZnS alloy quantum dots with highly tunable emission. Chem. Mat. 2019, 31, 2635–2643. [Google Scholar] [CrossRef]
- Toy, R.; Peiris, P.M.; Ghaghada, K.B.; Karathanasis, E. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 2014, 9, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.M. Nano-Sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef]
- Nel, A.E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef]
- Yang, W.R.; Ratinac, K.R.; Ringer, S.P.; Thordarson, P.; Gooding, J.J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Edit. 2010, 49, 2114–2138. [Google Scholar] [CrossRef]
- Hoseinnejad, M.; Jafari, S.M.; Katouzian, I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol. 2018, 44, 161–181. [Google Scholar] [CrossRef]
- Morais, L.D.; Macedo, E.V.; Granjeiro, J.M.; Delgado, I.F. Critical evaluation of migration studies of silver nanoparticles present in food packaging: A systematic review. Crit. Rev. Food Sci. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.L.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihai, M.M.; Dima, M.B.; Dima, B.; Holban, A.M. Nanomaterials for wound healing and infection control. Materials 2019, 12, 2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, K.L.; Mariatti, M.; Lockman, Z.; Sim, L.C. Effects of the Size and Filler Loading on the Properties of Copper- and Silver-Nanoparticle-Filled Epoxy Composites. J. Appl. Polym. Sci. 2011, 121, 3145–3152. [Google Scholar] [CrossRef]
- Stamplecoskie, K.G.; Scaiano, J.C.; Tiwari, V.S.; Anis, H. Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy. J. Phys. Chem. C 2011, 115, 1403–1409. [Google Scholar] [CrossRef]
- Chinnapongse, S.L.; MacCuspie, R.I.; Hackley, V.A. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci. Total Environ. 2011, 409, 2443–2450. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, C.L.; Zhang, Z.Y.; Zhang, M.Y.; Mu, J.B.; Guo, Z.C.; Liu, Y.C. In Situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 2011, 3, 3357–3363. [Google Scholar] [CrossRef]
- Karimzadeh, R.; Mansour, N. The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles. Opt. Laser Technol. 2010, 42, 783–789. [Google Scholar] [CrossRef]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Maillard, J.Y.; Hartemann, P. Silver as an antimicrobial: Facts and gaps in knowledge. Crit. Rev. Microbiol. 2013, 39, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.Z.; Li, Y.C.; Tjong, S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Belkum, A.; Dunne, W.M. Next-Generation antimicrobial susceptibility testing. J. Clin. Microbiol. 2013, 51, 2018–2024. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, A.; Vranken, T.; Malhotra, A.; Arts, J.J.C.; Habibovic, P. In Vitro antimicrobial susceptibility testing methods: Agar dilution to 3D tissue-engineered models. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 187–208. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Standard, CLSI Document M26-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1999. [Google Scholar]
- CLSI. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. Approved Standard, CLSI Document M11-A7, 7th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2007. [Google Scholar]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard, CLSI Document M07-A9, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Mady, O.Y.; Al-Madboly, L.A.; Donia, A.A. Preparation, and Assessment of Antidermatophyte Activity of Miconazole-Urea Water-Soluble Film. Front. Microbiol. 2020, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Farha, A.K.; Yang, Q.Q.; Kim, G.; Zhang, D.; Mavumengwana, V.; Habimana, O.; Li, H.B.; Corke, H.; Gan, R.Y. Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)—Nootkatone and related molecular mechanism. Food Control 2020, 112, 8. [Google Scholar] [CrossRef]
- Lin, S.H.; Huang, R.X.; Cheng, Y.W.; Liu, J.; Lau, B.L.T.; Wiesner, M.R. Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Res. 2013, 47, 3959–3965. [Google Scholar] [CrossRef]
