Extraction of Vanadium from High Phosphorus Vanadium Containing Waste Residue via Carbonation: Optimization Using Response Surface Methodology
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Experimental Design and Statistical Analysis
2.2.1. Direct Acid-Leaching and Blank Roasting Acid-Leaching
2.2.2. Na2CO3 Roasting Water-Leaching
2.2.3. Response Surface Optimization (BBD) Experiment
3. Result and Discussion
3.1. Selection of Vanadium Extraction Method
3.2. Na2CO3 Roasting Water-Leaching Experiments
3.3. Optimization of Roasting Experiment by Using RSM (BBD)
3.4. Model Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Wang, H.; Gao, D.; Chen, B.; Meng, Y.; Wang, M. A clean technology to separate and recover vanadium and chromium from chromate solutions. Hydrometallurgy 2018, 177, 94–99. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Zhang, L.; Gu, S. Mechanism of vanadium slag roasting with calcium oxide. Int. J. Miner. Process. 2015, 138, 20–29. [Google Scholar] [CrossRef]
- Wu, K.; Wang, Y.; Wang, X.; Wang, S.; Liu, B.; Zhang, Y.; Du, H. Co-extraction of vanadium and chromium from high chromium containing vanadium slag by low-pressure liquid phase oxidation method. J. Clean. Prod. 2018, 203, 873–884. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, T.; Xu, Y.; Cao, J.; Xue, X. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching. J. Ind. Eng. Chem. 2019, 71, 327–335. [Google Scholar] [CrossRef]
- Kologrieva, U.; Volkov, A.; Zinoveev, D.; Krasnyanskaya, I.; Stulov, P.; Wainstein, D. Investigation of Vanadium-Containing Sludge Oxidation Roasting Process for Vanadium Extraction. Metals 2021, 11, 100. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, D.; Deng, C.; Lv, L.; Liang, B.; Li, C. Simultaneous extraction of vanadium and titanium from vanadium slag using ammonium sulfate roasting-leaching process. J. Alloys Compd. 2018, 742, 504–511. [Google Scholar] [CrossRef]
- Zhou, S.; Dong, M.; Ding, X.; Xue, X.; Yang, H. Application of RSM to optimize the recovery of ammonia nitrogen from high chromium effluent produced in vanadium industry using struvite precipitation. J. Environ. Chem. Eng. 2021, 9, 106318. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, R.; Zhang, X.; Wei, Q.; Ren, X.; Ying, Z. A novel technology for producing high-purity V2O5 from hazardous vanadium-containing solutions using precipitation and solvent extraction. Process Saf. Environ. Prot. 2023, 173, 567–578. [Google Scholar] [CrossRef]
- Ye, L.; Tang, C.; Chen, Y.; Yang, S.; Yang, J.; Zhang, W. One-step extraction of antimony from low-grade stibnite in Sodium Carbonate—Sodium Chloride binary molten salt. J. Clean. Prod. 2015, 93, 134–139. [Google Scholar] [CrossRef]
- Yang, M.; Wang, X.; Meng, Y.; Wang, M. Recovery of chromium from vanadium precipitated solution by precipitation with lead salt and leaching with sodium carbonate. Hydrometallurgy 2020, 198, 105501. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z. A critical review of material flow, recycling technologies, challenges and future strategy for scattered metals from minerals to wastes. J. Clean. Prod. 2018, 202, 1001–1025. [Google Scholar] [CrossRef]
