Rubber Compounds from Devulcanized Ground Tire Rubber: Recipe Formulation and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of dGTR-Based Rubber Compounds
2.3. Characterization Methods
3. Results
3.1. Characterization of dGTR
3.2. The Effect of Different Vulcanization Systems
3.2.1. Cure Characteristics
3.2.2. Crosslink Density
3.2.3. Dynamic Properties
3.2.4. Hardness
3.2.5. Tensile Tests
3.2.6. Tear Test
3.3. Recipes with Additional Uncured Virgin NR and Oils
3.3.1. Cure Characteristics
3.3.2. Crosslink Density
3.3.3. Dynamic Properties
3.3.4. Hardness
3.3.5. Tensile Test
3.3.6. Tear Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valentini, F.; Pegoretti, A. End-of-life options of tyres. A review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203–213. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Mészáros, L.; Bárány, T. Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. J. Mater. Sci. 2012, 48, 1–38. [Google Scholar] [CrossRef]
- Kiss, L.; Simon, D.Á.; Petrény, R.; Kocsis, D.; Bárány, T.; Mészáros, L. Ground tire rubber filled low-density polyethylene: The effect of particle size. Adv. Ind. Eng. Polym. Res. 2022, 5, 12–17. [Google Scholar] [CrossRef]
- Kumar, C.R.; Fuhrmann, I.; Karger-Kocsis, J. LDPE-based thermoplastic elastomers containing ground tire rubber with and without dynamic curing. Polym. Degrad. Stab. 2002, 76, 137–144. [Google Scholar] [CrossRef]
- Ramarad, S.; Khalid, M.; Ratnam, C.; Chuah, A.L.; Rashmi, W. Waste tire rubber in polymer blends: A review on the evolution, properties and future. Prog. Mater. Sci. 2015, 72, 100–140. [Google Scholar] [CrossRef]
- Hejna, A.; Korol, J.; Przybysz-Romatowska, M.; Zedler, L.; Chmielnicki, B.; Formela, K. Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers—A review. Waste Manag. 2020, 108, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Taurino, R.; Bondioli, F.; Messori, M. Use of different kinds of waste in the construction of new polymer composites: Review. Mater. Today Sustain. 2023, 21, 100298. [Google Scholar] [CrossRef]
- Candau, N.; Leblanc, R.; Maspoch, M.L. A comparison of the mechanical behaviour of natural rubber-based blends using waste rubber particles obtained by cryogrinding and high-shear mixing. Express Polym. Lett. 2023, 17, 1135–1153. [Google Scholar] [CrossRef]
- Pastor, L.E.A.; Carrero, K.C.N.; González, M.; Araujo-Morera, J.; Peters, G.; Pastor, J.M.; Santana, M.H. Life cycle assessment applied to a self-healing elastomer filled with ground tire rubber. J. Clean. Prod. 2023, 419, 138207. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Recycling waste tires into ground tire rubber (GTR)/rubber compounds: A review. J. Compos. Sci. 2020, 4, 103. [Google Scholar] [CrossRef]
- Karabork, F. Investigation of the mechanical, tribological and corrosive properties of epoxy composite coatings reinforced with recycled waste tire products. Express Polym. Lett. 2022, 16, 1114–1127. [Google Scholar] [CrossRef]
- Saputra, R.; Walvekar, R.; Khalid, M.; Mubarak, N.M.; Sillanpää, M. Current progress in waste tire rubber devulcanization. Chemosphere 2021, 265, 129033. [Google Scholar] [CrossRef] [PubMed]
- Bockstal, L.; Berchem, T.; Schmetz, Q.; Richel, A. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: A review. J. Clean. Prod. 2019, 236, 117574. [Google Scholar] [CrossRef]
