Key Technologies for a Beyond-100G Next-Generation Passive Optical Network
Abstract
:1. Introduction
2. Beyond-100G PON Advanced Multiplexing Technology
3. Beyond-100G NG-PON Physical Layer Technology
4. Beyond-100G NG-PON Infrastructure-Sharing Technology
5. Beyond-100G NG-PON Security Protection Technology
6. Beyond-100G NG-PON Intelligent Control and Management Technology
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, W.; Zhu, Y. 100G and Beyond for PON and Short Reach Optical Networks. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; Th3G.5 IEEE. pp. 1–3. [Google Scholar]
- Jiang, W.; Huang, L.; Xu, Y.; He, Z.; Hu, W.; Yi, L. Real-Time Deployment of Simplified Volterra Nonlinear Equalizer in High-Speed PON. IEEE Photonics Technol. Lett. 2023, 35, 1067–1070. [Google Scholar] [CrossRef]
- Zhou, J.; Xing, Z.; Wang, H.; Zhang, K.; Chen, X.; Feng, Q.; Zheng, K.; Zhao, Y.; Dong, Z.; Gui, T.; et al. Flexible Coherent Optical Access: Architectures, Algorithms, and Demonstrations. arXiv 2023, arXiv:2308.01046. [Google Scholar]
- Campos, L.A.; Jia, Z.; Zhang, H.; Xu, M. Coherent optics for access from P2P to P2MP. J. Opt. Commun. Netw. 2023, 15, A114–A123. [Google Scholar] [CrossRef]
- Houtsma, V.; van Veen, D. Optical strategies for economical next generation 50 and 100G PON. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 3–7 March 2019; M2B-1. pp. 1–3. [Google Scholar]
- Effenberger, F.J.; Mukai, H.; Park, S.; Pfeiffer, T. Next-generation PON-part II: Candidate systems for next-generation PON. IEEE Commun Mag. 2009, 47, 50–57. [Google Scholar] [CrossRef]
- Simon, G.; Saliou, F.; Chanclou, P.; Neto, L.A.; Elwan, H.H. 50 Gbps TDM PON Digital signal processing challenges: Mining current G-PON field data to assist higher speed PON. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020; pp. 1–4. [Google Scholar]
- Simon, G.; Potet, J.; Saliou, F.; Chanclou, P.; Blache, F.; Charbonnier, P.; Duval, B.; Caillaud, C.; Mallecot, F. Real-Time 58, 2 Gbps Equalization-Free NRZ Mode Burst Transmission for Upstream HS-PON and beyond with Monolithically Integrated SOA-UTC Receiver. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 6–10 March 2022; Optica Publishing Group: Washington, DC, USA, 2022. M3G-2. pp. 1–3. [Google Scholar]
- Saliou, F.; Potet, J.; Foch, F.; Bramerie, L.; Gay, M.; Simon, G.; Chanclou, P. DSP-free and Shared SOA for HS-PON Transmissions with up to 30 dB Optical Budget and 15 dB dynamic range. In Proceedings of the 2021 European Conference on Optical Communication (ECOC), Bordeaux, France, 13–16 September 2021; pp. 1–4. [Google Scholar]
- Simon, G.; Saliou, F.; Potet, J.; Chanclou, P.; Rosales, R.; Cano, I.N.; Nesset, D. 50 Gbps real-time transmissions with upstream burst-mode for 50G-PON using a common SOA pre-amplifier/booster at the OLT. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 6–10 March 2022; Optica Publishing Group: Washington, DC, USA, 2022; p. M3G-3. [Google Scholar]
- Simon, G.; Sampaio, F.N.; Saliou, F.; Potet, J.; Gaillard, G.; Chanclou, P. Equalizer Convergence for various Transmission Channels and Multi-Rate Upstream 50G-PON. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Hraghi, A.; Rizzelli, G.; Pagano, A.; Ferrero, V.; Gaudino, R. Analysis and experiments on C band 200G coherent PON based on Alamouti polarization-insensitive receivers. Opt. Express 2022, 30, 46782–46797. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yin, M.; Luo, Z.; Wang, X.; Rong, L.; Li, Z. Architecture and key digital signal processing techniques of a next-generation passive optical network. J. Opt. Commun. Netw. 2023, 15, A82–A91. [Google Scholar] [CrossRef]
- Cao, P.; Hu, X.; Zhuang, Z.; Zhang, L.; Chang, Q.; Yang, Q.; Hu, R.; Su, Y. Power margin improvement for OFDMA-PON using hierarchical modulation. Opt. Express 2013, 21, 8261–8268. [Google Scholar] [CrossRef]
- Poudel, B.; Oshima, J.; Kobayashi, H.; Iwashita, K. Passive optical delivering network using conventional graded-index multi-mode fiber with mode division multiplexing and sub-carrier multiplexing. J. Opt. Commun. Netw. 2018, 10, 252–259. [Google Scholar] [CrossRef]
- Guan, K.; Cho, J.; Winzer, P.J. Physical layer security in fiber-optic MIMO-SDM systems: An overview. Opt. Commun. 2018, 408, 31–41. [Google Scholar] [CrossRef]
- Gao, W.; Cvijetic, M. Allocation of spectral and spatial modes in multidimensional metro-access optical networks. Opt. Commun. 2018, 413, 80–86. [Google Scholar] [CrossRef]
- Bao, F.; Morioka, T.; Oxenløwe, L.K.; Hu, H. 300 Gbps IM/DD based SDM-WDM-PON with laserless ONUs. Opt. Express 2018, 26, 7949–7954. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Arya, V. Investigation of high-speed hybrid WDM-OCDMA-PON system incorporating integrated fiber-FSO link under distinct climate conditions. Opt. Quantum Electron. 2022, 54, 775. [Google Scholar] [CrossRef]
- Roberts, H. Status of ITU-T Q2/15: New higher speed PON projects. IEEE Commun. Stand. Mag. 2020, 4, 57–59. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, D.; Wu, X.; Nesset, D. Progress of ITU-T higher speed passive optical network (50G-PON) standardization. J. Opt. Commun. Netw. 2020, 12, D99–D108. [Google Scholar] [CrossRef]
- Bonk, R.; Geng, D.; Khotimsky, D.; Liu, D.; Liu, X.; Luo, Y.; Nesset, D.; Oksman, V.; Strobel, R.; Van Hoof, W.; et al. 50G-PON: The first ITU-T higher-speed PON system. IEEE Commun. Mag. 2022, 60, 48–54. [Google Scholar] [CrossRef]
- Wey, J.S.; Luo, Y.; Pfeiffer, T. 5G wireless transport in a PON context: An overview. IEEE Commun. Stand. Mag. 2020, 4, 50–56. [Google Scholar] [CrossRef]
