Hydrothermal Carbonization and Pellet Production from Egeria densa and Lemna minor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction of Essential Oils, Macro- and Microelements, and Protein
2.2. Hydrothermal Carbonization
2.3. Palletization
3. Materials and Methods
3.1. Sample Preparation
3.2. Hydrothermal Carbonization
3.3. Pellet Production
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khanna, M.; Crago, C.L.; Black, M. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy. Interface Focus 2011, 1, 233–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milano, J.; Ong, H.C.; Masjuki, H.H.; Chong, W.T.; Lam, M.K.; Loh, P.K.; Vellayan, V. Microalgae biofuels as an alternative to fossil fuel for power generation. Renew. Sustain. Energy Rev. 2016, 58, 180–197. [Google Scholar] [CrossRef]
- Naik, S.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Fischer, G.; Prieler, S.; van Velthuizen, H. Biomass potentials of miscanthus, willow and poplar: Results and policy implications for Eastern Europe. Biomass Bioenergy 2005, 28, 119–132. [Google Scholar] [CrossRef]
- Domínguez, E.; Romaní, A.; Domingues, L.; Garrote, G. Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme. Appl. Energy 2017, 187, 777–789. [Google Scholar] [CrossRef] [Green Version]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Adenle, A.A.; Haslam, G.E.; Lee, L. Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy 2013, 61, 182–195. [Google Scholar] [CrossRef]
- Zhang, B.; Xiu, S.; Shahbazi, G. Aquatic Plants: Is it a Viable Source for Biofuel Production? In Advances in Energy Research; Acosta, M.J., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2012; Volume 11, pp. 203–216. [Google Scholar] [CrossRef]
- Boyd, C.E. Vascular aquatic plants for mineral nutrient removal from polluted waters. Econ. Bot. 1970, 24, 95–103. [Google Scholar] [CrossRef]
- Newman, J.R.E.; Anderson, N.J.; Bennion, H.; Bowes, M.J.; Carvalho, L.; Dawson, F.H.; Furse, M.; Gunn, I.; Hilton, J.; Hughes, R.; et al. Eutrophication in Rivers: An Ecological Perspective; Technical Report; Centre for Ecology and Hydrology: Gwynedd, UK, 2005. [Google Scholar] [CrossRef]
- O’Hare, M.T.; Baattrup-Pedersen, A.; Baumgarte, I.; Freeman, A.; Gunn, I.D.; Lázár, A.N.; Sinclair, R.; Wade, A.J.; Bowes, M.J. Responses of Aquatic Plants to Eutrophication in Rivers: A Revised Conceptual Model. Front. Plant Sci. 2018, 9, 451. [Google Scholar] [CrossRef]
- Duncan, E.; Kleinman, P.; Sharpley, A. Eutrophication of lakes and rivers. In Encyclopedia of Life Science (ELS); John Wiley & Sons: Chichester, UK, 2001. [Google Scholar] [CrossRef]
- Anker, Y.; Nakonechny, F.; Niazov, B.; Lugovskoy, S.; Nisnevitch, M. Biofuel Production by Fermentation of Water Plants and Agricultural Lignocellulosic by-Products. MATEC Web Conf. 2016, 70, 12005. [Google Scholar] [CrossRef] [Green Version]
- Dhir, B.; Sharmila, P.; Saradhi, P.P. Potential of Aquatic Macrophytes for Removing Contaminants from the Environment. Crit. Rev. Environ. Sci. Technol. 2009, 39, 754–781. [Google Scholar] [CrossRef]
- Tel-Or, E.; Forni, C. Phytoremediation of hazardous toxic metals and organics by photosynthetic aquatic systems. Plant Biosyst. 2011, 145, 224–235. [Google Scholar] [CrossRef]
- Mishima, D.; Kuniki, M.; Sei, K.; Soda, S.; Ike, M.; Fujita, M. Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour. Technol. 2008, 99, 2495–2500. [Google Scholar] [CrossRef] [PubMed]
- Pratt, D.C.; Dubbe, D.R.; Garver, E.G.; Johnson, W.D. Cattail (Typha spp.) Biomass Production: Stand Management and Sustainable Yields: Final Report, 1984–1988; U.S. Department of Energy: Oak Ridge, TN, USA, 1988.