- Simon, D.Á.; Barany, T. Effective thermomechanical devulcanization of ground tire rubber with a co-rotating twin-screw extruder. Polym. Degrad. Stab. 2021, 190, 109626. [Google Scholar] [CrossRef]
- Seghar, S.; Asaro, L.; Rolland-Monnet, M.; Hocine, N.A. Thermo-mechanical devulcanization and recycling of rubber industry waste. Resour. Conserv. Recycl. 2019, 144, 180–186. [Google Scholar] [CrossRef]
- Asaro, L.; Gratton, M.; Seghar, S.; Hocine, N.A. Recycling of rubber wastes by devulcanization. Resour. Conserv. Recycl. 2018, 133, 250–262. [Google Scholar] [CrossRef]
- Ghorai, S.; Bhunia, S.; Roy, M.; De, D. Mechanochemical devulcanization of natural rubber vulcanizate by dual function disulfide chemicals. Polym. Degrad. Stab. 2016, 129, 34–46. [Google Scholar] [CrossRef]
- Gumede, J.I.; Hlangothi, B.G.; Woolard, C.D.; Hlangothi, S.P. Organic chemical devulcanization of rubber vulcanizates in supercritical carbon dioxide and associated less eco-unfriendly approaches: A review. Waste Manag. Res. 2022, 40, 490–503. [Google Scholar] [CrossRef]
- Simon, D.Á.; Bárány, T. Microwave devulcanization of ground tire rubber and its improved utilization in natural rubber compounds. ACS Sustain. Chem. Eng. 2023, 11, 1797–1808. [Google Scholar] [CrossRef]
- Garcia, P.; De Sousa, F.; De Lima, J.; Cruz, S.; Scuracchio, C. Devulcanization of ground tire rubber: Physical and chemical changes after different microwave exposure times. Express Polym. Lett. 2015, 9, 1015–1026. [Google Scholar] [CrossRef]
- Formela, K.; Cysewska, M. Efficiency of thermomechanical reclaiming of ground tire rubber conducted in counter-rotating and co-rotating twin screw extruder. Polimery 2014, 59, 231–238. [Google Scholar] [CrossRef]
- Asaro, L.; Gratton, M.; Poirot, N.; Seghar, S.; Aït Hocine, N. Devulcanization of natural rubber industry waste in supercritical carbon dioxide combined with diphenyl disulfide. Waste Manag. 2020, 118, 647–654. [Google Scholar] [CrossRef]
- Meysami, M.; Tzoganakis, C.; Mutyala, P.; Zhu, S.H.; Bulsari, M. Devulcanization of scrap tire rubber with supercritical CO2: A study of the effects of process parameters on the properties of devulcanized rubber. Int. Polym. Process. 2017, 32, 183–193. [Google Scholar] [CrossRef]
- Horikx, M. Chain scissions in a polymer network. J. Polym. Sci. 1956, 19, 445–454. [Google Scholar] [CrossRef]
- Formela, K.; Cysewska, M.; Haponiuk, J.T. Thermomechanical reclaiming of ground tire rubber via extrusion at low temperature: Efficiency and limits. J. Vinyl Addit. Technol. 2016, 22, 213–221. [Google Scholar] [CrossRef]
- Ismail, H.; Ishak, S.; Hamid, Z. Effect of blend ratio on cure characteristics, tensile properties, thermal and swelling properties of mica-filled (ethylene-propylene-diene monomer)/(recycled ethylene-propylene-diene monomer)(EPDM/r-EPDM) blends. J. Vinyl Addit. Technol. 2015, 21, 1–6. [Google Scholar] [CrossRef]
- Roychoudhury, A.; De, P. Reinforcement of epoxidized natural rubber by carbon black: Effect of surface oxidation of carbon black particles. J. Appl. Polym. Sci. 1993, 50, 181–186. [Google Scholar] [CrossRef]
- de Sousa, F.D.B.; Zanchet, A.; Ornaghi Júnior, H.L.; Ornaghi, F.G. Revulcanization kinetics of waste tire rubber devulcanized by microwaves: Challenges in getting recycled tire rubber for technical application. ACS Sustain. Chem. Eng. 2019, 7, 15413–15426. [Google Scholar] [CrossRef]