- Wey, J.S. The outlook for PON standardization: A tutorial. J. Light. Technol. 2019, 38, 31–42. [Google Scholar] [CrossRef]
- Saliou, F.; Gaillard, G.; Simon, G.; Le Huérou, S.; Potet, J.; Chanclou, P. Triple Coexistence of PON Technologies: Experimentation of G-PON, XGS-PON and 50G (S)-PON over a Class C+ ODN. In Proceedings of the 2022 European Conference on Optical Communication (ECOC), Basel, Switzerland, 18–22 September 2022; pp. 1–4. [Google Scholar]
- Luo, Y.; Shen, A.; Effenberger, F. PON Coexistence Interference Avoidance with Cross-Layer Design. In Proceedings of the 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), Toyama, Japan, 3–6 July 2022; pp. 1–3. [Google Scholar]
- Kani, J.I.; Bourgart, F.; Cui, A.; Rafel, A.; Campbell, M.; Davey, R.; Rodrigues, S. Next-generation PON-part I: Technology roadmap and general requirements. IEEE Commun Mag. 2009, 47, 43–49. [Google Scholar] [CrossRef]
- Cao, L.; Lu, Y.; Xu, K.; Li, X.; Zhai, Y.; Bi, M. A smooth PON evolution on one single wavelength based on mark ratio modulation. Opt. Fiber Technol. 2022, 71, 102906. [Google Scholar] [CrossRef]
- Lu, Y.; Cao, L.; Wu, S.; Mi, X.; Jiang, L.; Zhai, Y.; Bi, M. A novel smooth evolution to TWDM PON based on wavelength complement coding. Opt. Fiber Technol. 2022, 74, 103053. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, D.; Li, Q.; Jiang, M. First Demonstration of 50G TDM-PON Prototype in Compliance with ITU-T G. 9804.3 Standard N1 ODN Class 29-dB. In Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications (ICCC), Chengdu, China, 9–12 December 2022; pp. 236–240. [Google Scholar]
- Molina-Luna, J.; Gutiérrez-Castrejón, R.; Ceballos-Herrera, D.E. Alternative to Super-PON downstream transmitter using a directly-modulated SOA. Opt. Quantum Electron. 2022, 54, 830. [Google Scholar] [CrossRef]
- Reza, A.G.; Troncoso-Costas, M.; Browning, C.; O’Duill, S.; Barry, L.P. Mitigation of SOA-Induced Nonlinearities with Recurrent Neural Networks in 75 Gbit/s/λ PAM-4 IM/DD WDM-PON Transmission Systems. J. Light. Technol. 2023, 41, 3967–3975. [Google Scholar] [CrossRef]
- DeSanti, C.; Du, L.; Guarin, J.; Bone, J.; Lam, C.F. Super-PON: An evolution for access networks. J. Opt. Commun. Netw. 2020, 12, D66–D77. [Google Scholar] [CrossRef]
- Sampaio FA, N. Study of Digital Compensation Techniques for 50G-PON Optical Access Networks. Ph.D. Thesis, Ecole Nationale Supérieure Mines-Télécom Atlantique, tenue à Plouzané, IMT Atlantique, Paris, France, 2023. [Google Scholar]
- Wang, N.; Li, J.; Zhang, D.; Li, H.; Cheng, J.; Chen, W.; Mikhailov, V.; Inniss, D.; Chen, Y.; Duan, X.; et al. Real-Time 50 Gbps Upstream Transmission in TDM-PON with Class E1 Power Budget Using Ge/Si Avalanche Photodiode and Bismuth-Doped Fiber as Preamplifier. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Suzuki, N.; Miura, H.; Mochizuki, K.; Matsuda, K. Beyond-100G PON Systems for Integrated Access and Metro Networks in the B5G/6G Era. In Signal Processing in Photonic Communications; Optica Publishing Group: Washington, DC, USA, 2023; p. SpM3D-4. [Google Scholar]
- Houtsma, V.; van Veen, D. Reusing Data Center Optics and Solutions for Beyond 25 Gbps PON: Is the Gap Really Bridged? In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 5–9 March 2023; Optica Publishing Group: Washington, DC, USA, 2023. W1I-1. pp. 1–3. [Google Scholar]
- Bonk, R.; Harstead, E.; Borkowski, R.; Houtsma, V.; Lefevre, Y.; Mahadevan, A.; van Veen, D.; Verplaetse, M.; Walklin, S. Perspectives on and the road towards 100 Gbps TDM PON with intensity-modulation and direct-detection. J. Opt. Commun. Netw. 2023, 15, 518–526. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, S.; Kaur, R.; Kaur, R. 50G-next generation passive optical networks stage 2 using millimeter wave over fiber technique under the ITU-T G. 9804 standardization. Opt. Quantum Electron. 2023, 55, 449. [Google Scholar] [CrossRef]
- Nesset, D. Next Generation PON Technologies: 50G PON and Beyond. In Proceedings of the 2023 International Conference on Optical Network Design and Modeling (ONDM), Coimbra, Portugal, 8–11 May 2023; pp. 1–6. [Google Scholar]
- Gaillard, G.; Saliou, F.; Potet, J.; Simon, G.; Chanclou, P.; Duran-Valdeiglesias, E.; Neto, L.A.; Morvan, M.; Fracasso, B. Real Time Assessments of DML and EML with 25G-class APD for Higher Speed PONs. In Proceedings of the 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Gothenburg, Sweden, 6–9 June 2023; pp. 335–340. [Google Scholar]
- Xing, Z.; Zhang, K.; Chen, X.; Feng, Q.; Zheng, K.; Zhao, Y.; Dong, Z.; Zhou, J.; Gui, T.; Ye, Z.; et al. First Real-time Demonstration of 200G TFDMA Coherent PON using Ultra-simple ONUs. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Zhang, J.; Li, G.; Xing, S.; Chi, N. Flexible and adaptive coherent PON for next-generation optical access network. Opt. Fiber Technol. 2023, 75, 103190. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, S.; Li, G.; Chi, N. High-Performance and Robust Burst Reception in Coherent PON. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Casasco, M.; Rizzelli, G.; Pagano, A.; Mercinelli, R.; Valvo, M.; Ferrero, V.; Gaudino, R. Experimental Demonstration of a 400 Gbps Full Coherent Transmission in an in-field Metro-Access scenario. In Proceedings of the 2023 23rd International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 2–6 July 2023; pp. 1–4. [Google Scholar]
- Kovacs, I.B.; Faruk, M.S.; Savory, S.J. 200 Gbps/λ Upstream PON using Polarization Multiplexed PAM4 with Coherent Detection. IEEE Photonics Technol. Lett. 2023, 35, 1014–1017. [Google Scholar] [CrossRef]
