Comparison of the Properties of Pullulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Hydrolates
2.3. Preparation of Film-Forming Solutions for Edible Coatings
2.4. Characterization Techniques
2.5. Implementation of Edible Coatings as an Antimicrobial Active System
3. Results and Discussion
3.1. Fourier-Transform Infrared Spectroscopy (FTIR)
3.2. Scanning Electron Microscopy (SEM) Analysis
3.3. Mechanical Property Analysis
3.4. Barrier Properties—Water Vapor Permeability (WVP) Measurements
3.5. Thermogravimetric (TGA) Analysis
3.6. Antimicrobial Potential of Plant Hydrolats, Control, and Active Coating Layers
3.7. Antimicrobial Effect of an Active Coating System for Cheese Preservation
3.8. Antimicrobial Effect of Edible Coatings as an Antimicrobial System for Cheese Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dhumal, C.V.; Sarkar, P. Composite edible films and coatings from food-grade biopolymers. J. Food Sci. Technol. 2018, 55, 4369–4383. [Google Scholar] [CrossRef] [PubMed]
- Erceg, T.; Vukić, N.; Šovljanski, O.; Stupar, A.; Šergelj, V.; Aćimović, M.; Baloš, S.; Ugarković, J.; Šuput, D.; Popović, S.; et al. Characterization of films based on cellulose acetate/poly (caprolactone diol) intended for active packaging prepared by green chemistry principles. ACS Sustain. Chem. Eng. 2022, 10, 9141–9154. [Google Scholar] [CrossRef]
- Erceg, T.; Vukić, N.; Šovljanski, O.; Teofilović, V.; Porobić, S.; Baloš, S.; Kojić, S.; Terek, P.; Banjanin, B.; Rakić, S. Preparation and characterization of biodegradable cellulose acetate-based films with novel plasticizer obtained by polyethylene terephthalate glycolysis intended for active packaging. Cellulose 2023, 30, 5825–5844. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Gavara, R.; Lagaron, J.M. Bioactive packaging: Turning foods into healthier foods through biomaterials. Trends Food Sci. Technol. 2006, 17, 567–575. [Google Scholar] [CrossRef]
- Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials. Prog. Polym. Sci. 2011, 36, 1254–1276. [Google Scholar] [CrossRef]
- Galus, S.; Kibar, E.A.A.; Gniewosz, M.; Kraśniewska, K. Novel materials in the preparation of edible films and coatings—A review. Coatings 2020, 10, 674. [Google Scholar] [CrossRef]
- Erceg, T.; Šovljanski, O.; Stupar, A.; Ugarković, J.; Aćimović, M.; Pezo, L.; Tomić, A.; Todosijević, M. A comprehensive approach to chitosan-gelatine edible coating with β-cyclodextrin/lemongrass essential oil inclusion complex—Characterization and food application. Int. J. Biol. Macromol. 2023, 228, 400–410. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. Preparation and incorporation of functional ingredients in edible films and coatings. Food Bioproc. Tech. 2021, 14, 209–231. [Google Scholar] [CrossRef]
- Wang, H.; Ding, F.; Ma, L.; Zhang, Y. Edible films from chitosan-gelatin: Physical properties and food packaging application. Food Biosci. 2021, 40, 100871. [Google Scholar] [CrossRef]
- Mastromatteo, M.M.; Mastromatteo, M.M.; Conte, A.; Del Nobile, M.A. Advances in controlled release devices for food packaging applications. Trends Food Sci. Technol. 2010, 21, 591–598. [Google Scholar] [CrossRef]
- Holappa, J.; Hjálmarsdóttir, M.; Másson, M.; Rúnarsson, Ö.; Asplund, T.; Soininen, P.; Nevalainen, T.; Järvinen, T. Antimicrobial activity of chitosan N-betainates. Carbohydr. Polym. 2006, 65, 114–118. [Google Scholar] [CrossRef]