- Lee, N.-Y.; Ko, W.-C.; Hsueh, P.-R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Chugh, H.; Sood, D.; Chandra, I.; Tomar, V.; Dhawan, G.; Chandra, R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cell. Nanomed. Biotechnol. 2018, 46, S1210–S1220. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, E.; Milani, M.; Fekri, A.S.; Kouhi, M.; Akbarzadeh, A.; Tayefi, N.H.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; et al. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol. 2016, 42, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Saha, J.; Begum, A.; Mukherjee, A.; Kumar, S. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain. Environ. Res. 2017, 27, 245–250. [Google Scholar] [CrossRef]
- Vorobyova, V.; Vasyliev, G.; Skiba, M. Eco-Friendly “green” synthesis of silver nanoparticles with the black currant pomace extract and its antibacterial, electrochemical, and antioxidant activity. Appl. Nanosci. 2020, 12. [Google Scholar] [CrossRef]
- Bindhu, M.R.; Umadevi, M.; Esmail, G.A.; Al-Dhabi, N.A.; Arasu, M.V. Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J. Photochem. Photobiol. B Biol. 2020, 205, 7. [Google Scholar] [CrossRef]
- Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016, 9, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Chinnasamy, G.; Chandrasekharan, S.; Bhatnagar, S. Biosynthesis of silver nanoparticles from Melia azedarach: Enhancement of antibacterial, wound healing, antidiabetic and antioxidant activities. Int. J. Nanomed. 2019, 14, 9823–9836. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.; Silva, L.P.C.; Ferraz, C.M.; Tobias, F.L.; de Araujo, J.V.; Loureiro, B.; Braga, G.; Veloso, F.B.R.; Soares, F.E.D.; Fronza, M.; et al. Nematicidal activity of silver nanoparticles from the fungus duddingtonia flagrans. Int. J. Nanomed. 2019, 14, 2341–2348. [Google Scholar] [CrossRef] [Green Version]
- Hamedi, S.; Shojaosadati, S.; Shokrollahzadeh, S.; Hashemi-Najafabadi, S. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, neurospora intermedia: Controlled synthesis and antibacterial activity. World J. Microbiol. Biotechnol. 2014, 30, 693–704. [Google Scholar] [CrossRef]
- Saravanan, M.; Arokiyaraj, S.; Lakshmi, T.; Pugazhendhi, A. Synthesis of silver nanoparticles from phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb. Pathog. 2018, 117, 68–72. [Google Scholar] [CrossRef]
- Li, F.S.; Weng, J.K. Demystifying traditional herbal medicine with modern approaches. Nat. Plants 2017, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Sehnal, K.; Hosnedlova, B.; Docekalova, M.; Stankova, M.; Uhlirova, D.; Tothova, Z.; Kepinska, M.; Milnerowicz, H.; Fernandez, C.; Ruttkay-Nedecky, B.; et al. An assessment of the effect of green synthesized silver nanoparticles using sage leaves (Salvia officinalis L.) on germinated plants of maize (Zea mays L.). Nanomaterials 2019, 9, 1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, X.W.; Yao, Y.C.; Yu, G.F.; Qu, L.L.; Li, T.X.; Li, Z.J.; Xu, C.P. Synthesis of gold-silver nanoalloys under microwave-assisted irradiation by deposition of silver on gold nanoclusters/triple helix glucan and antifungal activity. Carbohydr. Polym. 2020, 238, 7. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.L.; Wang, W.; Dhital, R.; Kong, F.B.; Lin, M.S.; Mustaph, A. Antimicrobial effect and toxicity of cellulose nanofibril/silver nanoparticle nanocomposites prepared by an ultraviolet irradiation method. Colloid Surf. B Biointerfaces 2019, 180, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.M.; Li, N.; Jing, M.L.; Zhang, Y.F.; Wang, W.; Liu, L.S.; Xu, Z.W.; Liu, L.Y.; Li, F.Y.; Wu, N. Monodispersed and spherical silver nanoparticles/graphene nanocomposites from gamma-ray assisted in-situ synthesis for nitrite electrochemical sensing. Electrochim. Acta 2019, 295, 434–443. [Google Scholar] [CrossRef]
- Haleem, A.; Chen, J.; Guo, X.X.; Wang, J.Y.; Li, H.J.; Li, P.Y.; Chen, S.Q.; He, W.D. Hybrid cryogels composed of P(NIPAM-co-AMPS) and metal nanoparticles for rapid reduction of p-nitrophenol. Polymer 2020, 193, 10. [Google Scholar] [CrossRef]
- Liang, M.; Su, R.X.; Huang, R.L.; Qi, W.; Yu, Y.J.; Wang, L.B.; He, Z.M. Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 4638–4649. [Google Scholar] [CrossRef]
- Cao, X.L.; Tang, M.; Liu, F.; Nie, Y.Y.; Zhao, C.S. Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloid Surf. B Biointerfaces 2010, 81, 555–562. [Google Scholar] [CrossRef]
