Responses of Purple Rice Genotypes to Nitrogen and Zinc Fertilizer Application on Grain Yield, Nitrogen, Zinc, and Anthocyanin Concentration
Abstract
:1. Introduction
2. Results
2.1. Grain Yield and Yield Components
2.2. Grain Grain N, Zn, and Anthocyanin Concentration
2.3. Relationship between Grain Yield and Grain N, Zn, and Anthocyanin Concentration
3. Discussion
4. Materials and Methods
4.1. Plant Culture
4.2. Data Collection
4.3. Chemical Analysis
4.3.1. Anthocyanin Determination
4.3.2. Zn Determination
4.3.3. Nitrogen Determination
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samyor, D.; Das, A.B.; Deka, S.C. Pigmented Rice a Potential Source of Bioactive Compounds: A Review. Int. J. Food Sci. Technol. 2017, 52, 1073–1081. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. Bioactive Compounds of Rice (Oryza sativa L.): Review on Paradigm and Its Potential Benefit in Human Health. Trends Food Sci. Technol. 2020, 97, 355–365. [Google Scholar] [CrossRef]
- Goufo, P.; Trindade, H. Rice Antioxidants: Phenolic Acids, Flavonoids, Anthocyanins, Proanthocyanidins, Tocopherols, Tocotrienols, γ-Oryzanol, and Phytic Acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef]
- Shao, Y.; Xu, F.; Sun, X.; Bao, J.; Beta, T. Identification and Quantification of Phenolic Acids and Anthocyanins as Antioxidants in Bran, Embryo and Endosperm of White, Red and Black Rice Kernels (Oryza sativa L.). J. Cereal Sci. 2014, 59, 211–218. [Google Scholar] [CrossRef]
- Ichikawa, H.; Ichiyanagi, T.; Xu, B.; Yoshii, Y.; Nakajima, M.; Konishi, T. Antioxidant Activity of Anthocyanin Extract from Purple Black Rice. J. Med. Food 2001, 4, 211–218. [Google Scholar] [CrossRef]
- Miguel, M.G. Anthocyanins: Antioxidant and/or Anti-Inflammatory Activities. J. Appl. Pharm. Sci. 2011, 1, 7–15. [Google Scholar]
- Chen, P.-N.; Chu, S.-C.; Chiou, H.-L.; Chiang, C.-L.; Yang, S.-F.; Hsieh, Y.-S. Cyanidin 3-Glucoside and Peonidin 3-Glucoside Inhibit Tumor Cell Growth and Induce Apoptosis in Vitro and Suppress Tumor Growth in Vivo. Nutr. Cancer 2005, 53, 232–243. [Google Scholar] [CrossRef]
- Chen, P.-N.; Kuo, W.-H.; Chiang, C.-L.; Chiou, H.-L.; Hsieh, Y.-S.; Chu, S.-C. Black Rice Anthocyanins Inhibit Cancer Cells Invasion via Repressions of MMPs and U-PA Expression. Chem. Biol. Interact. 2006, 163, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.; Bin, Y.; Xiaoping, Y.; Long, Y.; Chunye, C.; Mantian, M.; Wenhua, L. Anticancer Activities of an Anthocyanin-Rich Extract from Black Rice against Breast Cancer Cells in Vitro and in Vivo. Nutr. Cancer 2010, 62, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Li, H.-B. Dietary Natural Products for Prevention and Treatment of Liver Cancer. Nutrients 2016, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Sancho, R.A.S.; Pastore, G.M. Evaluation of the Effects of Anthocyanins in Type 2 Diabetes. Food Res. Int. 2012, 46, 378–386. [Google Scholar] [CrossRef]
- Gaiz, A.; Mosawy, S.; Colson, N.; Singh, I. Potential of Anthocyanin to Prevent Cardiovascular Disease in Diabetes. Altern. Ther. Health Med. 2018, 24, 40–47. [Google Scholar] [PubMed]
- Manosroi, J.; Chankhampan, C.; Kitdamrongtham, W.; Zhang, J.; Abe, M.; Akihisa, T.; Manosroi, W.; Manosroi, A. In Vivo Anti-Ageing Activity of Cream Containing Niosomes Loaded with Purple Glutinous Rice (Oryza sativa Linn.) Extract. Int. J. Cosmet. Sci. 2020, 42, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Caro, G.; Watanabe, S.; Crozier, A.; Fujimura, T.; Yokota, T.; Ashihara, H. Phytochemical Profile of a Japanese Black-Purple Rice. Food Chem. 2013, 141, 2821–2827. [Google Scholar] [CrossRef]
- Das, S.; Green, A. Zinc in crops and human health. In Biofortification of Food Crops; Springer: New Delhi, India, 2016; pp. 31–40. [Google Scholar]
