Rheological, Morphological and Mechanical Studies of Sustainably Sourced Polymer Blends Based on Poly(Lactic Acid) and Polyamide 11
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Blends Preparation
2.3. Experimental Methods and Procedures
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Rheological Properties
- Small amplitude oscillatory shear (SAOS)
- Step strain experiments of stress relaxation
2.3.3. Tensile Properties
3. Results and Discussion
3.1. Interfacial and Morphological Properties
- Uncompatibilized PLA/PA11 blends
- Compatibilized PLA/PA11 blends (First approach)
- Modified PLA/PA11 blends (Second Approach)
- Effect of Joncryl on the interfacial tension properties of the PLA/PA11 blends
3.2. Shear Rheological Properties
3.2.1. Small Amplitude Oscillatory Shear (SAOS)
- Uncompatibilized PLA/PA11 blends
- In situ reactive extrusion of PLA/PA11/Joncryl blends (compatibilization, first approach):
- Reactive extrusion of modified PLA/PA11 blends: (PLA_J)/PA11 (second approach)
3.2.2. Step Strain and Start up Shear Experiments
3.2.3. Start-up Shear Experiments
3.3. Mechanical Properties of the PLA/PA11 Blends
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kassi, E.; Constantinou, M.S.; Patrickios, C.S. Group transfer polymerization of biobased monomers. Eur. Polym. J. 2013, 49, 761–767. [Google Scholar] [CrossRef]
- Dong, W.; Cao, X.; Li, Y. High-performance biosourced poly(lactic acid)/polyamide11 blends with controlled salami structure. Polym. Int. 2013, 63, 1094–1100. [Google Scholar] [CrossRef]
- Imre, B.; Pukánszky, B. Compatibilization in bio-based and biodegradable polymer blends. Eur. Polym. J. 2013, 49, 1215–1233. [Google Scholar] [CrossRef]
- Garlotta, D. A literature review of poly(lactic acid). J. Polym. Envir. 2002, 9, 63–84. [Google Scholar] [CrossRef]
- Gupta, A.P.; Kumar, V. New emerging trends in synthetic biodegradable polymers-polylactide: A critique. Eur. Polym. J. 2007, 43, 4053–4074. [Google Scholar] [CrossRef]
- Sinha Ray, S.; Maiti, P.; Okamoto, M.; Yamada, K.; Ueda, K. New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 2002, 35, 3104–3110. [Google Scholar] [CrossRef]
- Lunt, J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polym. Degrad. Stab. 1998, 59, 145–152. [Google Scholar] [CrossRef]
- Maazouz, A.; Lamnawar, K.; Mallet, B. Compounding and processing of biodegradable materials based on PLA for packaging applications: In greening the 21st century materials world. Front. Sci. Eng. 2011, 1, 1–44. [Google Scholar]
- Lamnawar, K.; Maazouz, A.; Mallet, B. Polymer composition based on poly lactic acid, useful in piece/object, comprises poly lactic acid and additive mixture, for promoting crystallization of poly lactic acid, comprising mineral filler, glycol polyether, and aliphatic amide. International patent C08JS/10, C08L67/00, 6 August 2010. [Google Scholar]
- Ying, L.; Kun-Yu, Z.; Zhong-Min, D.; Li-Song, D.; Yue-Sheng, L. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 2007, 40, 6257–6267. [Google Scholar]
- Fukushima, K.; Abbate, C.; Tabuani, D.; Gennari, M.; Camino, G. Biodegradation of poly(lactic acid) and its composites. Polym. Degrad. Stab. 2009, 94, 1625–1630. [Google Scholar]
- Wu, D.; Wu, L.; Zhang, M. Rheology and thermal stability of polylactide/clay nanocomposites. Polym. Degrad. Stab. 2006, 91, 3149–3155. [Google Scholar] [CrossRef]
- Utracki, L.A. Compatibilization of polymer blends. Can. J. Chem. Eng. 2002, 80, 1008–1016. [Google Scholar] [CrossRef]
- Wu, T.M.; Wu, C.Y. Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: Preparation and characterization. Polym. Degrad. Stab. 2006, 91, 2198–2204. [Google Scholar] [CrossRef]