- Hanif, Z.; Khan, Z.A.; Siddiqui, M.F.; Tariq, M.Z.; Park, S.; Park, S.J. Tannic acid-mediated rapid layer-by-layer deposited non-leaching silver nanoparticles hybridized cellulose membranes for point-of-use water disinfection. Carbohydr. Polym. 2020, 231, 8. [Google Scholar] [CrossRef]
- Dong, X.B.; Shannon, H.D.; Amirsoleimani, A.; Brion, G.M.; Escobar, I.C. Thiol-Affinity immobilization of casein-coated silver nanoparticles on polymeric membranes for biofouling control. Polymers 2019, 11, 2057. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, U.M.; Teuscher, N.; Ruhl, M.; Heilmann, A. Plasma-Enhanced magnetron sputtering of silver nanoparticles on reverse osmosis membranes for improved antifouling properties. Surf. Interfaces 2019, 16, 1–7. [Google Scholar] [CrossRef]
- Saraswathi, M.; Rana, D.; Alwarappan, S.; Gowrishankar, S.; Vijayakumar, P.; Nagendran, A. Polydopamine layered poly (ether imide) ultrafiltration membranes tailored with silver nanoparticles designed for better permeability, selectivity and antifouling. J. Ind. Eng. Chem. 2019, 76, 141–149. [Google Scholar] [CrossRef]
- Yang, G.; Xie, J.; Hong, F.; Cao, Z.; Yang, X. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydr. Polym. 2012, 87, 839–845. [Google Scholar] [CrossRef]
- Levi-Polyachenko, N.; Jacob, R.; Day, C.; Kuthirummal, N. Chitosan wound dressing with hexagonal silver nanoparticles for hyperthermia and enhanced delivery of small molecules. Colloids Surf. B Biointerfaces 2016, 142, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Archana, D.; Singh, B.K.; Dutta, J.; Dutta, P.K. Chitosan-PVP-nano silver oxide wound dressing: In Vitro and in vivo evaluation. Int. J. Biol. Macromol. 2015, 73, 49–57. [Google Scholar] [CrossRef]
- Madhumathi, K.; Sudheesh, K.P.T.; Abhilash, S.; Sreeja, V.; Tamura, H.; Manzoor, K.; Nair, S.V.; Jayakumar, R. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J. Mater. Sci. Mater. Med. 2010, 21, 807–813. [Google Scholar] [CrossRef]
- Maneerung, T.; Tokura, S.; Rujiravanit, R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 2008, 72, 43–51. [Google Scholar] [CrossRef]
- Chen, H.; Lan, G.; Ran, L.; Xiao, Y.; Yu, K.; Lu, B.; Dai, F.; Wu, D.; Lu, F. A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr. Polym. 2018, 183, 70–80. [Google Scholar] [CrossRef]
- Ahamed, M.I.; Sankar, S.; Kashif, P.M.; Basha, S.K.; Sastry, T.P. Evaluation of biomaterial containing regenerated cellulose and chitosan incorporated with silver nanoparticles. Int. J. Biol. Macromol. 2015, 72, 680–686. [Google Scholar] [CrossRef]
- Kanikireddy, V.; Yallapu, M.; Varaprasad, K.; Nagireddy, N.; Ravindra, S.; Neppalli, S.; Raju, K. Fabrication of Curcumin Encapsulated Chitosan-PVA Silver Nanocomposite Films for Improved Antimicrobial Activity. J. Biomater. Nanobiotechnol. 2011, 2, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Chen, S.; Li, X.; Shi, S.; Shen, W.; Zhang, X.; Wang, H. In Situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater. Sci. Eng. C 2009, 29, 1216–1219. [Google Scholar] [CrossRef]
- Singh, R.; Singh, D. Chitin membranes containing silver nanoparticles for wound dressing application. Int. Wound J. 2014, 11, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zheng, Y.; Song, W.; Luan, J.; Wen, X.; Wu, Z.; Chen, X.; Wang, Q.; Guo, S. In Situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr. Polym. 2014, 102, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Hebeish, A.; El-Rafie, M.H.; El-Sheikh, M.A.; Seleem, A.A.; El-Naggar, M.E. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int. J. Biol. Macromol. 2014, 65, 509–515. [Google Scholar] [CrossRef]
- Tian, J.; Wong, K.; Ho, C.-M.; Lok, C.-N.; Yu, W.-Y.; Che, C.-M.; Chiu, J.-F.; Tam, P. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem 2007, 2, 129–136. [Google Scholar] [CrossRef]
- Duran, N.; Marcato, P.; Souza, G.; Alves, O.; Esposito, E. Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment. J. Biomed. Nanotechnol. 2007, 3, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Sundaramoorthi, C.; Mathews, D.; Sivanandy, D.P.; Kalaiselvan, V.; Rajasekaran, A. Biosynthesis of silver nanoparticles from Aspergillus niger and evaluation of its wound healing activity in experimental rat model. Int. J. PharmTech Res. 2009, 1, 1523–1529. [Google Scholar]