- Kovacs, I.B.; Faruk, M.S.; Savory, S.J. A Minimal Coherent Receiver for 200 Gbps/λ PON Downstream With Measured 29 dB Power Budget. IEEE Photonics Technol. Lett. 2023, 35, 257–260. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, J.; Xing, Z.; Feng, Q.; Zhang, K.; Zheng, K.; Chen, X.; Gui, T.; Li, L.; Zeng, J.; et al. Fast-Convergence Digital Signal Processing for Coherent PON using Digital SCM. J. Light. Technol. 2023, 41, 4635–4643. [Google Scholar] [CrossRef]
- Li, F.; Wang, W.; Li, Z. Beyond-100G signal transmission in optical short reach for mobile fronthaul. In Proceedings of the Broadband Access Communication Technologies XIV, San Francisco, CA, USA, 31 January 2020; Volume 11307, pp. 7–14. [Google Scholar]
- Shen, W.; Xing, S.; Li, G.; Li, Z.; Yan, A.; Wang, J.; Zhang, J.; Chi, N. Demonstration of Beyond-100G Three-Dimensional Flexible Coherent PON in Downstream with Time, Frequency and Power Resource Allocation Capability. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Suzuki, N.; Miura, H.; Mochizuki, K.; Matsuda, K. Digital Coherent based PON Technologies and Beyond-100G Optical Access Systems. In Proceedings of the 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), Toyama, Japan, 3–6 July 2022; pp. 1–3. [Google Scholar]
- Suzuki, N.; Miura, H.; Mochizuki, K.; Matsuda, K. Simplified digital coherent technologies for beyond-100G optical access systems in the B5G/6G era. In Proceedings of the Optical Fiber Communication Conference, San Francisco, CA, USA, 6–10 June 2021; Optica Publishing Group: Washington, DC, USA, 2021. Th5I-5. pp. 1–3. [Google Scholar]
- Suzuki, N.; Miura, H.; Mochizuki, K.; Matsuda, K. Simplified digital coherent-based beyond-100G optical access systems for B5G/6G. J. Opt. Commun. Netw. 2022, 14, A1–A10. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, J.; Yang, J.; Zeng, J.; Liu, W.; Yu, C.; Li, F.; Li, Z. Non-Integer-Oversampling Digital Signal Processing for Coherent Passive Optical Networks. arXiv 2023, arXiv:2306.11325. [Google Scholar]
- Murphy, S.; Townsend, P.D.; Antony, C. Recurrent neural network equalizer to extend input power dynamic range of SOA in 100 Gbps/λ PON. In Proceedings of the 2022 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 15–20 May 2022; pp. 1–2. [Google Scholar]
- Murphy, S.; Jamai, F.; Townsend, P.D.; Antony, C. High dynamic range 100 Gbit/s PAM4 PON with SOA preamplifier using Gated Recurrent Neural Network equaliser. In Proceedings of the European Conference and Exhibition on Optical Communication, Basel, Switzerland, 18–22 September 2022; Optica Publishing Group: Washington, DC, USA, 2022. Th1C-6. pp. 1–3. [Google Scholar]
- Xue, L.; Yi, L.; Lin, R.; Huang, L.; Chen, J. SOA pattern effect mitigation by neural network based pre-equalizer for 50G PON. Optics Express 2021, 29, 24714–24722. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Y.; Luo, S.; Yin, F.; Wang, Y.; Song, Y. SOA Amplified 100 Gbps/λ PAM-4 TDM-PON Supporting PR-30 Power Budget with> 18 dB Dynamic Range. Micromachines 2022, 13, 342. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.L.; Jamali, F.; Townsend, P.D.; Antony, C. High Dynamic Range 100G PON Enabled by SOA Preamplifier and Recurrent Neural Networks. J. Light. Technol. 2023, 41, 3522–3532. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, X.; Huang, X.; Zhang, K. Experimental demonstration of 200 Gbps/λ coherent PON with a low-complexity receiver and a multi-purpose neural network. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6–10 March 2022; pp. 1–3. [Google Scholar]
- Lam, C.F.; Yin, S. Evolution of Fiber Access Networks. In Optical Fiber Telecommunications VII; Academic Press: Cambridge, MA, USA, 2020; pp. 827–865. [Google Scholar]
- Xu, M.; Jia, Z.; Zhang, H.; Campos, L.A.; Knittle, C. Intelligent burst receiving control in 100G coherent PON with 4× 25G TFDM upstream transmission. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 6–10 March 2022; Th3E-2. pp. 1–3. [Google Scholar]
- Simon, G.; Chanclou, P.; Wang, M.; Abgrall, D.; Minodier, D. Optical access evolutions towards SDN and disaggregated hardware: An operator perspective. J. Opt. Commun. Netw. 2022, 14, C57–C69. [Google Scholar] [CrossRef]
- Montalvo, J.; Torrijos, J.; Cortes, D.; Chundury, R.; Peter, M.S. Journey toward software-defined passive optical networks with multi-PON technology: An industry view. J. Opt. Commun. Netw. 2021, 13, D22–D31. [Google Scholar] [CrossRef]
- Lin, S.C.; Lin, C.H.; Chu, L.C.; Lien, S.Y. Enabling Resilient Access Equality for 6G LEO Satellite Swarm Networks. IEEE Internet Things Mag. 2023, 6, 38–43. [Google Scholar] [CrossRef]
- Suzuki, T.; Koyasako, Y.; Nishimoto, K.; Asaka, K.; Yamada, T.; Kani, J.I.; Shimada, T.; Yoshida, T. Zero touch provisioning compliant with authentications of IEEE PON packages A and B for SDN-enabled broadband access. J. Opt. Commun. Netw. 2021, 13, 244–252. [Google Scholar] [CrossRef]
- Suzuki, T.; Kim, S.Y.; Kani, J.I.; Yoshida, T. Virtualized PON based on abstraction, softwarization, and service chaining for flexible and agile service creations. J. Opt. Commun. Netw. 2023, 15, A39–A48. [Google Scholar] [CrossRef]
- Suzuki, T.; Koyasako, Y.; Kim, S.Y.; Kani, J.I.; Yoshida, T. Demonstration of industrial network applications by PHY softwarization for fully virtualized access networks. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Suzuki, T.; Kim, S.Y.; Kani, J.I.; Yoshida, T. Low-latency PON PHY implementation on GPUs for fully software-defined access networks. IEEE Netw. 2022, 36, 108–114. [Google Scholar] [CrossRef]