- Mohamed, N.R.; Othman, N.; Shuib, R.K.; Hayeemasae, N. Perspective on opportunities of bio-based processing oil to rubber industry: A short review. Iran. Polym. J. 2023, 32, 1455–1475. [Google Scholar] [CrossRef]
- Nun-Anan, P.; Hayichelaeh, C.; Boonkerd, K. Effect of a Natural Processing Aid on the Properties of Acrylonitrile-Butadiene Rubber: Study on Soybean Oil Fatty Acid from Seed Crop. Polymers 2021, 13, 3459. [Google Scholar] [CrossRef]
- Li, J.; Isayev, A.I.; Ren, X.; Soucek, M.D. Modified soybean oil-extended SBR compounds and vulcanizates filled with carbon black. Polymer 2015, 60, 144–156. [Google Scholar] [CrossRef]
- Grauzeliene, S.; Kazlauskaite, B.; Skliutas, E.; Malinauskas, M.; Ostrauskaite, J. Photocuring and digital light processing 3D printing of vitrimer composed of 2-hydroxy-2-phenoxypropyl acrylate and acrylated epoxidized soybean oil. Express Polym. Lett. 2023, 17, 54–68. [Google Scholar] [CrossRef]
- Perez-Nakai, A.; Lerma-Canto, A.; Trejo-Machín, A.; Dominguez-Candela, I.; Ferri, J.M.; Fombuena, V. Assessing novel thermoset materials from Brazil nut oil: Curing, thermal and mechanical properties. Express Polym. Lett. 2023, 17, 1224–1238. [Google Scholar] [CrossRef]
- Flanigan, C.; Beyer, L.; Klekamp, D.; Rohweder, D.; Haakenson, D. Using bio-based plasticizers, alternative rubber. Rubber & Plastic News, 8 February 2013; pp. 15–19. [Google Scholar]
- Mohamed, N.R.; Othman, N.; Shuib, R.K. Synergistic effect of sunflower oil and soybean oil as alternative processing oil in the development of greener tyre tread compound. J. Rubber Res. 2022, 25, 239–249. [Google Scholar] [CrossRef]
- Kaesaman, A.; Boontawee, H.; Chewchanwuttiwong, S.; Nakason, C. Influence of benzyl esters of vegetable oils on curing, mechanical and dynamic properties of silica filled natural rubber and styrene-butadiene rubber compounds. Express Polym. Lett. 2022, 16, 540–556. [Google Scholar] [CrossRef]
- Shafranska, O.; Dahlgren, J.; Jones, A.; Tardiff, J.; Webster, D.C. Differing unsaturation levels of soybean oils impact the properties of peroxide-vulcanized carbon black-filled ethylene-propylene-diene monomer rubber. J. Appl. Polym. Sci. 2023, 140, e53872. [Google Scholar] [CrossRef]
- Kong, Y.; Chen, X.; Li, Z.; Li, G.; Huang, Y. Evolution of crosslinking structure in vulcanized natural rubber during thermal aging in the presence of a constant compressive stress. Polym. Degrad. Stab. 2023, 217, 110513. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, L.; Wang, R.; Yu, H.; Zheng, T.; Lian, Y.; Luo, M.; Liao, S.; Liu, H.; Peng, Z. Research of strain induced crystallization and tensile properties of vulcanized natural rubber based on crosslink densities. Ind. Crops Prod. 2023, 202, 117070. [Google Scholar] [CrossRef]
- ASTM D 297-93; Standard Test Methods for Rubber Products—Chemical Analysis. ASTM International: West Conshohocken, PA, USA, 2022.
- ISO 37; Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 34; Rubber, Vulcanized or Thermoplastic—Determination of Tear Strength. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 48-4:2018; Rubber, Vulcanized or Thermoplastic—Determination of Hardness. International Organization for Standardization: Geneva, Switzerland, 2018.