- Chen, X.; Lin, H.T.; Xu, T.T.; Lai, K.Q.; Han, X.; Lin, M.S. Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong tea by surface-enhanced Raman spectroscopy. Food Chem. 2020, 315, 7. [Google Scholar] [CrossRef]
- Yun, B.J.; Koh, W.G. Highly-Sensitive SERS-based immunoassay platform prepared on silver nanoparticle-decorated electrospun polymeric fibers. J. Ind. Eng. Chem. 2020, 82, 341–348. [Google Scholar] [CrossRef]
- Shen, B.L.; Zhang, D.Y.; Wei, Y.J.; Zhao, Z.H.; Ma, X.F.; Zhao, X.D.; Wang, S.; Yang, W.X. Preparation of Ag Doped Keratin/PA6 Nanofiber Membrane with Enhanced Air Filtration and Antimicrobial Properties. Polymers 2019, 11, 1511. [Google Scholar] [CrossRef] [Green Version]
- Dou, J.L.; Zhu, G.D.; Hu, B.; Yang, J.M.; Ge, Y.X.; Li, X.; Liu, J.Y. Wall thickness-tunable AgNPs-NCNTs for hydrogen peroxide sensing and oxygen reduction reaction. Electrochim. Acta 2019, 306, 466–476. [Google Scholar] [CrossRef]
- Rath, G.; Hussain, T.; Chauhan, G.; Garg, T.; Goyal, A.K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Target. 2016, 24, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.-J.; Lee, H.; Jeong, E.; Park, W.H.; Youk, J. Preparation of Polymer Nanofibers Containing Silver Nanoparticles by Using Poly(N-vinylpyrrolidone). Macromol. Rapid Comm. 2005, 26, 1903–1907. [Google Scholar] [CrossRef]
- Ghavaminejad, A.; Unnithan, R.A.; Ramachandra, K.S.A.; Samarikhalaj, M.; Thomas, R.; Jeong, Y.; Nasseri, S.; Murugesan, P.; Wu, D.; Park, C.; et al. Mussel-Inspired Electrospun Nanofibers Functionalized with Size Controlled Silver Nanoparticles for Wound Dressing Application. ACS Appl. Mater. Interf. 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, D.; Lakra, R.; Srivatsan, K.; Usha, R.; Korrapati, P.; Kiran, M. Plumbagin caged silver nanoparticle stabilized collagen scaffold for wound dressing. J. Mater. Chem. B 2014, 3. [Google Scholar] [CrossRef]
- Rujitanaroj, P.-O.; Pimpha, N.; Supaphol, P. Wound-Dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 2008, 49, 4723–4732. [Google Scholar] [CrossRef]
- Dubey, P.; Bhushan, B.; Sachdev, A.; Matai, I.; Kumar, U.; Packirisamy, G. Silver-Nanoparticle-Incorporated composite nanofibers for potential wound-dressing applications. J. Appl. Polymer Sci. 2015, 132. [Google Scholar] [CrossRef]
- Neibert, K.; Gopishetty, V.; Grigoryev, A.; Tokarev, I.; Al-Hajaj, N.; Vorstenbosch, J.; Philip, A.; Minko, S.; Maysinger, D. Wound-Healing with mechanically robust and biodegradable hydrogel fibers loaded with silver nanoparticles. Adv. Healthc. Mater. 2012, 1, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Abdelgawad, A.M.; Hudson, S.M.; Rojas, O.J. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 2014, 100, 166–178. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Ibrahim, O.M.; Fouda, M.M.G.; El-Beheri, N.G.; Agwa, M.M. Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-Vitro and in-vivo studies. Carbohydr. Polym. 2020, 238, 11. [Google Scholar] [CrossRef]
- Augustine, R.; Kalarikkal, N.; Thomas, S. Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Appl. Nanosci. 2016, 6, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Uttayarat, P.; Jetawattana, S.; Suwanmala, P.; Eamsiri, J.; Tangthong, T.; Pongpat, S. Antimicrobial electrospun silk fibroin mats with silver nanoparticles for wound dressing application. Fiber. Polymer. 2012, 13, 999–1006. [Google Scholar] [CrossRef]
- Saberi, A.; Sadeghi, M.; Alipour, E. Design of AgNPs-Base Starch/PEG-Poly (Acrylic Acid) Hydrogel for Removal of Mercury (II). J. Polym. Environ. 2020, 28, 906–917. [Google Scholar] [CrossRef]
- Dil, N.N.; Sadeghi, M. Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu (II) metal ions. J. Hazard. Mater. 2018, 351, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Varaprasad, K.; Yallapu, M.; Ravindra, S.; Nagireddy, N.; Kanikireddy, V.; Monika, K.; Bojja, S.; Raju, K. Hydrogel–Silver nanoparticle composites: A new generation of antimicrobials. J. Appl. Polymer Sci. 2010, 115, 1199–1207. [Google Scholar] [CrossRef]
- Kumar, P.T.S.; Abhilash, S.; Manzoor, K.; Nair, S.V.; Tamura, H.; Jayakumar, R. Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr. Polym. 2010, 80, 761–767. [Google Scholar] [CrossRef]
- Verma, J.; Kanoujia, J.; Parashar, P.; Tripathi, C.B.; Saraf, S.A. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv. Translat. Res. 2017, 7, 77–88. [Google Scholar] [CrossRef]