- Hatano, T.; Kani, J.I.; Maeda, Y. Standardization and technology trends in optical, wireless and virtualized access systems. IEICE Trans. Commun. 2019, 102, 1263–1269. [Google Scholar] [CrossRef]
- Bonk, R.; Pfeiffer, T. New use cases for PONs beyond residential services. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 6–10 March 2022; Optica Publishing Group: Washington, DC, USA, 2022. Tu2G-1. pp. 1–3. [Google Scholar]
- Bonk, R. The future of passive optical networks. In Proceedings of the 2021 International Conference on Optical Network Design and Modeling (ONDM), Gothenburg, Sweden, 28 June–1 July 2021; pp. 1–3. [Google Scholar]
- Effenberger, F.J. Recent progress in optical access and home networking standards. In Proceedings of the 2023 32nd Wireless and Optical Communications Conference (WOCC), Newark, NJ, USA, 5–6 May 2023; pp. 1–5. [Google Scholar]
- Zhang, D.; Luo, Y.; Jin, J. Highspeed 50 Gbps Passive Optical Network (50G-PON) Applications in Industrial Networks. In Proceedings of the 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR), Taicang, China, 6–8 June 2022; pp. 113–118. [Google Scholar]
- Nesset, D. The progress of higher speed passive optical network standardisation in ITU-T. In Proceedings of the 2021 European Conference on Optical Communication (ECOC), Bordeaux, France, 13–16 September 2021; pp. 1–4. [Google Scholar]
- Uzawa, H.; Honda, K.; Nakamura, H.; Hirano, Y.; Nakura, K.; Kozaki, S.; Okamura, A.; Terada, J. First demonstration of bandwidth-allocation scheme for network-slicing-based TDM-PON toward 5G and IoT era. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 3–7 March 2019; Optica Publishing Group: Washington, DC, USA, 2019. W3J-2. pp. 1–3. [Google Scholar]
- Uzawa, H.; Honda, K.; Nakamura, H.; Hirano, Y.; Nakura, K.I.; Kozaki, S.; Terada, J. Dynamic bandwidth allocation scheme for network-slicing-based TDM-PON toward the beyond-5G era. J. Opt. Commun. Netw. 2020, 12, A135–A143. [Google Scholar] [CrossRef]
- Das, S.; Ruffini, M. Optimal virtual PON slicing to support ultra-low latency mesh traffic pattern in MEC-based Cloud-RAN. In Proceedings of the 2021 International Conference on Optical Network Design and Modeling (ONDM), Gothenburg, Sweden, 28 June–1 July 2021; pp. 1–5. [Google Scholar]
- Das, S.; Slyne, F.; Ruffini, M. Optimal slicing of virtualized passive optical networks to support dense deployment of cloud-RAN and multi-access edge computing. IEEE Netw. 2022, 36, 131–138. [Google Scholar] [CrossRef]
- Tian, Q.; Li, S.; Wang, F.; Tang, X.; Sun, D.; Yao, H.; Tian, F.; Zhang, Q.; Xin, X. A Dynamic Restructuring Algorithm Based on Flexible PON Slices. Photonics 2023, 10, 614. [Google Scholar] [CrossRef]
- Ra, Y.; Park, C.; Hwang, K.; Doo, K.H.; Kim, K.O.; Lee, H.H.; Cheung, T.; Shin, J.; Chung, H.S. Field Trial of Remotely Controlled Smart Factory based on PON Slicing and Disaggregated OLT. In Proceedings of the 2022 European Conference on Optical Communication (ECOC), Basel, Switzerland, 18–22 September 2022; pp. 1–3. [Google Scholar]
- Centofanti, C.; Marotta, A.; Cassioli, D.; Graziosi, F.; Sambo, N.; Valcarenghi, L.; Bernard, C.; Roberts, H. Slice Management in SDN PON Supporting Low-Latency Services. In Proceedings of the European Conference and Exhibition on Optical Communication, Basel, Switzerland, 18–22 September 2022; Optica Publishing Group: Washington, DC, USA, 2022. Tu5-64. pp. 1–3. [Google Scholar]
- Luo, Y.; Jiang, M.; Zhang, D.; Effenberger, F. Field Trial of Network Slicing in 5G and PON-Enabled Industrial Networks. IEEE Wirel. Commun. 2023, 30, 78–85. [Google Scholar] [CrossRef]
- Centofanti, C.; Marotta, A.; Cassioli, D.; Graziosi, F.; Gudepu, V.; Kondepu, K. End-to-End Slicing via O-RAN and Software Defined Optical Access. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Gong, X.; Zhang, Q.; Zhang, X.; Xuan, R.; Guo, L. Security issues and possible solutions of future-oriented optical access networks for 5g and beyond. IEEE Commun. Mag. 2021, 59, 112–118. [Google Scholar] [CrossRef]
- Wang, G.; Song, P.; Pan, Y.Y.; Chan, C.K.; Chen, L.K. Secure OFDM-PON Bandwidth-limited System Precoded by Chaotic Frank Sequence-Based Circulant Matrix. In Proceedings of the CLEO: Science and Innovations, San Jose, CA, USA, 7–12 May 2023; SF2M-5. pp. 1–3. [Google Scholar]
- Shen, J.; Liu, B.; Mao, Y.; Ullah, R.; Ren, J.; Zhao, J.; Chen, S. Enhancing the reliability and security of OFDM-PON using modified Lorenz chaos based on the linear properties of FFT. J. Light. Technol. 2021, 39, 4294–4299. [Google Scholar] [CrossRef]
- Horvath, T.; Munster, P.; Oujezsky, V.; Vojtech, J.; Holik, M.; Dejdar, P.; Latal, M. GPON network with simulated rogue ONU. In Proceedings of the 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 19–21 September 2019; pp. 1–5. [Google Scholar]
- Yang, X.; Zhang, J.; Li, Y.; Zhao, Y.; Gao, G.; Zhang, H. DFTs-OFDM based quantum noise stream cipher system. Opt. Fiber Technol. 2019, 52, 101939. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Song, H.; Wang, B.; Zhao, Y.; Zhang, J. Security analysis of quantum noise stream cipher under fast correlation attack. In Proceedings of the Optical Fiber Communication Conference, San Francisco, CA, USA, 6–10 June 2021; Optica Publishing Group: Washington, DC, USA, 2021. Th1A-5. pp. 1–3. [Google Scholar]