- Liu, J.; Jian, H.; Chen, L. Grafting of glycidyl methacrylate onto poly(lactide) and properties of PLA/Starch blends compatibilized by the grafted copolymer. J. Polym. Envir. 2012, 20, 810–816. [Google Scholar] [CrossRef]
- Zhao, H.; Cui, Z.; Wang, X.; Turng, L.S.; Peng, Z. Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-Valerates (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Compos. B 2013, 51, 79–91. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914. [Google Scholar] [CrossRef]
- Abdelwahab, M.A.; Flynn, A.; Chiou, B.S.; Imam, S.; Orts, W. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym. Degrad. Stab. 2012, 97, 1822–1828. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Rheological, morphological and interfacial properties of compatibilized PLA/PBAT blends. Rheologica acta 2014, 53, 501–517. [Google Scholar] [CrossRef]
- Armentano, I.; Fortunati, E.; Burgos, N.; Dominici, F.; Luzi, F.; Fiori, S.; Jiménez, A.; Yoon, K.; Ahn, J.; Kang, S.; et al. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym. Lett. 2015, 9, 583–596. [Google Scholar] [CrossRef]
- Chen, C.C.; White, J.L. Compatibilizing agents in polymer blends: Interfacial tension, phase morphology, and mechanical properties. Polym. Eng. Sci. 1993, 33, 923–930. [Google Scholar] [CrossRef]
- Huneault, M.A.; Li, H. Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 2007, 48, 270–280. [Google Scholar] [CrossRef]
- Stoclet, G.; Seguela, R.; Lefebvre, J.M. Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer 2011, 52, 1417–1425. [Google Scholar] [CrossRef]
- Patel, R.; Ruehle, D.A.; Dorgan, J.R.; Martin, D. Biorenewable blends of polyamide-11 and polylactide. Polym. Eng. Sci. 2013, 54, 1523–1532. [Google Scholar] [CrossRef]
- Dorgan, J.R.; Williams, J.S.; Lewis, D.N. Melt Rheology of poly(lactic acid): Entanglement and chain architecture affects. J. Rheol. 1999, 43, 1141–1155. [Google Scholar] [CrossRef]
- Wu, S. Predicting chain conformation and entanglement of polymers from chemical structure. Polym. Eng. Sci. 1992, 32, 823–830. [Google Scholar] [CrossRef]
- Lamnawar, K.; Vion-Loisel, F.; Maazouz, A. Rheological, morphological, and heat seal properties of linear low density polyethylene and cyclo olefine copolymer (LLDPE/COC) blends. Appl. Polym. Sci. 2010, 116, 2015–2022. [Google Scholar] [CrossRef]
- Han, C.D.; Kim, J. Rheological technique for determining the order–disorder transition of block copolymers. J. Polym. Sci. B 1987, 25, 1741–1764. [Google Scholar] [CrossRef]
- Mallet, B.; Lamnawar, K.; Maazouz, A. Improvement of blown film extrusion of poly(lactic acid): Structure-processing-properties relationships. Polym. Eng. Sci. 2014, 54, 840–857. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Reactive extrusion of PLA, PBAT with a multi-functional epoxide: physico-chemical and rheological properties. Eur. Polym. J. 2014, 58, 90–102. [Google Scholar] [CrossRef]
- Corre, Y.M.; Duchet, J.; Reignier, J.; Maazouz, A. Melt strengthening of poly(lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheol. Acta 2011, 50, 613–629. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Q.; Ren, J.; Wang, L. Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J. Mater. Sci. 2009, 44, 250–256. [Google Scholar] [CrossRef]
- Lamnawar, K.; Maazouz, A. Rheology and morphology of multilayer reactive polymers: Effect of interfacial area in interdiffusion/reaction phenomena. Rheol. Acta 2008, 47, 383–397. [Google Scholar] [CrossRef]
- Lamnawar, K.; Maazouz, A. Rheological study of multilayer functionalized polymers: Characterization of interdiffusion and reaction at polymer/polymer interface. Rheol. Acta 2006, 45, 411–424. [Google Scholar] [CrossRef]
- Villalobos, M.; Awojulu, A.; Greeley, T.; Turco, G.; Deeter, G. Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy 2006, 31, 3227–3234. [Google Scholar] [CrossRef]
