Effect of Different Types of Electrospun Polyamide 6 Nanofibres on the Mechanical Properties of Carbon Fibre/Epoxy Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterisation Techniques
3. Results and Discussion
3.1. Characterisation of the Electrospun Polyamide 6 Nanofibre Veils
3.2. Characterisation of the Composites
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Beylergil, B.; Tanoglu, M.; Aktas, E. Enhancement of interlaminar fracture toughness of carbon fibre–epoxy composites using polyamide-6,6 electrospun nanofibers. J. Appl. Polym. Sci. 2017, 134, 45244. [Google Scholar] [CrossRef]
- Mezzenga, R.; Boogh, L.; Manson, J.A.E. A review of dendritic hyperbranched polymer as modifiers in epoxy composites. Compos. Sci. Technol. 2001, 61, 787–795. [Google Scholar] [CrossRef]
- Kinloch, A.J.; Taylor, A.C. The toughening of cyanate-ester polymers Part I Physical modification using particles, fibres and woven-mats. J. Mater. Sci. 2002, 37, 433–460. [Google Scholar] [CrossRef]
- Bucknall, C.B. Manufacture of Toughened Plastics. In Toughened Plastics; Elsevier Applied Science Publisher: London, UK, 1977. [Google Scholar]
- Girard-Reydet, E.; Vicard, V.; Pascault, J.P.; Sautereau, H. Polyetherimide-Modified Epoxy Networks: Influence of Cure Conditions on Morphology and Mechanical Properties. J. Appl. Polym. Sci. 1997, 65, 2433–2445. [Google Scholar] [CrossRef]
- Shivakumar, K.; Lingaiah, S.; Chen, H.; Akangah, P.; Swaminathan, G. Polymer Nanofabric Interleaved Composite Laminates. AIAA J. 2009, 47, 1723–1729. [Google Scholar] [CrossRef]
- Ashrafi, B.; Guan, J.; Mirjalili, V.; Chun, L.; Hubert, P.; Simard, B.; Kingston, C.T.; Bourne, O.; Johnston, A. Enhancement of mechanical performance of epoxy/carbon fibre laminate composites using single walled carbon nanotubes. Compos. Sci. Technol. 2011, 71, 1569–1578. [Google Scholar] [CrossRef]
- Nuhiji, B.; Attard, D.; Thorogood, G.; Hanley, T.; Magniez, K.; Fox, B. The effect of alternate heating rates during cure on the structure property relationships of epoxy/MMT clay nanocomposites. Compos. Sci. Technol. 2011, 71, 1761–1768. [Google Scholar] [CrossRef]
- Coleman, J.N.N. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Qian, H.; Greenhalgh, E.S.; Shaffer, M.S.P. Carbon nanotube-based hierarchical composites: A review. J. Mater. Chem. 2010, 20, 4751–4762. [Google Scholar] [CrossRef]
- Seyhan, A.T.; Tanoglu, M.; Schulte, K. Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotubes (CNT) modified polymer based composites. Eng. Fract. Mech. 2008, 75, 5151–5162. [Google Scholar] [CrossRef]
- Sager, R.J.; Klein, P.J.; Davis, D.C.; Davis, D.C.; Lagoudas, G.L.; Warren, G.L.; Sue, H.J. Interlaminar fracture toughness of woven fabric composite laminates with carbon nanotube/epoxy interleaf films. J. Appl. Polym. Sci. 2011, 121, 2394–2405. [Google Scholar] [CrossRef]
- Arai, M.; Noro, Y.; Sugimoto, K.I.; Endo, M. Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofibre interlayer. Compos. Sci. Technol. 2008, 68, 516–525. [Google Scholar] [CrossRef]
- Santos, C.S.C.; Gabriel, B.; Blanchy, M.; Menes, O.; García, D.; Blanco, M.; Arconada, N.; Neto, V. Industrial Applications of Nanoparticles. Mater. Today 2015, 2, 456–465. [Google Scholar] [CrossRef]