- Futami, F.; Tanizawa, K.; Kato, K. Experimental demonstration of quantum deliberate signal randomization for Y-00 quantum noise stream cipher. In Proceedings of the CLEO: QELS_Fundamental Science, San Jose, CA, USA, 15–20 May 2022; Optica Publishing Group: Washington, DC, USA, 2022. JW3B-107. pp. 1–3. [Google Scholar]
- Wang, K.; Zhang, J.; Li, Y.; Zhao, Y.; Zhang, H. Multi-bit mapping based on constellation rotation in Quantum Noise Stream Cipher. Opt. Commun. 2019, 446, 147–155. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; Li, D.; Song, H.; Fu, Y.; Jiang, X.; Huang, L.; Cheng, M.; Liu, D.; Deng, L. Secure 100 Gbps IMDD transmission over 100 km SSMF enabled by quantum noise stream cipher and sparse RLS-Volterra equalizer. IEEE Access 2020, 8, 63585–63594. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Z.; Chen, S.; Xu, X.; Li, F. Optical stealth communication based on quantum noise stream ciphered amplified spontaneous emission light. Opt. Express 2023, 31, 3595–3605. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wada, N. Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application. Opt. Express 2007, 15, 7319–7326. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, Z.; Kataoka, N.; Wada, N. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application. Opt. Express 2010, 18, 9879–9890. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Wang, X.; Kataoka, N.; Wada, N. Stealth transmission of time-domain spectral phase encoded OCDMA signal over WDM network. IEEE Photonics Technol. Lett. 2010, 22, 993–995. [Google Scholar] [CrossRef]
- Song, P.; Hu, Z.; Chan, C.K. Multi-band chaotic non-orthogonal matrix-based encryption for physical-layer security enhancement in OFDM-PONs. J. Opt. Commun. Netw. 2023, 15, C120–C128. [Google Scholar] [CrossRef]
- Ren, J.; Jiang, L.; Zhang, J.; Zhao, J. High-security multi-slot chaos encryption with dynamic probability for 16-CAP PON. IEEE Photonics J. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, C.; Wu, T.; Huang, H.; Qiu, K. Chaotic multilevel separated encryption for security enhancement of OFDM-PON. IEEE Access 2019, 7, 124452–124460. [Google Scholar] [CrossRef]
- Wei, H.; Cui, M.; Zhang, C.; Wu, T.; Wen, H.; Zhang, Z.; Chen, Y.; Qiu, K. Chaotic key generation and application in OFDM-PON using QAM constellation points. Opt. Commun. 2021, 490, 126911. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Z.; Cao, J.; Deng, R.; Liu, Y.; He, J.; Chen, L. Time–frequency domain encryption with SLM scheme for physical-layer security in an OFDM-PON system. J. Opt. Commun. Netw. 2018, 10, 46–51. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, C.; Chen, C.; Hou, H.; Wei, H.; Hu, S.; Qiu, K. Security enhancement for OFDM-PON using Brownian motion and chaos in cell. Opt. Express 2018, 26, 22857–22865. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, C.; Huang, H.; Zhang, Z.; Wei, H.; Wen, H.; Qiu, K. Security improvement for OFDM-PON via DNA extension code and chaotic systems. IEEE Access 2020, 8, 75119–75126. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, C.; Chen, C.; Jin, W.; Qiu, K. Joint PAPR reduction and physical layer security enhancement in OFDMA-PON. IEEE Photonics Technol. Lett. 2016, 28, 998–1001. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, C.; Chen, C.; Zhang, H.; Qiu, K. Brownian motion encryption for physical-layer security improvement in CO-OFDM-PON. IEEE Photonics Technol. Lett. 2017, 29, 1023–1026. [Google Scholar] [CrossRef]
- Hu, X.; Yang, X.; Shen, Z.; He, H.; Hu, W.; Bai, C. Chaos-based partial transmit sequence technique for physical layer security in OFDM-PON. IEEE Photonics Technol. Lett. 2015, 27, 2429–2432. [Google Scholar] [CrossRef]
- Bi, M.; Fu, X.; Zhou, X.; Zhang, L.; Yang, G.; Yang, X.; Xiao, S.; Hu, W. A key space enhanced chaotic encryption scheme for physical layer security in OFDM-PON. IEEE Photonics J. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Hajomer, A.A.; Yang, X.; Hu, W. Chaotic Walsh–Hadamard transform for physical layer security in OFDM-PON. IEEE Photonics Technol. Lett. 2017, 29, 527–530. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, B.; Mao, Y.; Ullah, R.; Ren, J.; Chen, S.; Jiang, L.; Han, S.; Zhang, J.; Shen, J. High security OFDM-PON with a physical layer encryption based on 4D-hyperchaos and dimension coordination optimization. Opt. Express 2020, 28, 21236–21246. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, B.; Mao, Y.; Ren, J.; Xu, X.; Wu, X.; Jiang, L.; Han, S.; Zhang, J. High-security physical layer in CAP-PON system based on floating probability disturbance. IEEE Photonics Technol. Lett. 2020, 32, 367–370. [Google Scholar] [CrossRef]
- Cui, M.; Chen, Y.; Zhang, C.; Liang, X.; Wu, T.; Liu, S.; Wen, H.; Qiu, K. Chaotic RNA and DNA for security OFDM-WDM-PON and dynamic key agreement. Opt. Express 2021, 29, 25552–25569. [Google Scholar] [CrossRef]
- Wu, K.; Wang, H.; Ji, Y. Channel Characteristics Based Adjustable Fingerprint for Identity Authentication in WDM-PON With Deep Neural Networks. IEEE Photonics J. 2022, 14, 1–11. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, C.; Wang, X.; Liang, X.; Qiu, K. Robust Key Update with Controllable Accuracy Using Support Vector Machine for Secure OFDMA-PON. J. Light. Technol. 2023, 41, 4663–4671. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, C.; Luo, Y.; Wang, X.; Qiu, K. Secure Encryption and Key Management for OFDM-PON Based on Chaotic Hilbert Motion. J. Light. Technol. 2023, 41, 1619–1625. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, J.; Li, W.; Plant, D.V. 400-Gbps/80-km Rate-Flexible PCS-64-QAM WDM-CPON With Pseudo-m-QAM Chaotic Physical Layer Encryption. J. Light. Technol. 2023, 41, 2413–2424. [Google Scholar] [CrossRef]