- Fischer Walker, C.L.; Ezzati, M.; Black, R.E. Global and Regional Child Mortality and Burden of Disease Attributable to Zinc Deficiency. Eur. J. Clin. Nutr. 2009, 63, 591–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rerksuppaphol, S.; Na-Songkhla, N.; Rerksuppaphol, L. Serum Zinc Levels in Thai Children with Acute Diarrhoea. J. Clin. Diagn. Res. 2018, 12, SC01–SC04. [Google Scholar] [CrossRef]
- Black, M.M. Zinc Deficiency and Child Development. Am. J. Clin. Nutr. 1998, 68, 464S–469S. [Google Scholar] [CrossRef] [Green Version]
- High, K.P. Micronutrient Supplementation and Immune Function in the Elderly. Clin. Infect. Dis. 1999, 28, 717–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, S. Zinc Deficiency in the Elderly. Jpn. J. Geriatr. 2007, 44, 677–689. [Google Scholar]
- Choi, S.; Liu, X.; Pan, Z. Zinc Deficiency and Cellular Oxidative Stress: Prognostic Implications in Cardiovascular Diseases Review-Article. Acta Pharmacol. Sin. 2018, 39, 1120–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himoto, T.; Masaki, T. Associations between Zinc Deficiency and Metabolic Abnormalities in Patients with Chronic Liver Disease. Nutrients 2018, 10, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gać, P.; Czerwińska, K.; Macek, P.; Jaremków, A.; Mazur, G.; Pawlas, K.; Poręba, R. The Importance of Selenium and Zinc Deficiency in Cardiovascular Disorders. Environ. Toxicol. Pharmacol. 2021, 82, 103553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, Y.; Zhang, H.; Xu, B.; Chen, H. Potential Pathways of Zinc Deficiency-Promoted Tumorigenesis. Biomed. Pharmacother. 2021, 133, 110983. [Google Scholar] [CrossRef] [PubMed]
- Sompong, R.; Siebenhandl-Ehn, S.; Linsberger-Martin, G.; Berghofer, E. Physicochemical and Antioxidative Properties of Red and Black Rice Varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Chen, M.-H.; McClung, A.M.; Bergman, C.J. Phenolic Content, Anthocyanins and Antiradical Capacity of Diverse Purple Bran Rice Genotypes as Compared to Other Bran Colors. J. Cereal Sci. 2017, 77, 110–119. [Google Scholar] [CrossRef]
- Faiz, A.; Hanafi, M.M.; Hakim, M.A.; Rafii, M.Y.; Abdullah, S.N.A. Micronutrients, Antioxidant Activity, and Tocochromanol Contents of Selected Pigmented Upland Rice Genotypes. Int. J. Agric. Biol. 2015, 17, 741–747. [Google Scholar] [CrossRef]
- Jamjod, S.; Yimyam, N.; Lordkaew, S.; Prom-U-Thai, C.; Rerkasem, B. Characterization of On-Farm Rice Germplasm in an Area of the Crop’s Center of Diversity. Chiang Mai Univ. J. Nat. Sci. 2017, 16, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Rerkasem, B.; Jumrus, S.; Yimyam, N.; Prom-u-Thai, C. Variation of Grain Nutritional Quality among Thai Purple Rice Genotypes Grown at Two Different Altitudes. ScienceAsia 2015, 41, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Jaksomsak, P.; Rerkasem, B.; Prom-U-Thai, C. Variation in Nutritional Quality of Pigmented Rice Varieties under Different Water Regimes. Plant Prod. Sci. 2020, 24, 244–255. [Google Scholar] [CrossRef]
- Tung, Y.-H.; Ng, L.-T. Effects of Nitrogen Fertilization Rate on Tocopherols, Tocotrienols and γ-Oryzanol Contents and Enzymatic Antioxidant Activities in Rice Grains. Physiol. Mol. Biol. Plants 2019, 25, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.-M.; Ning, H.-F.; Bi, J.-G.; Qiao, J.-F.; Liu, Z.-H.; Li, G.-H.; Wang, Q.-S.; Wang, S.-H.; Ding, Y.-F. Effects of Nitrogen Fertilization and Genotype on Rice Grain Macronutrients and Micronutrients. Rice Sci. 2014, 21, 233–242. [Google Scholar] [CrossRef]
- Jaksomsak, P.; Rerkasem, B.; Prom-u-thai, C. Responses of Grain Zinc and Nitrogen Concentration to Nitrogen Fertilizer Application in Rice Varieties with High-Yielding Low-Grain Zinc and Low-Yielding High Grain Zinc Concentration. Plant Soil 2017, 411, 101–109. [Google Scholar] [CrossRef]