- Seal, S.; Karn, B. Safety aspects of nanotechnology based activity. Saf. Sci. 2014, 63, 217–225. [Google Scholar] [CrossRef]
- Wacker, M.G.; Proykova, A.; Mendes Lima Santos, G. Dealing with nanosafety around the globe—Regulation vs. innovation. Int. J. Pharm. 2016, 509, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Van der Heijden, S.; Daelemans, L.; De Schoenmaker, B.; De Baere, I.; Rahier, H.; Van Paepegem, W.; De Clerck, K. Interlaminar toughening of resin transfer moulded glass fibre epoxy laminates by polycaprolactone electrospun nanofibers. Compos. Sci. Technol. 2014, 104, 66–73. [Google Scholar] [CrossRef]
- Bilge, K.; Venkataraman, S.; Menceloglu, Y.Z.; Papila, M. Global and local nanofibrous interlayer toughened composites for higher in-plane strength. Compos. Part A Appl. Sci. Manuf. 2014, 58, 73–76. [Google Scholar] [CrossRef]
- Daelemans, L.; Van der Heijden, S.; De Baere, I.; Rahier, H.; Van Paepegem, W.; De Clerck, K. Nanofibre bridging as a toughening mechanism in carbon/epoxy composite laminates interleaved with electrospun polyamide nanofibrous veils. Compos. Sci. Technol. 2015, 117, 244–256. [Google Scholar] [CrossRef]
- Daelemans, L.; Van der Heijden, S.; De Baere, I.; Rahier, H.; Van Paepegem, W.; De Clerck, K. Using aligned nanofibres for identifying the toughening micromechanisms in nanofibre interleaved laminates. Compos. Sci. Technol. 2016, 124, 17–26. [Google Scholar] [CrossRef]
- Brugo, T.; Palazzetti, R. The effect of thickness of Nylon 6,6 nanofibrous mat on Modes I–II fracture mechanics of UD and woven composite laminates. Compos. Struct. 2016, 154, 172. [Google Scholar] [CrossRef] [Green Version]
- Kelkar, A.D.; Mohan, R.; Bolick, R.; Shendokar, S. Effect of nanoparticles and nanofibres on Mode I fracture toughness of fibre glass reinforced polymeric matrix composites. Mater. Sci. Eng. B 2010, 68, 85–89. [Google Scholar] [CrossRef]
- Özden-Yenigün, E.; Bilge, K.; Sünbüloğlu, E.; Bozdağ, E.; Papila, M. High strain rate response of nanofibre interlayered structural composites. Compos. Struct. 2017, 168, 47–55. [Google Scholar] [CrossRef]
- Hong, S.; Minary-Jolandan, M.; Naraghi, M. Controlling the wettability and adhesion of carbon fibres with polymer interfaces via grafted nanofibers. Compos. Sci. Technol. 2015, 117, 130–138. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, T.; Lin, T.; Wang, C.H. Phase morphology of nanofibre interlayers: Critical factor for toughening carbon/epoxy composites. Compos. Sci. Technol. 2012, 72, 256–262. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, T.; Wang, X. Electrospun nanofibre toughened carbon/epoxy composites: Effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness. Compos. Sci. Technol. 2010, 70, 1660–1666. [Google Scholar] [CrossRef]
- Beylergil, B.; Tanoglu, M.; Aktas, E. Modification of carbon fibre/epoxy composites by polyvinyl alcohol (PVA) based electrospun nanofibers. Adv. Compos. Lett. 2016, 25, 69–76. [Google Scholar]