- Lamnawar, K.; Baudouin, A.; Maazouz, A. Interdiffusion/reaction at the polymer/polymer interface in multilayer systems probed by linear viscoelasticity coupled to FTIR and NMR measurements. Eur. Polym. J. 2010, 46, 1604–1622. [Google Scholar] [CrossRef]
- Japon, S.; Luciani, A.; Nguyen, Q.T.; Leterrier, Y.; Manson, J.A. Molecular characterization and rheological properties of modified poly(ethylene terephthalate) obtained by reactive extrusion. Polym. Eng. Sci. 2001, 41, 1299–1309. [Google Scholar]
- Orr, C.A.; Cernohous, J.J.; Guegan, P.; Hirao, A.; Jeon, H.K.; Macosko, C.W. Homogeneous reactive coupling of terminally functional polymers. Polymer 2001, 42, 8171–8178. [Google Scholar] [CrossRef]
- Iza, M.; Bousmina, M.; Jerome, R. Rheology of compatibilized immiscible viscoelastic polymer blends. Rheol. Acta 2001, 40, 10–22. [Google Scholar] [CrossRef]
Material | Density [g/cm3] | Melt temperature © [°C] | Glass temperature © [°C] | Average molecular weight Mw [g/mol] |
---|---|---|---|---|
PLA | 1.24 | 155 | 55 | 202,980 |
PA11 | 1.05 | 180 | 45 | 25,000 |
Joncryl | 1.08 * | - | 54 | 6,800 |
Material | Blend designation | PLA [wt %] | PA11 [wt %] | Joncryl [wt %] |
---|---|---|---|---|
PLA/PA11 | (100/0/0) | 100 | 0 | 0 |
(80/20/0) | 80 | 20 | 0 | |
(60/40/0) | 60 | 40 | 0 | |
(40/60/0) | 40 | 60 | 0 | |
(20/80/0) | 20 | 80 | 0 | |
(0/100/0) | 0 | 100 | 0 | |
PLA/PA11/Jonc Route 1 | (99.3/0/0.7) | 99.3 | 0 | 0.7 |
(99/0/1) | 99 | 0 | 1 | |
(80/20/0.5) | 79.6 | 19.9 | 0.5 | |
(80/20/0.7) | 79.44 | 19.86 | 0.7 | |
(80/20/1) | 79.2 | 19.8 | 1 | |
(60/40/0.7) | 59.58 | 39.72 | 0.7 | |
(40/60/0.7) | 39.72 | 59.58 | 0.7 | |
(20/80/0.7) | 19.86 | 79.44 | 0.7 | |
(0/99.3/0.7) | 0 | 99.3 | 0.7 | |
(0/99/1) | 0 | 99 | 1 | |
PLA_Jonc/PA11 Route 2 | (80_0.7/20) | 79.3 | 20 | 0.7 |
(60_0.7/40) | 59.3 | 40 | 0.7 | |
(40_0.7/60) | 39.3 | 60 | 0.7 | |
(20_0.7/80) | 19.3 | 80 | 0.7 |
Samples | Interfacial tension [mN/m] |
---|---|
PLA/PA11/Jonc_80/20/0 | 2.57 |
PLA/PA11/Jonc_80/20/0.7 | 1.61 |
PLA_Jonc/PA11_80_0.7/20 | 1.37 |
Reactive couple | Reaction rate [s−1] |
---|---|
Epoxide/Amine (R–NH2) | 260 |
Epoxide/Carboxylic acid (R–COOH) | 18 |
Epoxide/Primary Hydroxyl (R–OH) | 1.2 |
Epoxide/Secondary Hydroxyl (R–OH) | 1 |
Samples name | Compositions | Tensile modulus (MPa) | Elongation at break (%) |
---|---|---|---|
PLA/PA11 | 100/0 | 2060 ± 25 | 6.0 ± 0.5 |
0/100 | 175 ± 10 | 205 ± 26 | |
80/20 | 1640 ± 30 | 20 ± 4 | |
PLA/PA11/Jonc First route | 99.3/0/0.7 | 2079 ± 36 | 5.8 ± 1 |
0/99.3/0.7 | 192 ± 5 | 178 ± 13 | |
80/20/0.7 | 1662 ± 10 | 260 ± 15 | |
(PLA_Jonc)/PA11 Second route | 80_0.7/20 | 1328 ± 15 | 355 ± 20 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walha, F.; Lamnawar, K.; Maazouz, A.; Jaziri, M. Rheological, Morphological and Mechanical Studies of Sustainably Sourced Polymer Blends Based on Poly(Lactic Acid) and Polyamide 11. Polymers 2016, 8, 61. https://doi.org/10.3390/polym8030061
Walha F, Lamnawar K, Maazouz A, Jaziri M. Rheological, Morphological and Mechanical Studies of Sustainably Sourced Polymer Blends Based on Poly(Lactic Acid) and Polyamide 11. Polymers. 2016; 8(3):61. https://doi.org/10.3390/polym8030061
Chicago/Turabian StyleWalha, Fatma, Khalid Lamnawar, Abderrahim Maazouz, and Mohamed Jaziri. 2016. "Rheological, Morphological and Mechanical Studies of Sustainably Sourced Polymer Blends Based on Poly(Lactic Acid) and Polyamide 11" Polymers 8, no. 3: 61. https://doi.org/10.3390/polym8030061
APA StyleWalha, F., Lamnawar, K., Maazouz, A., & Jaziri, M. (2016). Rheological, Morphological and Mechanical Studies of Sustainably Sourced Polymer Blends Based on Poly(Lactic Acid) and Polyamide 11. Polymers, 8(3), 61. https://doi.org/10.3390/polym8030061