- Phattarakul, N.; Rerkasem, B.; Li, L.J.; Wu, L.H.; Zou, C.Q.; Ram, H.; Sohu, V.S.; Kang, B.S.; Surek, H.; Kalayci, M.; et al. Biofortification of Rice Grain with Zinc through Zinc Fertilization in Different Countries. Plant Soil 2012, 361, 131–141. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic Biofortification of Cereals with Zinc: A Review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Zhong, C.; Sajid, H.; Zhu, L.; Zhang, J.; Wu, L.; Jin, Q. Effects of Watering Regime and Nitrogen Application Rate on the Photosynthetic Parameters, Physiological Characteristics, and Agronomic Traits of Rice. Acta Physiol. Plant. 2017, 39, 135. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Y.; Jia, B.; Wang, S.; Dou, F.; Samonte, S.O.P.B.; Chen, K.; Wang, Y. Optimization of Nitrogen Rate and Planting Density for Improving the Grain Yield of Different Rice Genotypes in Northeast China. Agronomy 2019, 9, 555. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Tränkner, M.; Lu, J.; Yan, J.; Huang, S.; Ren, T.; Cong, R.; Li, X. Interactive Effects of Nitrogen and Potassium on Photosynthesis and Photosynthetic Nitrogen Allocation of Rice Leaves. BMC Plant Biol. 2019, 19, 302. [Google Scholar] [CrossRef] [PubMed]
- Yamuangmorn, S.; Rinsinjoy, R.; Lordkaew, S.; Dell, B.; Prom-U-Thai, C. Responses of Grain Yield and Nutrient Content to Combined Zinc and Nitrogen Fertilizer in Upland and Wetland Rice Varieties Grown in Waterlogged and Well-Drained Condition. J. Soil Sci. Plant Nutr. 2020, 20, 2112–2122. [Google Scholar] [CrossRef]
- Ju, C.; Buresh, R.J.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Root and Shoot Traits for Rice Varieties with Higher Grain Yield and Higher Nitrogen Use Efficiency at Lower Nitrogen Rates Application. Field Crops Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Guo, J.X.; Feng, X.M.; Hu, X.Y.; Tian, G.L.; Ling, N.; Wang, J.H.; Shen, Q.R.; Guo, S.W. Effects of Soil Zinc Availability, Nitrogen Fertilizer Rate and Zinc Fertilizer Application Method on Zinc Biofortification of Rice. J. Agric. Sci. 2016, 154, 584–597. [Google Scholar] [CrossRef]
- Kitagishi, K.; Obata, H. Effects of Zinc Deficiency on the Nitrogen Metabolism of Meristematic Tissues of Rice Plants with Reference to Protein Synthesis. Soil Sci. Plant Nutr. 1986, 32, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Mu, S.; Yamaji, N.; Sasaki, A.; Luo, L.; Du, B.; Che, J.; Shi, H.; Zhao, H.; Huang, S.; Deng, F.; et al. A Transporter for Delivering Zinc to the Developing Tiller Bud and Panicle in Rice. Plant J. 2020, 105, 786–799. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Rehman, H.; Aziz, T.; Farooq, M.; Wakeel, A.; Rengel, Z. Zinc Nutrition in Rice Production Systems: A Review. Plant Soil 2012, 361, 203–226. [Google Scholar] [CrossRef]
- Zeb, H.; Hussain, A.; Naveed, M.; Ditta, A.; Ahmad, S.; Jamshaid, M.U.; Ahmad, H.T.; Hussain, M.B.; Aziz, R.; Haider, M.S. Compost Enriched with ZnO and Zn-Solubilising Bacteria Improves Yield and Zn-Fortification in Flooded Rice. Ital. J. Agron. 2018, 13, 310–316. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Bogucka, B. The Influence of Nitrogen and Potassium Fertilisation on the Content of Polyphenolic Compounds and Antioxidant Capacity of Coloured Potato. J. Food Compos. Anal. 2016, 47, 69–75. [Google Scholar] [CrossRef]
- Phahlane, C.J.T.; Maboko, M.M.; Soundy, P.; Sivakumar, D. Development, Yield, and Antioxidant Content in Red Cabbage as Affected by Plant Density and Nitrogen Rate. Int. J. Veg. Sci. 2018, 24, 160–168. [Google Scholar] [CrossRef]
- Yamuangmorn, S.; Dell, B.; Rerkasem, B.; Prom-u-thai, C. Applying Nitrogen Fertilizer Increased Anthocyanin in Vegetative Shoots but Not in Grain of Purple Rice Genotypes. J. Sci. Food Agric. 2018, 98, 4527–4532. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Y.; Xu, M.; Cheng, Z.; Zhang, D.; Zheng, J. ITraq-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis. PLoS ONE 2016, 11, e0159238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prom-U-Thai, C.; Rashid, A.; Ram, H.; Zou, C.; Guilherme, L.R.G.; Corguinha, A.P.B.; Guo, S.; Kaur, C.; Naeem, A.; Yamuangmorn, S.; et al. Simultaneous Biofortification of Rice with Zinc, Iodine, Iron and Selenium Through Foliar Treatment of a Micronutrient Cocktail in Five Countries. Front. Plant Sci. 2020, 11, 589835. [Google Scholar] [CrossRef] [PubMed]