- Boonkaew, B.; Kempf, M.; Kimble, R.; Supaphol, P.; Cuttle, L. Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: Acticoat™ and PolyMem Silver®. Burns 2014, 40, 89–96. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Rouze, R.; Quilty, B.; Alves, G.G.; Soares, G.D.; Thire, R.M.; McGuinness, G.B. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings. Interface Focus 2014, 4. [Google Scholar] [CrossRef] [Green Version]
- Rattanaruengsrikul, V.; Pimpha, N.; Supaphol, P. In Vitro efficacy and toxicology evaluation of silver nanoparticle-loaded gelatin hydrogel pads as antibacterial wound dressings. J. Appl. Polymer. Sci. 2012, 124. [Google Scholar] [CrossRef]
- Das, A.; Kumar, A.; Patil, N.B.; Viswanathan, C.; Ghosh, D. Preparation and characterization of silver nanoparticle loaded amorphous hydrogel of carboxymethylcellulose for infected wounds. Carbohydr. Polym. 2015, 130, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lee, P.Y.; Ho, C.M.; Lui, V.C.; Chen, Y.; Che, C.M.; Tam, P.K.; Wong, K.K. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem 2010, 5, 468–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, R.M.; Lopes-de-Campos, D.; Martins, M.C.L.; Van Dijck, P.; Nunes, C.; Reis, S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol. Rev. 2019, 43, 622–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopinath, P.; Gogoi, S.K.; Chattopadhyay, A.; Ghosh, S.S. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology 2008, 19, 075104. [Google Scholar] [CrossRef] [PubMed]
- Borm, P.J.; Kreyling, W. Toxicological hazards of inhaled nanoparticles—Potential implications for drug delivery. J. Nanosci. Nanotechnol. 2004, 4, 521–531. [Google Scholar] [CrossRef] [PubMed]
- McAuliffe, M.E.; Perry, M.J. Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology 2007, 1, 204–210. [Google Scholar] [CrossRef]
- Hussain, S.M.; Javorina, A.K.; Schrand, A.M.; Duhart, H.M.; Ali, S.F.; Schlager, J.J. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol. Sci. 2006, 92, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Hess, K.; Gearhart, J.; Geiss, K.; Schlager, J. In Vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitr. 2005, 19, 975–983. [Google Scholar] [CrossRef]
- Braydich-Stolle, L.; Hussain, S.; Schlager, J.J.; Hofmann, M.-C. In Vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005, 88, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Wang, F.; Liu, S.; Wu, X.; Xu, L.; Zhang, D. In Situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Internatl. J. Biol. Macromol. 2020, 148, 501–509. [Google Scholar] [CrossRef]
- Ip, M.; Lui, S.L.; Poon, V.K.; Lung, I.; Burd, A. Antimicrobial activities of silver dressings: An in vitro comparison. J. Med. Microbiol. 2006, 55, 59–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, S.; Jana, A.D.; Samanta, S.K.; Mostafa, G. Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron 2007, 26, 4419–4426. [Google Scholar] [CrossRef]
- Kokura, S.; Handa, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qin, Z.; Zeng, W.; Yang, T.; Cao, Y.; Mei, C.; Kuang, Y. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol. Rev. 2017, 6, 279–289. [Google Scholar] [CrossRef]
- Zewde, B.; Ambaye, A.; Stubbs Iii, J.; Raghavan, D. A review of stabilized silver nanoparticles–synthesis, biological properties, characterization, and potential areas of applications. Nanomed 2016, 4, 1–14. [Google Scholar]
- Rai, M.; Deshmukh, S.; Ingle, A.; Gade, A. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef]
- Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns 2007, 33, 139–148. [Google Scholar] [CrossRef]
- Franková, J.; Pivodová, V.; Vágnerová, H.; Juráňová, J.; Ulrichová, J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J. Appl. Biomater. Funct. Mater. 2016, 14, 137–142. [Google Scholar] [CrossRef]
- Resmi, R.; Unnikrishnan, S.; Krishnan, L.K.; Kalliyana, K.V. Synthesis and characterization of silver nanoparticle incorporated gelatin-hydroxypropyl methacrylate hydrogels for wound dressing applications. J. Appl. Polym. Sci. 2017, 134, 44529. [Google Scholar] [CrossRef]