- Küçük, M.M.; Demir, H.; Genel, Y. Supercritical Fluid Extraction of Reed (thypa). Energy Sources 2005, 27, 445–450. [Google Scholar] [CrossRef]
- Smith, A.M.; Ross, A.B. Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation. Algal Res. 2016, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kantarli, I.C.; Pala, M.; Yildirim, Y.; Yanik, J.; Abreu, M.H. Fuel characteristics and combustion behavior of seaweed-derived hydrochars. Turkish J. Chem. 2019, 43, 475–491. [Google Scholar] [CrossRef]
- Prakoso, T.; Nurastuti, R.; Hendriansyah, R.; Rizkiana, J.; Suantika, G.; Guan, G. Hydrothermal Carbonization of Seaweed for Advanced Biochar Production. MATEC Web Conf. 2018, 156, 05012. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Qian, Q.; Quek, A.; Ai, N.; Zeng, G.; Wang, J. Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain. Chem. Eng. 2013, 1, 1092–1101. [Google Scholar] [CrossRef]
- Park, K.Y.; Lee, K.; Kim, D. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization. Bioresour. Technol. 2018, 258, 119–124. [Google Scholar] [CrossRef]
- Kumoro, A.C.; Hasan, M.; Singh, H. Effects of solvent properties on the Soxhlet extraction of diterpenoid lactones from Andrographis paniculata leaves. Sci. Asia 2009, 35, 306–309. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Zhao, C.; Yang, L.; Zhao, W.; Jiang, H.; Ren, X.; Su, W.; Li, Y.; Guan, J. Separation of the main flavonoids and essential oil from seabuckthorn leaves by ultrasonic/microwave-assisted simultaneous distillation extraction. R. Soc. Open Sci. 2018, 5, 180133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhi-ling, C.; Jian-ping, C.; Hui-lin, C.; Wei-tao, B.; Hai-yan, C.; Mo-lin, L. Research on the extraction of plant volatile oils. Procedia Environ. Sci. 2011, 8, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Li, J.; Jia, Y.; Xiao, Z.; Li, P.; Xie, Y.; Zhang, A.; Liu, R.; Ren, Z.; Zhao, M.; et al. Essential Oil Extracted from Cymbopogon citronella Leaves by Supercritical Carbon Dioxide: Antioxidant and Antimicrobial Activities. J. Anal. Methods Chem. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeyemi, O.; Osubor, C.C. Assessment of nutritional quality of water hyacinth leaf protein concentrate. Egypt. J. Aquat. Res. 2016, 42, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Dewanji, A.; Chanda, S.; Si, L.; Barik, S.; Matai, S. Extractability and nutritional value of leaf protein from tropical aquatic plants. Plant Foods Hum. Nutr. 1997, 50, 349–357. [Google Scholar] [CrossRef]
- Bahnasy, S.A.; Kamel, G.A.; Saaffan, S.E. The Nutritive Value of Aquatic Plants and Their Utilization in Fish and Animal Feed. Arab J. Sci. Res. Publ. 2016, 17, 1–8. [Google Scholar] [CrossRef]
- Liu, Z.; Balasubramanian, R. Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): A comparative evaluation. Appl. Energy 2014, 114, 857–864. [Google Scholar] [CrossRef]