- Wasaya, A.; Shahzad Shabir, M.; Hussain, M.; Ansar, M.; Aziz, A.; Hassan, W.; Ahmad, I. Foliar Application of Zinc and Boron Improved the Productivity and Net Returns of Maize Grown under Rainfed Conditions of Pothwar Plateau. J. Soil Sci. Plant Nutr. 2017, 17, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Khampuang, K.; Rerkasem, B.; Lordkaew, S.; Prom-u-thai, C. Nitrogen fertilizer increases grain zinc along with yield in high yield rice varieties initially low in grain zinc concentration. Plant Soil 2021, 22, 1–14. [Google Scholar] [CrossRef]
- Boonchuay, P.; Cakmak, I.; Rerkasem, B.; Prom-U-Thai, C. Effect of different foliar zinc application at different growth stages on seed zinc concentration and its impact on seedling vigor in rice. Soil Sci. Plant Nutr. 2013, 59, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S. Fundamentals of Rice Crop Science; IRRI: Los Baños, CA, USA, 1981; p. 269. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, J.E. The Determination of Zinc in Agricultural Materials by Atomic-Absorption Spectrophotometry. Analyst 1961, 86, 530–534. [Google Scholar] [CrossRef]
- Bradstreet, R.B. Kjeldahl Method for Organic Nitrogen. Anal. Chem. 1954, 26, 185–187. [Google Scholar] [CrossRef]
Characters | G | N | Zn | G × N | G × Zn | N × Zn | G × N × Zn |
---|---|---|---|---|---|---|---|
Yield and yield components | |||||||
Grain yield | <0.001 | <0.001 | <0.001 | <0.05 | <0.01 | <0.001 | ns |
Tiller per plant | <0.001 | ns | <0.001 | ns | ns | ns | ns |
Panicle per plant | <0.001 | ns | <0.001 | ns | <0.001 | <0.001 | ns |
Spikelet number | <0.001 | <0.001 | <0.01 | <0.05 | <0.01 | <0.001 | ns |
Number of filled grain | <0.001 | <0.001 | ns | ns | <0.01 | <0.001 | ns |
100 grain weight | <0.001 | ns | ns | ns | ns | ns | ns |
Grain N, Zn, and anthocyanin | |||||||
Anthocyanin concentration | <0.001 | <0.001 | <0.001 | <0.001 | ns | <0.01 | ns |
Zn concentration | <0.001 | ns | <0.001 | <0.05 | <0.001 | ns | ns |
N concentration | <0.001 | <0.001 | <0.001 | <0.001 | <0.05 | ns | ns |
Genotype | Anthocyanin | Zn | N |
---|---|---|---|
PIZ | −0.58 ** | −0.05 ns | −0.18 ns |
KAK | −0.06 ns | −0.14 ns | −0.52 * |
KS | 0.15 ns | −0.21 ns | 0.12 ns |
KH-CMU | −0.21 ns | −0.47 * | −0.48 * |
KDK | 0.23 ns | 0.06 ns | 0.35 ns |
HN | −0.62 ** | −0.42 * | −0.12 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fongfon, S.; Prom-u-thai, C.; Pusadee, T.; Jamjod, S. Responses of Purple Rice Genotypes to Nitrogen and Zinc Fertilizer Application on Grain Yield, Nitrogen, Zinc, and Anthocyanin Concentration. Plants 2021, 10, 1717. https://doi.org/10.3390/plants10081717
Fongfon S, Prom-u-thai C, Pusadee T, Jamjod S. Responses of Purple Rice Genotypes to Nitrogen and Zinc Fertilizer Application on Grain Yield, Nitrogen, Zinc, and Anthocyanin Concentration. Plants. 2021; 10(8):1717. https://doi.org/10.3390/plants10081717
Chicago/Turabian StyleFongfon, Suksan, Chanakan Prom-u-thai, Tonapha Pusadee, and Sansanee Jamjod. 2021. "Responses of Purple Rice Genotypes to Nitrogen and Zinc Fertilizer Application on Grain Yield, Nitrogen, Zinc, and Anthocyanin Concentration" Plants 10, no. 8: 1717. https://doi.org/10.3390/plants10081717
APA StyleFongfon, S., Prom-u-thai, C., Pusadee, T., & Jamjod, S. (2021). Responses of Purple Rice Genotypes to Nitrogen and Zinc Fertilizer Application on Grain Yield, Nitrogen, Zinc, and Anthocyanin Concentration. Plants, 10(8), 1717. https://doi.org/10.3390/plants10081717