- Kalantari, K.; Mostafavi, E.; Afifi, A.M.; Izadiyan, Z.; Jahangirian, H.; Rafiee-Moghaddam, R.; Webster, T.J. Wound dressings functionalized with silver nanoparticles: Promises and pitfalls. Nanoscale 2020, 12, 2268–2291. [Google Scholar] [CrossRef]
- Szegedi, Á.; Popova, M.; Yoncheva, K.; Makk, J.; Mihály, J.; Shestakova, P. Silver-and sulfadiazine-loaded nanostructured silica materials as potential replacement of silver sulfadiazine. J. Mater. Chem. B 2014, 2, 6283–6292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, M.; Cochrane, C.A.; Bowler, P.G.; Parsons, D.; Bradshaw, P. Silver deposition and tissue staining associated with wound dressings containing silver. Ostomy Wound Manag. 2006, 52, 42. [Google Scholar]
- Trop, M.; Novak, M.; Rodl, S.; Hellbom, B.; Kroell, W.; Goessler, W. Silver-Coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J. Trauma Acute Care Surg. 2006, 60, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Anisha, B.; Biswas, R.; Chennazhi, K.; Jayakumar, R. Chitosan–Hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Internatl. J. Biol. Macromol. 2013, 62, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.; Rangasamy, S.; Purushothaman, B.; Song, J.M. The application of bactericidal silver nanoparticles in wound treatment. Nanomate. Nanotechnol. 2015, 5, 5–23. [Google Scholar] [CrossRef]
- Burd, A.; Kwok, C.H.; Hung, S.C.; Chan, H.S.; Gu, H.; Lam, W.K.; Huang, L. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regener. 2007, 15, 94–104. [Google Scholar] [CrossRef] [PubMed]
AgNPs Preparation | AgNPs Size (nm) | Polymer Used | Incorporation Method | Main Result |
---|---|---|---|---|
CHEMICAL METHOD (NaBH4) | 5–14 | BC | BC membrane was mixed with AgNO3 and reduced with NaBH4. | Inhibition of S. aureus and E. coli growth on different sugar media (glucose, sucrose, maltose) [66] |
CHEMICAL METHOD (NaBH4) | 15 | Chitosan | Chitosan was mixed with AgNPs prepared by reduction of AgNO3 with NaBH4 and the mixture was left to dry. | AgNPs in chitosan wound dressing materials facilitate cell proliferation and mitigate bacterial infection [67]. |
CHEMICAL METHOD (sodium citrate) | 10–30 | PVP chitosan | PVP and chitosan were mixed in a 1:1 ratio, then AgNPs prepared by reduction of AgNO3 with sodium citrate were added, and afterward, the mixture was dried for 48 h. | Addition of 0.001 to 0.01 mg AgNPs to PVP-chitosan film significantly reduced the growth of E. coli and S. aureus [68]. |
CHEMICAL METHOD (sodium citrate) | 5 | Chitin | Chitin/nanosilver composite scaffolds were prepared by addition of the nanosilver solution (prepared by reduction of AgNO3 with sodium citrate) to chitin hydrogel to obtain chitin/nanosilver composite scaffolds. | This composite inhibits the growth of S. aureus and E. coli. Inhibition zone on the plate was higher in E. coli than S. aureus, indicating higher susceptibility of Gram-negative bacteria to nanosilver [69]. |
CHEMICAL METHOD (NaBH4) | 3–17 | BC | AgNPs were impregnated into BC fiber by immersing BC pellicles in AgNO3 for 1 h. The silver ion-saturated BC pellicles were reduced with NaBH4. | The growth inhibition ring of E. coli and S. aureus was 2 and 3.5 mm, respectively. No inhibition zone was observed with the pure BC as a control [70]. |
GREEN METHOD (egg white) | 8–32 | KGM | KGM/AgNPs composite sponge | Animal models showed that the KGM/AgNPs composite sponges effectively accelerated wound healing, fibroblast growth promotion and wound epithelialization on the rabbit model [71]. |
GREEN METHOD (Camelia sinensis) | 60–150 | Chitosan and chitin | Film casting and dipping in AgNO3 solution | Evaluation of nanofilms as a temporary biological wound dressing material for rats had revealed good healing activity [72]. |
GREEN METHOD (chitosan) | 16 | Chitosan, PVA, CU | Film casting by evaporation | AgNPs prepared from chitosan demonstrated significant effects against various common pathogens (E.coli, S. aureus, P. aeruginosa, C. albicans) [73]. |
GREEN METHOD (cellulose from A. xylinum) | 50–150 | BC | AgNO3 and AgCl reduced by BC and directly incorporated into BC | Membranes exhibited high hydrophilic ability and strong antimicrobial activity against S. aureus and E. coli [74]. |