- Gasemloo, S.; Khosravi, M.; Sohrabi, M.R.; Dastmalchi, S.; Gharbani, P. Response surface methodology (RSM) modeling to improve removal of Cr (VI) ions from tannery wastewater using sulfated carboxymethyl cellulose nanofilter. J. Clean. Prod. 2019, 208, 736–742. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Zhang, L.; Peng, J.; Wang, S.; Ma, A.; Wang, B. Response surface optimization of process parameters for removal of F and Cl from zinc oxide fume by microwave roasting. Trans. Nonferrous Met. Soc. China 2015, 25, 973–980. [Google Scholar] [CrossRef]
- Wu, Y.; Yi, L.; Li, E.; Li, Y.; Lu, Y.; Wang, P.; Zhou, H.; Liu, J.; Hu, Y.; Wang, D. Optimization of Glycyrrhiza polysaccharide liposome by response surface methodology and its immune activities. Int. J. Biol. Macromol. 2017, 102, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Alipanahpour Dil, E.; Ghaedi, M.; Ghezelbash, G.R.; Asfaram, A.; Purkait, M.K. Highly efficient simultaneous biosorption of Hg2+, Pb2+ and Cu2+ by Live yeast Yarrowia lipolytica 70562 following response surface methodology optimization: Kinetic and isotherm study. J. Ind. Eng. Chem. 2017, 48, 162–172. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Liu, Y.; Huang, L. Optimization of surface treatment for flotation separation of polyvinyl chloride and polyethylene terephthalate waste plastics using response surface methodology. J. Clean. Prod. 2016, 139, 866–872. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Huang, J.; Liu, T.; Xue, N.; Shi, Q. Optimization of vanadium (IV) extraction from stone coal leaching solution by emulsion liquid membrane using response surface methodology. Chem. Eng. Res. Des. 2017, 123, 111–119. [Google Scholar] [CrossRef]
- Seo, J.; Kim, J.H.; Lee, M.; You, K.; Moon, J.; Lee, D.-H.; Paik, U. Multi-objective optimization of tungsten CMP slurry for advanced semiconductor manufacturing using a response surface methodology. Mater. Des. 2017, 117, 131–138. [Google Scholar] [CrossRef]
- Mohammed, I.Y.; Abakr, Y.A.; Yusup, S.; Kazi, F.K. Valorization of Napier grass via intermediate pyrolysis: Optimization using response surface methodology and pyrolysis products characterization. J. Clean. Prod. 2017, 142, 1848–1866. [Google Scholar] [CrossRef]
Composition | Si | Fe | Ca | Mg | Na | P | V | Cr | Ti | Mn | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|
Content (wt%) | 2.58 | 18.70 | 11.10 | 0.70 | 10.40 | 12.20 | 0.80 | 2.20 | 0.50 | 0.05 | 0.48 |
Factors | Low | High | Value of Code |
---|---|---|---|
A Roasting temperature (°C) | 650 | 850 | −1 = 650; 0 = 750; 1 = 850 |
B Roasting time (min) | 10 | 120 | −1 = 10; 0 = 65; 1 = 120 |
C Dosage of Na2CO3 (wt%) | 2 | 10 | −1 = 2; 0 = 6; 1 = 10 |
Factor 1 | Factor 2 | Factor 3 | Response 1 | ||
---|---|---|---|---|---|
St d | Run | A | B | C | V Leaching efficiency |
°C | min | m% | % | ||
14 | 1 | 750.00 (0) | 65.00 (0) | 6.00 (0) | 66.92 |
17 | 2 | 750.00 (0) | 65.00 (0) | 6.00 (0) | 68.52 |
2 | 3 | 850.00 (1) | 10.00 (−1) | 6.00 (0) | 64.92 |
3 | 4 | 650.00 (−1) | 120.00 (1) | 6.00 (0) | 51.08 |
15 | 5 | 750.00 (0) | 65.00 (0) | 6.00 (0) | 67.19 |
1 | 6 | 650.00 (−1) | 10.00 (−1) | 6.00 (0) | 40.75 |
13 | 7 | 750.00 (0) | 65.00 (0) | 6.00 (0) | 66.47 |
16 | 8 | 750.00 (0) | 65.00 (0) | 6.00 (0) | 68.05 |