- Formela, K.; Wąsowicz, D.; Formela, M.; Hejna, A.; Haponiuk, J. Curing characteristics, mechanical and thermal properties of reclaimed ground tire rubber cured with various vulcanizing systems. Iran. Polym. J. 2015, 24, 289–297. [Google Scholar] [CrossRef]
- Laube, S.; Monthey, S.; Wang, M.-J. Compounding with Carbon Black and Oil. In Rubber Technology, 3rd ed.; Dick, J.S., Ed.; Hanser: Cincinnati, OH, USA, 2020; pp. 419–450. [Google Scholar]
- Petrović, Z.S.; Ionescu, M.; Milić, J.; Halladay, J.R. Soybean oil plasticizers as replacement of petroleum oil in rubber. Rubber Chem. Technol. 2013, 86, 233–249. [Google Scholar] [CrossRef]
Material | Manufacturer | Trademark | Function |
---|---|---|---|
ZnO zinc oxide | Werco Metal (Zlatna, Romania) | - | Activator |
stearic acid | Oleon (Ertvelde, Belgium) | Radiacid 0154 | |
CBS N-cyclohexyl-2-benzothiazolesulfenamide | Rhein Chemie (Mannheim, Germany | Rhenogran CBS-80 | Accelerator |
TMTD tetramethylthiuram disulfide | Lanxess (Mannheim, Germany) | Rhenogran TMTD-70 | Accelerator |
sulfur | Ningbo Actmix Polymer (Ningbo, Zhejiang, China) | ACTMIX S-80 | Curing agent |
DCP dicumyl peroxide | Norac (Azusa, CA, USA) | Norox DCP-40BK | Curing agent |
DIPP di-(2-tert.-butyl-peroxyisopropyl)-benzene | Nouryon Pergan GmbH (Bocholt, Germany) | Peroxan BIB-40 EV-G | Curing agent |
BDMA 1,4-butanediol dimethacrylate | Lanxess (Mannheim, Germany) | Rhenofit BDMA/S | Coagent |
HMMM hexa(methoxymethyl)melamine ether | Rhein Chemie (Mannheim, Germany) | Cohedur A 250 | Curing agent |
resorcinol | Rhein Chemie (Mannheim, Germany) | Cohedur RS | Curing agent |
resorcinol | Rhein Chemie (Mannheim, Germany) | Rhenogran Resorcin-80 | Curing agent |
silica | Lanxess (Mannheim, Germany) | Vulkasil C | Catalyst |
aromatic oil | Klaus Dahleke KG (Hamburg, Germany) | Tudalen 4353 | Processing oil |
soybean oil | Vandamme Hungary Ltd. (Komárom, Hungary) | Degummed non GMO | Processing oil |
N550 carbon black | Omsk Carbon Group (Omsk, Russia) | - | Filler |
Amount of Ingredients (phr) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sulfur1 | Sulfur2 | Sulfur3 | Sulfur4 | Sulfur5 | Perox1 | Perox2 | Resin1 | Resin2 | |
dGTR | 100 | 167 | 167 | 167 | 167 | 167 | 167 | 167 | 167 |
ZnO | 5 | 5 | 5 | 5 | 5 | - | - | - | - |
stearic acid | 2 | 2 | 2 | 2 | 2 | - | - | - | - |