- Alirezalu, K.; Pirouzi, S.; Yaghoubi, M.; Karimi-Dehkordi, M.; Jafarzadeh, S.; Khaneghah, A.M. Packaging of beef fillet with active chitosan film incorporated with ɛ-polylysine: An assessment of quality indices and shelf life. Meat Sci. 2021, 176, 108475. [Google Scholar] [CrossRef] [PubMed]
- Tien, N.D.; Lyngstadaas, S.P.; Mano, J.F.; Blaker, J.J.; Haugen, H.J. Recent developments in chitosan-based micro/nanofibers for sustainable food packaging, smart textiles, cosmeceuticals, and biomedical applications. Molecules 2021, 26, 2683. [Google Scholar] [CrossRef] [PubMed]
- Sakata, Y.; Otsuka, M. Evaluation of relationship between molecular behaviour and mechanical strength of pullulan films. Int. J. Pharm. 2009, 374, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Kizildag, N. Pullulan films with PCMs: Recyclable bio-based films with thermal management functionality. Coatings 2023, 13, 414. [Google Scholar] [CrossRef]
- Al-Hassan, A.A.; Norziah, M.H. Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocoll. 2012, 26, 108–117. [Google Scholar] [CrossRef]
- Mu, C.; Guo, J.; Li, X.; Lin, W.; Li, D. Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocoll. 2012, 27, 22–29. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef]
- Jridi, M.; Hajji, S.; Ayed, H.B.; Lassoued, I.; Mbarek, A.; Kammoun, M.; Souissi, N.; Nasri, M. Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. Int. J. Biol. Macromol. 2014, 67, 373–379. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Hu, Z.; Li, G.; Hu, L.; Chen, X.; Hu, Y. Chitosan-based films with antioxidant of bamboo leaves and ZnO nanoparticles for application in active food packaging. Int. J. Biol. Macromol. 2021, 189, 363–369. [Google Scholar] [CrossRef]
- El-Sayed, N.S.; Kamel, S. Polysaccharides-based injectable hydrogels: Preparation, characteristics, and biomedical applications. J. Colloid Interface Sci. 2022, 6, 78. [Google Scholar] [CrossRef]
- Ezati, P.; Roy, S.; Rhim, J.W. Effect of saffron on the functional property of edible films for active packaging applications. ACS Food Sci. Technol. 2022, 2, 1318–1325. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, F.; Li, Y.; Shoemaker, C.F.; Xia, W. Preparation and characterization of pullulan–chitosan and pullulan–carboxymethyl chitosan blended films. Food Hydrocoll. 2013, 30, 82–91. [Google Scholar] [CrossRef]
- Wang, H.; Gong, X.; Miao, Y.; Guo, X.; Liu, C.; Fan, Y.-Y.; Zhang, J.; Niu, B.; Li, W. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chem. 2019, 283, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, M.; Mujumdar, A.S.; Wang, D.; Ma, Y. Novel multilayer chitosan/emulsion-loaded syringic acid grafted apple pectin film with sustained control release for active food packaging. Food Hydrocoll. 2023, 142, 108823. [Google Scholar] [CrossRef]
- Abdollahzadeh, E.; Nematollahi, A.; Hosseini, H. Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: A review. Trends Food Sci. Technol. 2021, 110, 291–303. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Karbowiak, T.; Debeaufort, F. Bioactive edible films for food applications: Influence of the bioactive compounds on film structure and properties. Crit. Rev. Food Sci. Nutr. 2017, 59, 1137–1153. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, H.; Rhim, J.W.; Cao, J.; Jiang, W. Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chem. 2022, 367, 130671. [Google Scholar] [CrossRef]
- Treviño-Garza, M.Z.; García, S.; Heredia, N.; Alanís-Guzmán, M.G.; Arévalo-Niño, K. Layer-by-layer edible coatings based on mucilages, pullulan, and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus). Postharvest Biol. Technol. 2017, 128, 63–75. [Google Scholar] [CrossRef]