IRRADIATION METHOD (gamma rays, 60Co) | 3–13 | Chitin | Gamma rays prepared AgNPs were mixed with chitin in 5% LiCl and DMA system. | Bactericidal effect was significant (p < 0.01) in the presence of chitin nanosilver dressings, whereas the counts of bacteria progressively increased in the absence of nanosilver dressings [75]. |
THERMAL METHOD (thermal reduction; 80 °C) | 10–30 | Purchased BC | Freeze-dried BC membrane impregnated with AgNPs (direct incorporation) | The thermally prepared AgNPs exhibited significant antibacterial activity, with more than 99% reduction in S. aureus. Moreover, composites allowed attachment and growth of epidermal cells with no cytotoxicity that emerged [76]. |
Method of AgNPs Preparation | AgNPs Size (nm) | Material Used | Incorporation Method | Main Result |
---|---|---|---|---|
CHEMICAL METHOD (alkali solution of starch) | 22–24 | cotton fabrics | Pressure incorporation of AgNPs to cotton fabrics | 13- and 10-mm inhibition zones for S. aureus and E. coli were obtained, when cotton fabrics with 250 ppm AgNPs were used [77]. |
CHEMICAL METHOD (NaBH4) | 4–24 | dressing material | AgNPs-coated dressing material | AgNPs showed antimicrobial properties, reduction in wound inflammation and modulation of fibrogenic cytokines [78]. |
GREEN METHOD (Fusarium oxysporum) | 2 | cotton fabrics | Incorporation to cotton fabrics | AgNPs-impregnated fabrics showed a 99.9% reduction of S. aureus growth [79]. |
GREEN METHOD (Aspergillus niger) | 200–800 | AgNPs-incorporated wound dressings | AgNPs-coated dressing material | AgNPs synthesized from Aspergillus niger possess effective wound healing activity when compared with AgNO3 [80]. |
Method of AgNPs Preparation | AgNPs Size (nm) | Polymer Used | Incorporation Method | Main Result |
---|---|---|---|---|
CHEMICAL METHOD (sodium citrate) | 25–55 | Collagen | Electrospun fibers | Histology analysis revealed accelerated wound healing [85]. |
CHEMICAL METHOD (N,N-DMF) | 3–5 | PVP | Ag+ in PVP solution were reduced to nanofibers with N,N-DMF. | AgNPs-PVP showed the ability to be used in antibacterial separation filters [86]. |
CHEMICAL METHOD (Ag+ dipped in PMMDM) | <20 | PMMDM | Electrospun fibers were dipped in AgNO3 solution and dried in a vacuum. | AgNPs showed high antibacterial activity without significant effects on mammalian cells [87]. |
CHEMICAL METHOD (PBG reduction) | 60 | PBG | AgNO3 was reduced with PBG and then crosslinked with collagen. | Antibacterial and pro-wound healing activities in the PBG crosslinked collagen scaffold suggest the importance of nanobiotechnology for the development of biomaterials for tissue engineering applications [88]. |
CHEMICAL METHOD (AgNO3 reduced with gelatin powder) | 11–20 | Gelatin fibers | Electrospun fibers further crosslinked glutaraldehyde. | High antibacterial activity in response to Gram-positive (methicillin- resistant S. aureus) and Gram-negative bacteria [89]. |
CHEMICAL METHOD (AgNO3 reduced with PEO and DMF) | 13–17 | PEOPCL | Electrospun fibers | Composite nanofibers possessed good roughness, wettability and antibacterial potential [90]. |
CHEMICAL METHOD (NaBH4) | 5–17 | Alginate | AgNO3 was loaded on fibers and afterward reduced to Ag0 with NaBH4. | The alginate fibers loaded with AgNPs reduce the inflammatory phase and increase epidermal thickness, improving the overall quality and speed of healing [91]. |
GREEN METHOD (chitosan, glucose) | 10–30 | Chitosan, glucose, PVA | AgNPs were used for electrospinning nanofiber materials. | The antibacterial experiment indicated that the electrospun mats of PVA/chitosan blends had good bactericidal activity against the Gram-negative E. coli [92]. |
GREEN METHOD (PGA, HA) | 5–13 | PGA | PGA was mixed with AgNO3 to obtain AgNPs, then mixed with HA, and the mixture was electrospun to obtain nanofibers. | The in vivo study in albino rats showed maximum wound epithelization and collagen deposition after 14 days of nanofiber administration [93]. |
GREEN METHOD (P. nigrum) | 5–20 | PCL | AgNPs were mixed with PCL during electrospinning to obtain nanofibers. | The fabricated material showed excellent antibacterial activity against both S. aureus and E. coli, which suggests the ability of the fabricated material to prevent bacterial colonization in wounds covered with this material [94]. |