- Xia, W.; Liu, B.; Ren, J.; Ullah, R.; Wu, X.; Mao, Y.; Ma, Y.; Chen, S.; Wan, Y.; Zhong, Q.; et al. High-security 3D CAP modulation scheme based on a pyramid constellation design for 7-core fiber. Opt. Express 2023, 31, 6659–6674. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Young, R.J.; Townsend, P.D. Quantum key distribution on a 10 Gbps WDM-PON. Opt. Express 2010, 18, 9600–9612. [Google Scholar] [CrossRef] [PubMed]
- Vokić, N.; Milovančev, D.; Schrenk, B.; Hentschel, M.; Hübel, H. Differential phase-shift QKD in a 2: 16-split lit PON with 19 carrier-grade channels. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–9. [Google Scholar] [CrossRef]
- Yunlu, W.; Hao, W.; Zhihua, J.; Shuhuai, L. A novel WDM-PON based on quantum key distribution FPGA controller. Int. J. Embed. Syst. 2017, 9, 241–249. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, H.; Zhou, H.; Zheng, J.; Pu, T. Security analysis of QAM quantum-noise randomized cipher system. IEEE Photonics J. 2020, 12, 1–14. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, J.; Li, Y.; Wang, W.; Liu, X.; Zhao, Y. Experimental demonstration of error-free key distribution without an external random source or device over a 300-km optical fiber. Opt. Lett. 2022, 47, 2570–2573. [Google Scholar] [CrossRef]
- Tan, Y.; Pu, T.; Zheng, J.; Zhou, H.; Su, G.; Zhu, H. A novel realization of PSK quantum-noise randomized cipher system based on series structure of multiple phase modulators. In Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 21–23 October 2020; pp. 316–320. [Google Scholar]
- Futami, F.; Tanizawa, K.; Kato, K. Y-00 quantum-noise randomized stream cipher using intensity modulation signals for physical layer security of optical communications. J. Light. Technol. 2020, 38, 2774–2781. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, L.; Yi, A.; Feng, J.; Deng, X.; Pan, W.; Yan, L. Experimental demonstration of 201.6-Gbit/s coherent probabilistic shaping QAM transmission with quantum noise stream cipher over a 1200-km standard single mode fiber. Opt. Express 2023, 31, 11344–11353. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Liu, Z.; Xiang, P.; Chen, S.; Li, F.; Xu, X. Quantum noise ciphered optical stealth communication based on equivalent spectral encoding. Opt. Express 2022, 30, 38128–38138. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Pu, T.; Zheng, J.; Tan, Y.; Chen, Y. Research on the key expansion module of quantum noise random stream cipher. Chin. J. Quantum Electron. 2020, 37, 196. [Google Scholar]
- Wang, K.; Li, Y.; Zhao, Y.; Yu, H.; Li, Z.; Zhang, J. A multi-ring BPSK mapping in quantum noise stream cipher. In Proceedings of the 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), Fukuoka, Japan, 7–11 July 2019; pp. 1–3. [Google Scholar]
- Wang, Y.; Li, H.; Cheng, M.; Liu, D.; Deng, L. Experimental demonstration of secure 100 Gbps IMDD transmission over a 50 km SSMF using a quantum noise stream cipher and optical coarse-to-fine modulation. Opt. Express 2021, 29, 5475–5486. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Gao, G.; Xu, C.; Liu, H.; Shen, Y.; Zhang, J.; Guo, Y. Long distance IM/DD transmission with OFDM-QAM Based quantum noise stream cipher. In Proceedings of the 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, 5–8 August 2019; pp. 1–3. [Google Scholar]
- Yoshida, M.; Kan, T.; Kasai, K.; Hirooka, T.; Nakazawa, M. 10 Tbit/s QAM quantum noise stream cipher coherent transmission over 160 km. J. Light. Technol. 2020, 39, 1056–1063. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, L.; Yan, L.; Yi, A.; Feng, J.; Pan, W.; Luo, B. High-speed Long-hual Probabilistic Shaped QAM Quantum Noise Stream Cipher Transmission. In Proceedings of the Novel Optical Materials and Applications, Maastricht, The Netherlands, 24–28 July 2022; Optica Publishing Group: Washington, DC, USA, 2022. JW3A-37. [Google Scholar]
- Wei, S.; Liu, S.; Lei, C.; Li, Y.; Wang, W.; Zhao, Y.; Li, Y.; Zhang, D.; Yang, H.; Li, H.; et al. Basis Precoding Based on Probabilistic Constellation Shaping in QAM/QNSC. In Proceedings of the 2023 International Conference on Optical Network Design and Modeling (ONDM), Coimbra, Portugal, 8–11 May 2023; pp. 1–3. [Google Scholar]
- Li, S.; Cheng, M.; Chen, Y.; Deng, L.; Zhang, M.; Fu, S.; Shum, P.; Liu, D. Enhancing the security of OFDM-PONs with machine learning based device fingerprint identification. In Proceedings of the 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland, 22–26 September 2019; IET: Stevenage, UK, 2019; pp. 1–4. [Google Scholar]
- Li, S.; Cheng, M.; Chen, Y.; Fan, C.; Deng, L.; Zhang, M.; Fu, S.; Tang, M.; Shum, P.P.; Liu, D. Enhancing the physical layer security of OFDM-PONs with hardware fingerprint authentication: A machine learning approach. J. Light. Technol. 2020, 38, 3238–3245. [Google Scholar] [CrossRef]
- Li, Y.; Hua, N.; Zhao, C.; Wang, H.; Luo, R.; Zheng, X. Real-time rogue ONU identification with 1D-CNN-based optical spectrum analysis for secure PON. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Fan, C.; Gong, H.; Cheng, M.; Ye, B.; Deng, L.; Yang, Q.; Liu, D. Identify the device fingerprint of OFDM-PONs with a noise-model-assisted CNN for enhancing security. IEEE Photonics J. 2021, 13, 1–4. [Google Scholar] [CrossRef]
- Gao, W.; Fan, C.; Dai, X.; Wang, Y.; Lu, W.; Cheng, M.; Deng, L.; Yang, Q.; Liu, D. A machine learning assisted device fingerprint identification technique for TDM-PON system. In Proceedings of the Optoelectronics and Communications Conference, Hong Kong, China, 3–7 July 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. W4A-4. [Google Scholar]