- Chen, Q.; Zhao, Y.; Zhou, Z.; Rahman, A.; Wu, X.F.; Wu, W.; Xu, T.; Fong, H. Fabrication and mechanical properties of hybrid multi-scale epoxy composites reinforced with conventional carbon fibre fabrics surface-attached with electrospun carbon nanofibre mats. Compos. Part B Eng. 2013, 44, 1–7. [Google Scholar] [CrossRef]
- De Schoenmaker, B.; Van der Heijden, S.; De Baere, I.; Van Paepegem, W.; De Clerck, K. Effect of electrospun polyamide 6 nanofibres on the mechanical properties of a glass fibre/epoxy composite. Polym. Test. 2013, 32, 1495–1501. [Google Scholar] [CrossRef] [Green Version]
- Saghafi, H.; Zucchelli, A.; Palazzetti, R.; Minak, G. The effect of interleaved composite nanofibrous mats on delamination behavior of polymeric composite materials. Compos. Struct. 2014, 109, 41–47. [Google Scholar] [CrossRef]
- Palazzetti, R.; Zucchelli, A.; Gualandi, C.; Focarete, M.L.; Donati, L.; Minak, G.; Ramakrishna, S. Influence of electrospun Nylon 6,6 nanofibrous mats on the interlaminar properties of Gr–epoxy composite laminates. Compos. Struct. 2012, 94, 571–579. [Google Scholar] [CrossRef]
- Palazzetti, R.; Zucchelli, A.; Trendafilova, I. The self-reinforcing effect of Nylon 6,6 nano-fibres on CFRP laminates subjected to low velocity impact. Compos. Struct. 2013, 106, 661–671. [Google Scholar] [CrossRef]
- Neppalli, R.; Marega, C.; Marigo, A.; Bajgai, M.P.; Kim, H.Y.; Causin, V. Poly(ε-caprolactone) filled with electrospun nylon fibres: A model for a facile composite fabrication. Eur. Polym. J. 2010, 46, 968–976. [Google Scholar] [CrossRef]
- Brugemann, V.P.; Sinke, J.; de Boer, H. Fracture Toughness Testing in FML. In Proceedings of the 25th Structural Dynamics, Orlando, FL, USA, 19–22 February 2007. [Google Scholar]
- Nirmala, R.; Kim, H.Y. Preparation of polyamide-6/chitosan composite nanofibres by a single solvent system via electrospinning for biomedical applications. Colloids Surf. B Biointerfaces 2011, 83, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Xenopoulos, A.; Wunderlich, B. Thermodynamic properties of liquid and semicrystalline linear aliphatic polyamides. Polym. Sci. Pol. Phys. 1990, 28, 2271–2290. [Google Scholar] [CrossRef]
- Klata, E.; Van de Velde, K.; Krucińska, I. DSC investigations of polyamide 6 in hybrid GF/PA 6 yarns and composites. Polym. Test. 2003, 22, 929–937. [Google Scholar] [CrossRef]
- Guerrini, L.M.; Branciforti, M.C.; Canova, T.; Suman Bretas, R.E. Electrospinning and Characterization of Polyamide 66 Nanofibres With Different Molecular Weights. Mater. Res. 2009, 12, 181–190. [Google Scholar] [CrossRef]
- Malakhov, S.N.; Belousov, S.I.; Shcherbina, M.A.; Meshchankina, M.Y.; Chvalun, S.N.; Shepelev, A.D. Effect of Low Molecular Additives on the Electrospinning of Nonwoven Materials from a Polyamide-6 Melt. Polym. Sci. Ser. A 2016, 58, 236–245. [Google Scholar] [CrossRef]
- Sinha-Ray, S.; Lee, M.W.; Sinha-Ray, S.; An, S.; Pourdeyhimi, B.; Yoon, S.S.; Yarin, A.L. Supersonic nanoblowing: A new ultra-stiff phase of nylon 6 in 20–50 nm confinement. J Mater. Chem. C 2013, 1, 3491–3498. [Google Scholar] [CrossRef]
- Steyaert, I.; Delplancke, M.P.; Van Assche, G.; Rahier, H.; De Clerck, K. Fast-scanning calorimetry of electrospun polyamide nanofibres: Melting behaviour and crystal structure. Polymer 2013, 54, 6809–6817. [Google Scholar] [CrossRef]