- Reza, M.T.; Yang, X.; Coronella, C.J.; Lin, H.; Hathwaik, U.; Shintani, D.; Neupane, B.P.; Miller, G.C. Hydrothermal carbonization (HTC) and pelletization of two arid land plants bagasse for energy densification. ACS Sustain. Chem. Eng. 2016, 4, 1106–1114. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Wang, J.; Li, X.; Cheng, J.; Yang, H.; Chen, H. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 2013, 58, 376–383. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, L.; Zhu, M.; Sun, G.; Zhang, T.; Kang, K. Comparative Evaluation of Hydrothermal Carbonization and Low Temperature Pyrolysis of Eucommia ulmoides Oliver for the Production of Solid Biofuel. Sci. Rep. 2019, 9, 5535. [Google Scholar] [CrossRef] [Green Version]
- Krylova, A.; Zaichenko, V. Hydrothermal Carbonization of Biomass: A Review. Solid Fuel Chem. 2018, 52, 91–103. [Google Scholar] [CrossRef]
- Saba, A.; McGaughy, K.; Reza, M.T. Techno-Economic Assessment of Co-Hydrothermal Carbonization of a Coal-Miscanthus Blend. Energies 2019, 12, 630. [Google Scholar] [CrossRef] [Green Version]
- Wilk, M.; Magdziarz, A.; Jayaraman, K.; Szymańska-Chargot, M.; Gökalp, I. Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study. Biomass Bioenergy 2019, 120, 166–175. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Song, Y.-C.; Li, W.-Y.; Feng, J. Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 2017, 208, 377–409. [Google Scholar] [CrossRef]
- Alvarez, P.; Pérez, L.; Salgueiro, J.L.; Cancela, A.; Sánchez, Á.; Ortiz, L. Bioenergy Use from Pavlova lutheri Microalgae. Int. J. Environ. Res. 2017, 11, 281–289. [Google Scholar] [CrossRef]
- Abdoli, M.A.; Golzary, A.; Hosseini, A.; Sadeghi, P. Wood Pellet as a Renewable Source of Energy: From Production to Consumption; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Munjeri, K.; Ziuku, S.; Maganga, H.; Siachingoma, B.; Ndlovu, S. On the potential of water hyacinth as a biomass briquette for heating applications. Int. J. Energy Environ. Eng. 2016, 7, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.T.; Sepúlveda, F.J.; Arranz, J.I.; Montero, I.; Rojas, C.V. Physical-energy characterization of microalgae Scenedesmus and experimental pellets. Fuel 2018, 226, 121–126. [Google Scholar] [CrossRef]
- UNE-EN ISO 17225-6:2014. Solid Biofuels. Fuel Specifications and Classes. Part 6: Graded Non-Woody Pellets; AENOR: Madrid, Spain, 2014. [Google Scholar]
- Luque de Castro, M.D.; García-Ayuso, L.E. Environmental Applications of Soxhlet Extraction. In Encyclopedia of Separation Science; Wilson, I., Ed.; Academic Press: London, UK, 2000; p. 2701. [Google Scholar]
- Bradstreet, R.B. Kjeldahl Method for Organic Nitrogen. Anal. Chem. 1954, 26, 185–187. [Google Scholar] [CrossRef]
- UNE-EN ISO 18125:2018. Solid Biofuels. Determination of Calorific Value; AENOR: Madrid, Spain, 2018. [Google Scholar]
- UNE-EN ISO 18122:2016. Solid Biofuels. Determination of Ash Content; AENOR: Madrid, Spain, 2016. [Google Scholar]
N | C | K | Cu | Ni | Cr | Cd | Pb | Se | |
---|---|---|---|---|---|---|---|---|---|
% | % | g/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | |
Lemna minor | 3.97 ± 0.14 | 29.63 ± 8.86 | 23.66 ± 0.35 | 17.50 ± 0.71 | 3.50 ± 0.71 | 5.50 ± 0.71 | <1 | 7.00 ± 0.00 | <5 |
Egeria densa | 3.665 ± 0.33 | 29.18 ± 1.96 | 27.46 ± 0.32 | 24.00 ± 1.42 | 9.00 ± 0.00 | 10.50 ± 0.71 | 4.00 ± 0.00 | 12.00 ± 1.41 | <5 |
Species | T °C | Weight Sample (g) | Hydrochar Obtained (g) | Liquid Obtained (mL) | Gas Produced (g) | Biochar Yield (%) |
---|---|---|---|---|---|---|
Egeria densa | 180 ± 1 | 10.00 ± 0.01 | 5.90 ± 0.04 | 94.21 ± 4.56 | 0.20 ± 0.05 | 59.00 ± 0.01 |
Egeria densa | 200 ± 1 | 112.47 ± 0.02 | 75.23 ± 0.12 | 93.75 ± 5.60 | 0.18 ± 0.04 | 66.89 ± 0.00 |
Egeria densa | 220 ± 1 | 107.7 ± 0.01 | 65.46 ± 0.21 | 92.84 ± 2.16 | 0.18 ± 0.06 | 60.78 ± 0.00 |
Egeria densa | 240 ± 1 | 102.22 ± 0.01 | 62.12 ± 0.20 | 90.21 ± 1.12 | 0.16 ± 0.02 | 60.77 ± 0.00 |
Lemna minor | 180 ± 1 | 10.00 ± 0.01 | 6.14 ± 0.05 | 94.43 ± 2.43 | 0.14 ± 0.04 | 61.40 ± 0.01 |
Lemna minor | 240 ± 1 | 114.02 ± 0.03 | 73.69 ± 0.14 | 90.25 ± 3.06 | 0.12 ± 0.02 | 64.43 ± 0.00 |
Sample Treatment | LHV (MJ/kg) | HHV (MJ/kg) | Ash Content (%) |
---|---|---|---|
Egeria densa (180 °C) | 12.95 ± 0.73 | 14.28 ± 1.26 | 33.92 ± 2.86 |
Egeria densa (200 °C) | 14.55 ± 1.12 | 15.88 ± 1.32 | 32.30 ± 1.57 |
Egeria densa (220 °C) | 13.45 ± 1.36 | 14.77 ± 0.68 | 43.67 ± 2.18 |
Egeria densa (240 °C) | 13.37 ± 0.97 | 14.69 ± 0.89 | 49.57 ± 3.25 |
Lemna minor (180 °C) | 15.19 ± 2.11 | 16.52 ± 1.76 | 22.69 ± 2.21 |
Lemna minor (240 °C) | 15.93 ± 1.68 | 17.25 ± 1.95 | 36.51 ± 2.01 |
Species | Solvent | LHV (MJ/kg) | HHV (MJ/kg) |
---|---|---|---|
Egeria densa | unmodified | 10.75 ± 1.12 | 12.07 ± 1.35 |
Egeria densa | Ethanol | 8.55 ± 0.87 | 11.38 ± 0.29 |
Egeria densa | Water | 10.55 ± 1.36 | 11.88 ± 1.25 |
Egeria densa | Acetone | 12.17 ± 2.29 | 13.49 ± 2.56 |
Egeria densa | Ethanol | 11.71 ± 0.97 | 13.03 ± 1.33 |
Lemna minor | Ethanol | 10.89 ± 1.15 | 12.21 ± 1.58 |
Parameter | Regulation Value |
---|---|
HHV (MJ/kg) | ≥14.5 |
Ash (%) | ≤10 |
Moisture (%) | <15 |
Species | Sample Weight (g) | Solvent | Solvent Volume (mL) |
---|---|---|---|
Egeria densa | 2.55 | Ethanol | 250 |
Egeria densa | 2.55 | Water | 200 |
Egeria densa | 10 | Acetone | 250 |
Egeria densa | 5 | Ethanol | 300 |
Lemna minor | 2 | Ethanol | 200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez, X.; Cancela, Á.; Freitas, V.; Valero, E.; Sánchez, Á.; Acuña-Alonso, C. Hydrothermal Carbonization and Pellet Production from Egeria densa and Lemna minor. Plants 2020, 9, 425. https://doi.org/10.3390/plants9040425
Álvarez X, Cancela Á, Freitas V, Valero E, Sánchez Á, Acuña-Alonso C. Hydrothermal Carbonization and Pellet Production from Egeria densa and Lemna minor. Plants. 2020; 9(4):425. https://doi.org/10.3390/plants9040425
Chicago/Turabian StyleÁlvarez, Xana, Ángeles Cancela, Vanesa Freitas, Enrique Valero, Ángel Sánchez, and Carolina Acuña-Alonso. 2020. "Hydrothermal Carbonization and Pellet Production from Egeria densa and Lemna minor" Plants 9, no. 4: 425. https://doi.org/10.3390/plants9040425