- Shi, H.; Pu, T.; Mou, W.; Chen, Y. NIST randomness tests on the extended key of quantum noise random stream cipher. In Proceedings of the 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, 5–8 August 2019; pp. 1–3. [Google Scholar]
- Tanizawa, K.; Futami, F. Quantum noise-assisted coherent radio-over-fiber cipher system for secure optical fronthaul and microwave wireless links. J. Light. Technol. 2020, 38, 4244–4249. [Google Scholar] [CrossRef]
- Das, S. From CORD to SDN enabled broadband access (SEBA) [Invited Tutorial]. J. Opt. Commun. Netw. 2021, 13, A88–A99. [Google Scholar] [CrossRef]
- McGettrick, S.; Slyne, F.; Kitsuwan, N.; Payne, D.B.; Ruffini, M. Experimental end-to-end demonstration of shared N: M dual-homed protection in SDN-controlled long-reach PON and pan-European core. J. Light. Technol. 2016, 34, 4205–4213. [Google Scholar]
- Hwang, I.S.; Rianto, A.; Pakpahan, A.F. Peer-to-peer file sharing architecture for software-defined TWDM-PON. J. Internet Technol. 2020, 21, 23–32. [Google Scholar]
- Ratkoceri, J. Software-Defined Passive Optical Network Evolution. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Jiang, M.; Luo, Y.; Zhang, D.; Effenberger, F.; Jin, J.; Ansari, N. Enabling Next Generation Industrial Networks with Industrial PON. IEEE Commun. Mag. 2023, 61, 129–135. [Google Scholar] [CrossRef]
- Mohammadani, K.H.; Butt, R.A.; Nawaz, W.; Faizullah, S.; Dayo, Z.A. Energy-Efficient Sleep-Aware Slicing-Based Scheduler (SA-SBS) for Multi-Operators Virtualized Passive Optical Networks. IEEE Access 2023, 11, 48841–48859. [Google Scholar] [CrossRef]
- Effenberger, F.J.; Zhang, D. Wdm-pon for 5G wireless fronthaul. IEEE Wirel. Commun. 2022, 29, 94–99. [Google Scholar] [CrossRef]
- Das, S.; Ruffini, M. Enhanced PON Architectures for Converged Access Networks for 5G and Beyond. Ph.D. Thesis, Trinity College Dublin, School of Computer Science & Statistics, Dublin, Ireland, 2022. [Google Scholar]
- Pesando, L.; Fischer, J.K.; Shariati, B.; Freund, R.; Cananao, J.; Li, H.; Lin, Y.; Ferveur, O.; Jiang, M.; Jin, J.; et al. Standardization of the 5th Generation Fixed Network for Enabling End-to-End Network Slicing and Quality-Assured Services. IEEE Commun. Stand. Mag. 2022, 6, 96–103. [Google Scholar] [CrossRef]
- Suzuki, T.; Koyasako, Y.; Kim, S.Y.; Kani, J.I.; Yoshida, T. Real-time demonstration of industrial protocol applications by PHY softwarization for fully virtualized access networks. J. Opt. Commun. Netw. 2023, 15, 449–456. [Google Scholar] [CrossRef]
- Suzuki, T.; Koyasako, Y.; Nishimoto, K.; Asaka, K.; Yamada, T.; Kani, J.I.; Shimada, T.; Yoshida, T. Demonstration of IEEE PON abstraction for SDN enabled broadband access (SEBA). J. Light. Technol. 2021, 39, 6434–6442. [Google Scholar] [CrossRef]
- Chen, A.; Law, J.; Aibin, M. A survey on traffic prediction techniques using artificial intelligence for communication networks. Telecom 2021, 2, 518–535. [Google Scholar] [CrossRef]
- Mikaeil, A.M.; Hu, W.; Hussain, S.B. A low-latency traffic estimation based TDM-PON mobile front-haul for small cell cloud-RAN employing feed-forward artificial neural network. In Proceedings of the 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; pp. 1–4. [Google Scholar]
- Tang, Z.; Gao, J.; Yang, T.; Liu, D.; Dai, G. Smart OLT equipment of optical access network. Optoelectron. Lett. 2023, 19, 159–163. [Google Scholar] [CrossRef]
- Mikaeil, A.M.; Hu, W.; Hussain, S.B.; Sultan, A. Traffic-estimation-based low-latency XGS-PON mobile front-haul for small-cell C-RAN based on an adaptive learning neural network. Appl. Sci. 2018, 8, 1097. [Google Scholar] [CrossRef]
- Das, S.; Slyne, F.; Kilper, D.; Ruffini, M. Schedulers synchronization supporting ultra reliable low latency communications (URLLC) in cloud-RAN over virtualised mesh PON. In Proceedings of the 2022 European Conference on Optical Communication (ECOC), Basel, Switzerland, 18–22 September 2022; pp. 1–4. [Google Scholar]
- Chung, H.; Lee, H.H.; Kim, K.O.; Doo, K.H.; Ra, Y.; Park, C. TDM-PON-based optical access network for Tactile Internet, 5G, and beyond. IEEE Netw. 2022, 36, 76–81. [Google Scholar] [CrossRef]
- Fathallah, H.; Rad, M.M.; Rusch, L.A. PON monitoring: Periodic encoders with low capital and operational cost. IEEE Photonics Technol. Lett. 2008, 20, 2039–2041. [Google Scholar] [CrossRef]
- Yi, L.; Liao, T.; Huang, L.; Xue, L.; Li, P.; Hu, W. Machine learning for 100 Gb/s/λ passive optical network. J. Light. Technol. 2019, 37, 1621–1630. [Google Scholar] [CrossRef]
- Abdelli, K.; Tropschug, C.; Griesser, H.; Pachnicke, S. Faulty branch identification in passive optical networks using machine learning. J. Opt. Commun. Netw. 2023, 15, 187–196. [Google Scholar] [CrossRef]
- Abdelli, K.; Tropschug, C.; Griesser, H.; Pachnicke, S. Fault Monitoring in Passive Optical Networks using Machine Learning Techniques. In Proceedings of the 2023 23rd International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 2–6 July 2023; pp. 1–5. [Google Scholar]
- Brügge, M.; Müller, J.; Patri, S.K.; Jansen, S.; Zou, J.; Althoff, S.; Förster, K.T. Live Demonstration of ML-based PON Characterization and Monitoring. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Pg, D.S.N.A.B.; Newaz, S.S.; Rahman, F.H.; Au, T.W.; Nafi, N.S.; Patchmuthu, R.K.; Al-Hazemi, F. Digital-twin-assisted Software-defined PON: A Cognition-driven Framework for Energy Conservation. In Proceedings of the 2021 31st International Telecommunication Networks and Applications Conference (ITNAC), Sydney, Australia, 24–26 November 2021; pp. 166–177. [Google Scholar]