- Nirmala, R.; Navamathavan, R.; El-Newehyc, M.H.; Kim, H.Y. Preparation and characterization of electrospun ultrafine polyamide-6 nanofibers. Polym. Int. 2011, 60, 1475–1480. [Google Scholar] [CrossRef]
- Daelemans, L.; van der Heijden, S.; De Baere, I.; Rahier, H.; Van Paepegem, W.; De Clerck, K. Damage-Resistant Composites Using Electrospun Nanofibres: A Multiscale Analysis of the Toughening Mechanisms. ACS Appl. Mater. Interfaces 2016, 8, 11806–11818. [Google Scholar] [CrossRef] [PubMed]
Sample | Diameter (nm) | Weight (g·m−2) |
---|---|---|
PA6 ULTRAMID NFs | 60–100 | 1.94 |
PA6 BADAMID NFs | 60–130 | 2.23 |
Material | First Scan | Second Scan | ||||
---|---|---|---|---|---|---|
Tm (°C) | ΔHm(J/g) | Xc (%) | Tm (°C) | ΔHm(J/g) | Xc (%) | |
ULTRAMID Pellet | 225.1 | 107.1 | 46.5 | 221.0 | 59.0 | 25.6 |
ULTRAMID Veil | 224.3 | 61.2 | 26.6 | 220.1 | 56.1 | 24.4 |
BADAMID Pellet | 224.1 | 95.4 | 41.5 | 220.3 | 76.6 | 33.3 |
BADAMID Veil | 225.0 | 87.8 | 38.2 | 219.9 | 81.4 | 35.4 |
Sample | σmax (MPa) | Δσmax (%) | δmax (%) |
---|---|---|---|
Reference | 375.5 ± 33.2 | 2.2 ± 0.2 | |
1 veil PA6 Ultramid | 449.5 ± 10.8 | 19.7 | 2.1 ± 0.0 |
3 veil PA6 Ultramid | 415.4 ± 23.8 | 10.6 | 2.1 ± 0.2 |
1 veil PA6 Badamid | 534.6 ± 28.9 | 42.4 | 2.3 ± 0.0 |
3 veil PA6 Badamid | 502.3 ± 48.5 | 33.8 | 2.1 ± 0.1 |
Sample | Energy (J/m) | Δ% | GIC (J/m2) | Δ% |
---|---|---|---|---|
Reference | 62.7 | 389 ± 12.8 | ||
PA6 Ultramid | 68.1 | 8.6 | 466 ± 73.0 | 20.0 |
PA6 Badamid | 72.0 | 14.8 | 560 ± 72.3 | 44.0 |
Sample | GIIC (J/m2) | Δ% |
---|---|---|
Reference | 2536.8 ± 257.7 | |
PA6 Ultramid | 2544.0 ± 304.0 | 0.3 |
PA6 Badamid | 2970.9 ± 526.0 | 16.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteserín, C.; Blanco, M.; Murillo, N.; Pérez-Márquez, A.; Maudes, J.; Gayoso, J.; Laza, J.M.; Aranzabe, E.; Vilas, J.L. Effect of Different Types of Electrospun Polyamide 6 Nanofibres on the Mechanical Properties of Carbon Fibre/Epoxy Composites. Polymers 2018, 10, 1190. https://doi.org/10.3390/polym10111190
Monteserín C, Blanco M, Murillo N, Pérez-Márquez A, Maudes J, Gayoso J, Laza JM, Aranzabe E, Vilas JL. Effect of Different Types of Electrospun Polyamide 6 Nanofibres on the Mechanical Properties of Carbon Fibre/Epoxy Composites. Polymers. 2018; 10(11):1190. https://doi.org/10.3390/polym10111190
Chicago/Turabian StyleMonteserín, Cristina, Miren Blanco, Nieves Murillo, Ana Pérez-Márquez, Jon Maudes, Jorge Gayoso, Jose Manuel Laza, Estíbaliz Aranzabe, and Jose Luis Vilas. 2018. "Effect of Different Types of Electrospun Polyamide 6 Nanofibres on the Mechanical Properties of Carbon Fibre/Epoxy Composites" Polymers 10, no. 11: 1190. https://doi.org/10.3390/polym10111190
APA StyleMonteserín, C., Blanco, M., Murillo, N., Pérez-Márquez, A., Maudes, J., Gayoso, J., Laza, J. M., Aranzabe, E., & Vilas, J. L. (2018). Effect of Different Types of Electrospun Polyamide 6 Nanofibres on the Mechanical Properties of Carbon Fibre/Epoxy Composites. Polymers, 10(11), 1190. https://doi.org/10.3390/polym10111190