CBS | 1.5 | 1.5 | 1.5 | 3 | 1 | - | - | - | - |
TMTD | - | - | - | - | 1 | - | - | - | - |
sulfur | 1.5 | 1.5 | 3 | - | 1 | - | - | - | - |
DCP | - | - | - | - | - | 2 | - | - | - |
DIPP | - | - | - | - | - | - | 2 | - | - |
BDMA | - | - | - | - | - | 0.5 | 0.5 | - | - |
Cohedur A 250 | - | - | - | - | - | - | - | 4.6 | 4.8 |
Cohedur RS | - | - | - | - | - | - | - | 3.4 | - |
Rhenogran Resorcin-80 | - | - | - | - | - | - | - | - | 3 |
Vulkasil C | - | - | - | - | - | - | - | 15 | 15.8 |
Amount of Ingredients (phr) | |||||||||
---|---|---|---|---|---|---|---|---|---|
dGTRmix | NR | NR/dGTRmix | dGTRsoybean | NRsoybean | NR/dGTRsoybean | dGTRaromatic | NRaromatic | NR/dGTRaromatic | |
dGTR | 167 | - | - | 167 | - | - | 167 | - | - |
NR CV60 | - | 100 | 100 | - | 100 | 100 | - | 100 | 100 |
dGTRmix | - | - | 100 | - | - | - | - | - | - |
dGTRsoybean | - | - | - | - | - | 100 | - | - | - |
dGTRaromatic | - | - | - | - | - | - | - | - | 100 |
Soybean oil | - | - | - | 10 | 10 | 10 | - | - | - |
Aromatic oil | - | - | - | - | - | - | 10 | 10 | 10 |
ZnO | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Stearic acid | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Carbon black | - | 50 | 50 | - | 50 | 50 | - | 50 | 50 |
CBS | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
TMTD | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Sulfur | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Compound | S′min (dNm) | S′max (dNm) | S′max − S′min (dNm) | t10 (min) | t90 (min) | CRI (min−1) |
---|---|---|---|---|---|---|
Neat dGTR | 5.12 | 7.03 | 1.91 | 0.61 | 18.83 | 5.49 |
Sulfur1 | 1.87 | 21.34 | 19.47 | 0.39 | 0.95 | 178.57 |
Sulfur2 | 2.26 | 10.42 | 8.16 | 0.43 | 1.06 | 158.73 |
Sulfur3 | 2.35 | 17.81 | 15.46 | 0.41 | 1.01 | 166.67 |
Sulfur4 | 2.08 | 4.95 | 2.87 | 0.57 | 16.62 | 6.23 |
Sulfur5 | 2.17 | 13.90 | 11.73 | 0.39 | 0.90 | 196.08 |
Perox1 | 2.41 | 9.85 | 7.44 | 0.45 | 7.32 | 14.56 |
Perox2 | 2.44 | 11.34 | 8.90 | 0.56 | 8.58 | 12.47 |
Resin1 | 3.48 | 10.07 | 6.59 | 0.35 | 15.26 | 6.71 |
Resin2 | 3.19 | 11.64 | 8.45 | 0.41 | 12.06 | 8.58 |
Compound | Density, ρr (g/cm3) | Swelling Index (%) | Crosslink Density, νe (mol/cm3·10−4) |
---|---|---|---|
Neat dGTR | 1.163 ± 0.003 | 346.3 ± 6.9 | 1.09 ± 0.04 |
Sulfur1 | 1.166 ± 0.003 | 163.6 ± 1.7 | 4.30 ± 0.08 |