- He, Y.; Yang, M.; He, Z.; Guizani, M. Resource allocation based on digital twin-enabled federated learning framework in heterogeneous cellular network. IEEE Trans. Veh. Technol. 2022, 72, 1149–1158. [Google Scholar] [CrossRef]
Fifth generation | B5G |
Sixth generation | 6G |
High definition | HD |
Fiber to the home | FTTH |
Passive optical network | PON |
Physical | PHY |
Media access control | MAC |
High-speed PONs | HS-PONs |
Digital signal processing | DSP |
Intensity modulation direct detection | IM/DD |
Next-generation PON | NG-PON |
Optical line terminal | OLT |
Optical distribution network | ODN |
Optical network units | ONUs |
Broadband network gateway | BNG |
Time-division multiplexed PON | TDM-PON |
Asynchronous transfer mode | ATM |
Broadband PON | BPON |
Ethernet PON | EPON |
Gigabit PON | GPON |
Gigabit ethernet PON | GE-PON |
Time wavelength division multiplexing | TWDM |
Wavelength division multiplexing | WDM |
Orthogonal frequency division multiplexing | OFDM |
Power division multiplexing | PDM |
Space division multiplexing | SDM |
Optical code division multiplexing | OCDM |
Institute of Electrical and Electronics Engineers | IEEE |
International Telecommunication Union | ITU |
Multi-point control protocol | MPCP |
Dynamic bandwidth allocation | DBA |
Ultra-dense wavelength division multiplexing | UDWDM |
Non-orthogonal multiple access | NOMA |
Spectral shape line coding | SSLC |
Non-return-to-zero | NRZ |
Pulse amplitude modulation | PAM |
Chromatic dispersion | CD |
Quadrature amplitude modulation | QAM |
Feed forward equalization | FFE |
Volterra filter equalization | VFE |
Semiconductor optical amplifier | SOA |
Erbium-doped optical fiber amplifier | EDFA |
Application programming interface | API |
Photo-detector | PD |
Transimpedance amplifier | TIA |
Enhanced fixed broadband | EFB |
Guaranteed reliable experience | GRE |
Multiple private networks | D-Nets |
Quantum noise stream cipher | QNSC |
Quality of transmission | QoT |
Optical signal-to-noise ratio | OSNR |
Analog-to-digital converter | ADC |
Local oscillator | LO |
SDN-enabled broadband access | SEBA |
Cloud central office end | CloudCO |
Central office | CO |
Quality of service | QoS |
Quantum key distribution | QKD) |
Intensity modulation-based QNSC | IM/QNSC |
Phase-shift modulation-based QNSC | PSK/QNSC |
QAM-based QNSC | QAM/QNSC |
Software-defined network | SDN |
Bit error rate | BER |
Quantum key distribution | QKD |
Network function virtualizations | NFVs |
Advanced Encryption Standard | AES |
Continuous variable QKD | CV-QKD |
Artificial intelligence | AI |
Machine learning | ML |
Digital twin | DT |
Author | Year and Publication | Modulation Format | Rate [Gbps] | Distance [km] | BER | Scheme | Kind of PON |
---|---|---|---|---|---|---|---|
Xiao, Y. | JOCN 2018 [102] | 16 QAM | 8.9 | 100 | 10 × 10−3 | Multi-chaotics | OFDM-PON |
Wu, T. | Optics Express 2018 [103] | 16 QAM | 22.06 | 25.4 | 10 × 10−3 | Three-dimensional Brownian motion and chaos in cell (3DBCC) | OFDM-PON |
Wu, T. | IEEE Access 2020 [104] | 16 QAM | 22.06 | 25 | 10 × 10−3 | Deoxyribonucleic acid (DNA) extension code and chaotic System | OFDM-PON |
Zhang, W. | PTL 2016 [105] | 16 QAM | 11.32 | 25 | 10 × 10−3 | Joint peak-to-average power ratio (PAPR) and a chaos IQ encryption | OFDM-PON |
Zhang, W. | PTL 2017 [106] | 16 QAM | 36.67 | 100 | 10 × 10−3 | Brownian motion encryption | CO-OFDM-PON |
Hu, X. | PTL 2015 [107] | 16 QAM | 8.9 | 20 | 10 × 10−3 | Chaos-based partial transmit sequence | OFDM-PON |
Bi, M. | Photonics Journal (PJ) 2017 [108] | 16 QAM | 10 | 25 | 10 × 10−3 | Key space enhanced chaotic encryption scheme | OFDM-PON |
Adnan A. E. Hajomer | Photonics Technology Letters 2017 [109] | 16 QAM | 8.9 | 20 | 10 × 10−3 | Chaotic Walsh–Hadamard transform | OFDM-PON |
Zhao, J. | Optics Express 2020 [110] | 16 QAM | 16 | 25 | 10 × 10−3 | 4D-hyperchaos and dimension coordination optimization | OFDM-PON |
Zhao, J. | PTL 2020 [111] | 16-ary | 20 | 25 | 10 × 10−3 | Floating probability disturbance | CAP-PON |
Cui, M. | Optics Express 2021 [112] | 16 QAM | 35.29 | 25 | 10 × 10−3 | Chaotic RNA and DNA | OFDM- WDM-PON |
Wu, K. | IEEE Photonics Journal 2022 [113] | PAM-8 | 100 | 35 | 3.8 × 10−3 | Adjustable fingerprint with deep neural networks | WDM-PON |
Luo, Y. | JLT 2023 [114] | 16-32-64 QAM | 17.6, 22.1, 26.5 | 25 | 3.8 × 10−3 | Support vector machine | OFDMA-PON |
Liang, X. | JLT 2023 [115] | - | 35.29 | 20 | 3.8 × 10−3 | Chaotic Hilbert motion | OFDM-PON |
Wei, Z. | JLT 2023 [116] | PCS-64 QAM | 400 | 80 | 3.8 × 10−3 | Pseudo-m-QAM chaotic | WDM-CPON |
Xia, W. | Optics Express 2023 [117] | Pyraminx-3D-CAP-16 | 25.5 | 2 | 3.8 × 10−3 | Pyramid constellation design for 7-core fiber | 3D CAP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, N.; Ma, M.; Zhang, Y.; Tan, X.; Li, Z.; Li, S. Key Technologies for a Beyond-100G Next-Generation Passive Optical Network. Photonics 2023, 10, 1128. https://doi.org/10.3390/photonics10101128
Feng N, Ma M, Zhang Y, Tan X, Li Z, Li S. Key Technologies for a Beyond-100G Next-Generation Passive Optical Network. Photonics. 2023; 10(10):1128. https://doi.org/10.3390/photonics10101128
Chicago/Turabian StyleFeng, Nan, Mingyi Ma, Yinsong Zhang, Xiaochuan Tan, Zhe Li, and Shaobo Li. 2023. "Key Technologies for a Beyond-100G Next-Generation Passive Optical Network" Photonics 10, no. 10: 1128. https://doi.org/10.3390/photonics10101128