8 | 9 | 850.00 (1) | 65.00 (0) | 10.00 (1) | 72.49 |
6 | 10 | 850.00 (1) | 65.00 (0) | 2.00 (−1) | 56.36 |
4 | 11 | 850.00 (1) | 120.00 (1) | 6.00 (0) | 81.36 |
7 | 12 | 650.00 (−1) | 65.00 (0) | 10.00 (1) | 39.25 |
9 | 13 | 750.00 (0) | 10.00 (−1) | 2.00 (−1) | 47.08 |
11 | 14 | 750.00 (0) | 10.00 (−1) | 10.00 (1) | 44.77 |
12 | 15 | 750.00 (0) | 120.00 (1) | 10.00 (1) | 66.39 |
10 | 16 | 750.00 (0) | 120.00 (1) | 2.00 (−1) | 53.67 |
5 | 17 | 650.00 (−1) | 65.00 (0) | 2.00 (−1) | 39.28 |
Source | Sum of Squares | df | Mean Square | F Value | Prob > F | |
---|---|---|---|---|---|---|
Mean | 58,156.02 | 1 | 58,156.02 | |||
Linear | 1834.82 | 3 | 611.61 | 9.44 | 0.0014 | |
2FI | 131.84 | 3 | 43.95 | 0.62 | 0.6187 | |
Quadratic | 701.61 | 3 | 233.87 | 183.32 | <0.0001 | Suggested |
Cubic | 6.12 | 3 | 2.04 | 2.90 | 0.1650 | Aliased |
Residual | 2.81 | 4 | 0.70 | |||
Total | 60,833.23 | 17 | 3578.43 |
Source | Sum of Squares | df | Mean Square | F Value | Prob > F | |
---|---|---|---|---|---|---|
Model | 2668.28 | 9 | 296.48 | 232.39 | < 0.0001 | significant |
A | 1356.82 | 1 | 1356.82 | 1070.59 | < 0.0001 | |
B | 381.16 | 1 | 381.16 | 298.77 | < 0.0001 | |
C | 87.85 | 1 | 87.85 | 68.86 | <0.0001 | |
AB | 10.08 | 1 | 10.08 | 7.90 | 0.0261 | |
AC | 65.29 | 1 | 65.28 | 51.17 | 0.0002 | |
BC | 56.48 | 1 | 56.48 | 44.27 | 0.0003 | |
A2 | 87.07 | 1 | 87.07 | 68.25 | <0.0001 | |
B2 | 49.10 | 1 | 48.10 | 38.49 | 0.0004 | |
C2 | 512.95 | 1 | 512.95 | 402.08 | <0.0001 | |
Residual | 8.93 | 7 | 1.28 | |||
Lack of Fit | 6.12 | 3 | 2.04 | 2.90 | 0.1650 | not significant |
Pure Error | 2.81 | 4 | 0.7 | |||
Cor Total | 2677.21 | 16 | ||||
R2 = 0.9967 R2adj = 0.9924 |
Number | Roasting Temperature | Roasting Time | Na2CO3% | V Leaching Efficiency |
---|---|---|---|---|
°C | min | wt% | % | |
1 | 850 | 120 | 8.01 | 83.82 |
2 | 850 | 120 | 8.05 | 83.81 |
3 | 850 | 119.99 | 7.98 | 83.81 |
4 | 850 | 120 | 7.94 | 83.81 |
5 | 850 | 120 | 7.85 | 83.80 |
6 | 850 | 120 | 8.18 | 83.80 |
7 | 850 | 119.48 | 8.00 | 83.78 |
8 | 848.92 | 120 | 8.02 | 83.73 |
9 | 850 | 118.57 | 7.12 | 83.71 |
10 | 850 | 115.68 | 7.82 | 83.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Zhang, Y.; Xue, N.; Zheng, Q.; Dai, Z. Extraction of Vanadium from High Phosphorus Vanadium Containing Waste Residue via Carbonation: Optimization Using Response Surface Methodology. Processes 2024, 12, 2121. https://doi.org/10.3390/pr12102121
Bai Z, Zhang Y, Xue N, Zheng Q, Dai Z. Extraction of Vanadium from High Phosphorus Vanadium Containing Waste Residue via Carbonation: Optimization Using Response Surface Methodology. Processes. 2024; 12(10):2121. https://doi.org/10.3390/pr12102121
Chicago/Turabian StyleBai, Zhigang, Yimin Zhang, Nannan Xue, Qiushi Zheng, and Zilin Dai. 2024. "Extraction of Vanadium from High Phosphorus Vanadium Containing Waste Residue via Carbonation: Optimization Using Response Surface Methodology" Processes 12, no. 10: 2121. https://doi.org/10.3390/pr12102121
APA StyleBai, Z., Zhang, Y., Xue, N., Zheng, Q., & Dai, Z. (2024). Extraction of Vanadium from High Phosphorus Vanadium Containing Waste Residue via Carbonation: Optimization Using Response Surface Methodology. Processes, 12(10), 2121. https://doi.org/10.3390/pr12102121