Sulfur2 | 1.171 ± 0.002 | 194.8 ± 8.1 | 3.15 ± 0.23 |
Sulfur3 | 1.158 ± 0.017 | 171.8 ± 9.7 | 4.01 ± 0.29 |
Sulfur4 | 1.148 ± 0.010 | 299.8 ± 2.7 | 1.47 ± 0.02 |
Sulfur5 | 1.162 ± 0.007 | 197.5 ± 2.5 | 3.11 ± 0.07 |
Perox1 | 1.126 ± 0.006 | 257.6 ± 0.7 | 2.01 ± 0.01 |
Perox2 | 1.154 ± 0.010 | 240.6 ± 5.0 | 2.21 ± 0.08 |
Resin1 | 1.160 ± 0.008 | 189.8 ± 2.9 | 3.34 ± 0.09 |
Resin2 | 1.158 ± 0.004 | 180.2 ± 3.9 | 3.67 ± 0.14 |
Compound | Hardness (ShA°) |
---|---|
Sulfur1 | 59.9 ± 0.5 |
Sulfur2 | 52.0 ± 1.6 |
Sulfur3 | 49.3 ± 0.8 |
Sulfur4 | 34.4 ± 0.7 |
Sulfur5 | 51.2 ± 1.8 |
Perox1 | 38.7 ± 0.7 |
Perox2 | 42.5 ± 2.1 |
Resin1 | 53.8 ± 0.8 |
Resin2 | 52.9 ± 2.7 |
Compound | Tensile Strength (MPa) | Strain at Break (%) | M100 (MPa) | M200 (MPa) | Tear Strength (N/mm) |
---|---|---|---|---|---|
Sulfur1 | 8.1 ± 0.5 | 199.2 ± 4.6 | 2.58 ± 1.72 | - | 29.3 ± 0.8 |
Sulfur2 | 8.6 ± 0.7 | 282.6 ± 21.6 | 2.43 ± 0.18 | 5.77 ± 0.52 | 37.2 ± 1.5 |
Sulfur3 | 9.0 ± 0.9 | 264.9 ± 34.9 | 2.73 ± 0.23 | 6.57 ± 0.54 | 20.7 ± 4.1 |
Sulfur4 | 3.2 ± 0.2 | 285.7 ± 7.9 | 1.18 ± 0.01 | 2.31 ± 0.01 | 6.5 ± 0.5 |
Sulfur5 | 8.0 ± 0.4 | 258.3 ± 11.7 | 2.50 ± 0.14 | 5.60 ± 0.33 | 12.4 ± 2.9 |
Perox1 | 6.1 ± 0.2 | 314.8 ± 4.4 | 1.53 ± 0.05 | 3.50 ± 0.13 | 5.9 ± 0.4 |
Perox2 | 7.8 ± 0.2 | 306.5 ± 31.8 | 1.91 ± 0.24 | 4.62 ± 0.64 | 5.6 ± 0.9 |
Sample | S′min (dNm) | S′max (dNm) | S′max − S′min (dNm) | t10 (min) | t90 (min) | CRI (min−1) |
---|---|---|---|---|---|---|
dGTRmix | 1.43 | 13.37 | 11.94 | 0.35 | 0.65 | 333.33 |
dGTRsoybean | 1.02 | 10.18 | 9.16 | 0.5 | 0.9 | 250.00 |
dGTRaromatic | 1.36 | 12.14 | 10.78 | 0.54 | 0.96 | 238.10 |
NR | 0.88 | 22.66 | 21.78 | 0.62 | 1.12 | 200.00 |
NRsoybean | 0.52 | 15.36 | 14.84 | 0.64 | 1.08 | 227.27 |
NRaromatic | 0.49 | 15.43 | 14.94 | 0.58 | 1.01 | 232.56 |
NR/dGTRmix | 1.08 | 19.24 | 18.16 | 0.54 | 0.98 | 227.27 |
NR/dGTRsoybean | 0.74 | 13.41 | 12.67 | 0.59 | 1.01 | 238.10 |
NR/dGTRaromatic | 0.67 | 14.33 | 13.66 | 0.59 | 1.02 | 232.56 |
Compound | Density, ρr (g/cm3) | Swelling Index (%) | Crosslink Density, νe (mol/cm3·10−4) |
---|---|---|---|
dGTRmix | 1.149 ± 0.002 | 210.0 ± 3.3 | 2.83 ± 0.08 |
dGTRsoybean | 1.142 ± 0.003 | 245.1 ± 2.5 | 2.16 ± 0.04 |
dGTRaromatic | 1.142 ± 0.006 | 227.1 ± 3.7 | 2.48 ± 0.07 |
NR | 1.127 ± 0.008 | 195.3 ± 1.5 | 3.34 ± 0.05 |