- Tomić, A.; Šovljanski, O.; Erceg, T. Insight on the incorporation of essential oils as antimicrobial substances in biopolymer-based active packaging. Antibiotics 2023, 12, 1473. [Google Scholar] [CrossRef]
- Aćimović, M.; Tešević, V.; Smiljanić, K.; Cvetković, M.; Stanković, J.; Kiprovski, B.; Sikora, V. Hydrolates: By-products of essential oil distillation: Chemical composition, biological activity, and potential uses. Adv. Technol. 2020, 9, 54–70. [Google Scholar] [CrossRef]
- Didar, Z. Effects of coatings with pectin and Cinnamomum verum hydrosol included pectin on physical characteristics and shelf life of chicken eggs stored at 30 °C. Nutr. Food Sci. Res. 2019, 6, 39–45. [Google Scholar] [CrossRef]
- Centeno, J.A.; Carballo, J. Current Advances in Cheese Microbiology. Foods 2023, 12, 2577. [Google Scholar] [CrossRef] [PubMed]
- Rahbar Saadat, Y.; Imani Fooladi, A.A.; Shapouri, R.; Hosseini, M.M.; Deilami Khiabani, Z. Prevalence of enterotoxigenic Staphylococcus aureus in organic milk and cheese in Tabriz, Iran. Iran J. Microbiol. 2014, 6, 345–349. [Google Scholar]
- Bencardino, D.; Amagliani, G.; Brandi, G. Carriage of Staphylococcus aureus among food handlers: An ongoing challenge in public health. Food Control 2021, 130, 108362. [Google Scholar] [CrossRef]
- Azadbakht, E.; Maghsoudlou, Y.; Khomiri, M.; Kashiri, M. Development and structural characterization of chitosan films containing Eucalyptus globulus essential oil: Potential as an antimicrobial carrier for packaging of sliced sausage. Food Packag. Shelf Life 2018, 17, 65–72. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, W. Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. Int. J. Biol. Macromol. 2020, 155, 1252–1261. [Google Scholar] [CrossRef]
- Cé, N.; Noreña, C.P.Z.; Brandelli, A. Antimicrobial activity of chitosan films containing nisin, peptide P34 and natamycin. CyTA J. Food. 2012, 10, 21–26. [Google Scholar] [CrossRef]
- Asadpoor, M.; Ithakisiou, G.-N.; van Putten, J.P.M.; Pieters, R.J.; Folkerts, G.; Braber, S. Antimicrobial activities of alginate and chitosan oligosaccharides against Staphylococcus aureus and Group B Streptococcus. Front. Microbiol. 2021, 12, 700605. [Google Scholar] [CrossRef]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM: West Conshohocken, PA, USA, 2018. Available online: https://www.astm.org/standards/d882 (accessed on 10 December 2023).
- ASTM ASTM International, ASTM 96 Standard for Cup Method Water Vapor Permeability Testing, 2017. Available online: https://www.astm.org/e0096-00e01.html (accessed on 10 December 2023).
- Aćimović, M.; Šovljanski, O.; Pezo, L.; Travičić, V.; Tomić, A.; Zheljazkov, V.D.; Ćetković, G.; Švarc-Gajić, J.; Brezo-Borjan, T.; Sofrenić, I. Variability in biological activities of Satureja montana subsp. montana and subsp. variegata based on different extraction methods. Antibiotics 2022, 11, 1235. [Google Scholar] [CrossRef]
- Gajewska, J.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Occurrence and characteristics of Staphylococcus aureus strains along the production chain of raw milk cheeses in Poland. Molecules 2022, 27, 6569. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.K.; Moellering, R.C., Jr.; Eliopoulos, G.M. Antimicrobial combinations. In Antibiotics in Laboratory Medicine, 5th ed.; Lorian, V., Ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2005; pp. 365–441. [Google Scholar]