IRRADIATION METHOD (gamma rays, 60Co) | 23–24 | PVA | AgNO3, PVA and ethanol were mixed, nitrogen-flushed and radiated by 60Co. | The manufacture and evaluation of silk-based wound dressings in this study showed that the incorporation of AgNPs at low concentrations on electrospun SF mats could confer significant antibacterial activity against S. aureus and P. aeruginosa [95]. |
Method of AgNPs Preparation | AgNPs Size (nm) | Polymer Used | Incorporation Method | Summary |
---|---|---|---|---|
CHEMICAL METHOD (NaBH4) | 2–3 | PAA and PVA | Hydrogels were soaked in AgNO3 solution to absorb Ag+ and afterward reduced with NaBH4. | Hydrogel alone exhibited no antibacterial activity; however, Ag+-hydrogels and AgNPs-hydrogels showed significant antibacterial activity against E. coli [98]. |
CHEMICAL METHOD (sodium citrate) | 4–8 | β-chitin | β-chitin/nanosilver composite scaffolds were prepared by adding nanosilver to β-chitin hydrogel and stirring well for 15 min. | The composite scaffold showed inhibitory effects on bacterial growth, signifying its role as an antibacterial agent. Cytotoxicity studies on the vero cell line proved that the composite scaffold was non-toxic [99]. |
GREEN METHOD (sericin and chitosan) | 240–970 | Chitosan | The chitosan-sericin solution was mixed with AgNO3 | Hydrogel (S/C-SNPs G-1) demonstrated bactericidal activity [100]. |
IRRADIATION METHOD (UV radiation) | Not given | AMSAS | AgNO3 was added to AMSAS solution, with MBA as a crosslinker. | The novel silver hydrogel is an effective antimicrobial dressing and these results support the possibility of using the novel silver hydrogel as a burn wound dressing [101]. |
IRRADIATION METHOD (UV radiation, gamma rays 60Co) | 90 | PVA | The mixed solution of AgNO3 and PVA was UV-radiated, dried and gamma rays radiated. | Samples containing AgNPs showed antimicrobial activity against E. coli, S. aureus and C. albicans. No sample was toxic to mouse fibroblasts [102]. |
THERMAL METHOD (reduction at 40 °C) | 5–14 | Collagen | AgNO3 was mixed with gelatin powder and the mixture was reduced at 40 °C. | Hydrogels inhibited at least 99.8% of the bacterial growth against E. coli, S. aureus and P. aeruginosa [103]. |
THERMAL METHOD (reduction at 70—100 °C). | 7–21 | CMC | AgNO3 was mixed with PEG and CMC and reduced at 70–100 °C. | The absorbing property of SNP-CMC gel would help in removing the exudates and preventing wound maceration, while the donation property would help in debridement of dead tissue. These properties facilitate early wound healing [104]. |
Cell Species | AA | RA (%) | References |
---|---|---|---|
S. aureus * | 24 | 85.7 | [66,68,69,70,71,73,74,75,76,77,79,80,85,87,89,92,93,94,99,100,101,102,103,104] |
E. coli | 22 | 78.6 | [66,68,69,70,71,73,74,76,77,79,80,87,88,89,90,93,94,98,99,102,103,104] |
Micrococcus | 1 | 3.6 | [73] |
P. aeruginosa | 9 | 32.1 | [73,75,76,80,85,87,89,101,103] |
C. albicans | 4 | 14.3 | [73,77,101,102] |
Enterococcus | 1 | 3.6 | [101] |
B. subtilis | 3 | 10.7 | [80,88,93] |
A. baumannii | 1 | 3.6 | [101] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnan, P.D.; Banas, D.; Durai, R.D.; Kabanov, D.; Hosnedlova, B.; Kepinska, M.; Fernandez, C.; Ruttkay-Nedecky, B.; Nguyen, H.V.; Farid, A.; et al. Silver Nanomaterials for Wound Dressing Applications. Pharmaceutics 2020, 12, 821. https://doi.org/10.3390/pharmaceutics12090821
Krishnan PD, Banas D, Durai RD, Kabanov D, Hosnedlova B, Kepinska M, Fernandez C, Ruttkay-Nedecky B, Nguyen HV, Farid A, et al. Silver Nanomaterials for Wound Dressing Applications. Pharmaceutics. 2020; 12(9):821. https://doi.org/10.3390/pharmaceutics12090821
Chicago/Turabian StyleKrishnan, Priya Dharshini, Dominik Banas, Ramya Devi Durai, Daniil Kabanov, Bozena Hosnedlova, Marta Kepinska, Carlos Fernandez, Branislav Ruttkay-Nedecky, Hoai Viet Nguyen, Awais Farid, and et al. 2020. "Silver Nanomaterials for Wound Dressing Applications" Pharmaceutics 12, no. 9: 821. https://doi.org/10.3390/pharmaceutics12090821
APA StyleKrishnan, P. D., Banas, D., Durai, R. D., Kabanov, D., Hosnedlova, B., Kepinska, M., Fernandez, C., Ruttkay-Nedecky, B., Nguyen, H. V., Farid, A., Sochor, J., Narayanan, V. H. B., & Kizek, R. (2020). Silver Nanomaterials for Wound Dressing Applications. Pharmaceutics, 12(9), 821. https://doi.org/10.3390/pharmaceutics12090821