NRsoybean | 1.118 ± 0.008 | 232.0 ± 2.6 | 2.48 ± 0.05 |
NRaromatic | 1.118 ± 0.008 | 221.2 ± 2.6 | 2.71 ± 0.06 |
NR/dGTRmix | 1.120 ± 0.004 | 208.4 ± 0.7 | 3.01 ± 0.02 |
NR/dGTRsoybean | 1.136 ± 0.002 | 237.8 ± 4.7 | 2.31 ± 0.08 |
NR/dGTRaromatic | 1.125 ± 0.004 | 229.1 ± 1.1 | 2.51 ± 0.02 |
Compound | Hardness (ShA°) |
---|---|
dGTRmix | 53.5 ± 0.8 |
dGTRsoybean | 43.7 ± 0.4 |
dGTRaromatic | 48.0 ± 1.0 |
NR | 59.5 ± 0.4 |
NRsoybean | 47.2 ± 1.1 |
NRaromatic | 51.3 ± 0.9 |
NR/dGTRmix | 54.4 ± 0.6 |
NR/dGTRsoybean | 44.6 ± 1.0 |
NR/dGTRaromatic | 48.7 ± 0.5 |
Sample | Tensile Strength (MPa) | Strain at Break (%) | M100 (MPa) | M200 (MPa) | Tear Strength (N/mm) |
---|---|---|---|---|---|
dGTRmix | 9.27 ± 0.31 | 320.9 ± 17.1 | 2.05 ± 0.07 | 5.05 ± 0.16 | 24.9 ± 5.0 |
dGTRsoybean | 6.56 ± 0.32 | 340.8 ± 13.9 | 1.35 ± 0.02 | 3.29 ± 0.03 | 8.2 ± 0.4 |
dGTRaromatic | 7.34 ± 0.55 | 306.6 ± 17.5 | 1.68 ± 0.04 | 4.22 ± 0.10 | 17.4 ± 3.2 |
NR | 21.27 ± 1.00 | 454.3 ± 20.3 | 2.82 ± 0.02 | 7.60 ± 0.22 | 57.7 ± 2.4 |
NRsoybean | 19.48 ± 1.02 | 570.3 ± 22.1 | 1.93 ± 0.11 | 5.05 ± 0.28 | 57.0 ± 5.1 |
NRaromatic | 20.80 ± 0.90 | 550.9 ± 18.6 | 2.12 ± 0.17 | 5.63 ± 0.39 | 57.0 ± 6.4 |
NR/dGTRmix | 15.00 ± 0.17 | 371.6 ± 5.9 | 2.47 ± 0.04 | 6.55 ± 0.11 | 48.7 ± 7.6 |
NR/dGTRsoybean | 13.22 ± 0.69 | 461.1 ± 20.4 | 1.59 ± 0.05 | 4.22 ± 0.12 | 43.4 ± 3.1 |
NR/dGTRaromatic | 15.52 ± 0.40 | 463.7 ± 7.2 | 1.91 ± 0.04 | 5.08 ± 0.09 | 40.6 ± 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Görbe, Á.; Kohári, A.; Bárány, T. Rubber Compounds from Devulcanized Ground Tire Rubber: Recipe Formulation and Characterization. Polymers 2024, 16, 455. https://doi.org/10.3390/polym16040455
Görbe Á, Kohári A, Bárány T. Rubber Compounds from Devulcanized Ground Tire Rubber: Recipe Formulation and Characterization. Polymers. 2024; 16(4):455. https://doi.org/10.3390/polym16040455
Chicago/Turabian StyleGörbe, Ákos, Andrea Kohári, and Tamás Bárány. 2024. "Rubber Compounds from Devulcanized Ground Tire Rubber: Recipe Formulation and Characterization" Polymers 16, no. 4: 455. https://doi.org/10.3390/polym16040455
APA StyleGörbe, Á., Kohári, A., & Bárány, T. (2024). Rubber Compounds from Devulcanized Ground Tire Rubber: Recipe Formulation and Characterization. Polymers, 16(4), 455. https://doi.org/10.3390/polym16040455