- Lee, J.H.; Lee, J.; Song, K.B. Development of a chicken feet protein film containing essential oils. Food Hydrocoll. 2015, 46, 208–215. [Google Scholar] [CrossRef]
- Ferreira, A.R.V.; Torres, C.A.V.; Freitas, F.; Sevrin, C.; Grandfils, C.; Reis, M.A.M.; Alves, V.D.; Coelhoso, I.M. Development and characterization of bilayer films of FucoPol and Chistosan. Carbohyd. Polym. 2016, 147, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xiao, J.; Chen, X.; Luo, M.; Liu, H.; Shao, P. Fabrication and characterization of multilayered kafirin/gelatin film with one-way water barrier property. Food Hydrocoll. 2018, 81, 159–168. [Google Scholar] [CrossRef]
- Kousta, M.; Mataragas, M.; Skandamis, P.; Drosinos, E.H. Prevalence and sources of cheese contamination with pathogens at farm and processing levels. Food Control 2010, 21, 805–815. [Google Scholar] [CrossRef]
- Possas, A.; Bonilla-Luque, O.M.; Valero, A. From cheese-making to consumption: Exploring the microbial safety of cheeses through predictive microbiology models. Foods 2021, 10, 355. [Google Scholar] [CrossRef]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. Biomed Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef]
Samples | Tensile Strength (N/mm2) | Elongation at Break (%) |
---|---|---|
Pull | 4.83 ± 2.7 | 38.12 ± 4.1 |
CS | 7.23 ± 2.4 | 36.72 ± 3.4 |
Gel | 8.35 ± 3.2 | 32.65 ± 2.9 |
Pull/CS | 31.20 ± 3.6 | 11.23 ± 3.5 |
Pull/Gel | 41.67 ± 3.3 | 10. 55 ± 4.2 |
Samples | Thickness (mm) | WVT (g/h·m·Pa) | Moisture Content (%) |
---|---|---|---|
Pull | 0.34 ± 0.01 | 1.47 × 10−3 ± 0.17 | 2.8 ± 0.07 |
CS | 0.36 ± 0.02 | 1.35 × 10−3 ± 0.25 | 3.6 ± 0.06 |
Gel | 0.37 ± 0.01 | 1.5 × 10−3 ± 0.15 | 3.1 ± 0.07 |
Pull/CS | 0.38 ± 0.02 | 2.42 × 10−4 ± 0.21 | 4.8 ± 0.09 |
Pull/Gel | 0.38 ± 0.02 | 2.11 × 10−4 ± 0.17 | 3.9 ± 0.09 |
Samples | TdmaxI (°C) | TdmaxII (°C) | TdmaxIII (°C) | Residual Mass |
---|---|---|---|---|
Pull | 107 | 271 | 539 | 0.02 |
CS | 109 | 274 | 541 | 0.02 |
Gel | 111 | 269 | 544 | 0.02 |
Pull/CS | 119 | 311 | 545 | 0.02 |
Pull/Gel | 118 | 309 | 542 | 0.02 |
Sample | Inhibition Zone (mm) * | |
---|---|---|
Hydrolate | Lemongrass | 34.33 ± 0.56 |
Curry plant | 25.00 ± 1.00 | |
Control coating layer (without the addition of hydrolates) | Pull/CS | 10.33 ± 1.00 |
Pull/Gel | nd ** | |
Active coating layer (with the addition of hydrolates) | Pull/CS | 31.00 ± 1.00 |
Pull/Gel | 27.33 ± 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erceg, T.; Šovljanski, O.; Tomić, A.; Aćimović, M.; Stupar, A.; Baloš, S. Comparison of the Properties of Pullulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life. Polymers 2024, 16, 178. https://doi.org/10.3390/polym16020178
Erceg T, Šovljanski O, Tomić A, Aćimović M, Stupar A, Baloš S. Comparison of the Properties of Pullulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life. Polymers. 2024; 16(2):178. https://doi.org/10.3390/polym16020178
Chicago/Turabian StyleErceg, Tamara, Olja Šovljanski, Ana Tomić, Milica Aćimović, Alena Stupar, and Sebastian Baloš. 2024. "Comparison of the Properties of Pullulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life" Polymers 16, no. 2: 178. https://doi.org/10.3390/polym16020178
APA StyleErceg, T., Šovljanski, O., Tomić, A., Aćimović, M., Stupar, A., & Baloš, S. (2024). Comparison of the Properties of Pullulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life. Polymers, 16(2), 178. https://doi.org/10.3390/polym16020178