Intelligent Monitoring of Affective Factors Underlying Sport Performance by Means of Wearable and Mobile Technology †
Abstract
:1. Introduction
2. Smart Monitoring of Factors Modulating Affective States
3. Proposed Monitoring Platform
3.1. Platform Architecture
3.2. Platform Implementation
3.2.1. Affective State
3.2.2. Modulating Factors
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Davidson, R. On emotion, mood, and related affective construct. In The Nature of Emotion: Fundamental Questions; Ekman, P., Davidson, R., Eds.; Oxford University Press: Oxford, NY, USA, 1994; pp. 51–55. [Google Scholar]
- Doron, J.; Gaudreau, P. A Point-by-Point Analysis of Performance in a Fencing Match: Psychological Processes Associates with Winning and Losing Streaks. J. Sport Exerc. Psychol. 2014, 36, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, R.S. How Emotions Influence Performance in Competitive Sports. Sport Psychol. 2000, 14, 229–252. [Google Scholar] [CrossRef]
- Rathschlag, M.; Memmert, D. The Influence of Self-Generated Emotions on Physical Performance: An Investigation of Happiness, Anger, Anxiety, and Sadness. J. Sport Exerc. Psychol. 2013, 35, 197–210. [Google Scholar] [CrossRef]
- EBSCO Industries Inc. SPORTDiscus Bibliographic Database. Available online: https://www.ebsco.com/products/research-databases/sportdiscus (accessed on 28 May 2018).
- Nicholls, A.R.; Backhouse, S.H.; Polman, R.C.J.; McKenna, J. Stressors and affective states among professional rugby union players: Stressors and affect. Scand. J. Med. Sci. Sports 2009, 19, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Martinent, G.; Gareau, A.; Lienhart, N.; Nicaise, V.; Guillet-Descas, E. Emotion profiles and their motivational antecedents among adolescent athletes in intensive training settings. Psychol. Sport Exerc. 2018, 35, 198–206. [Google Scholar] [CrossRef]
- Kanning, M.; Schlicht, W. Be Active and Become Happy: An Ecological Momentary Assessment of Physical Activity and Mood. J. Sport Exerc. Psychol. 2010, 32, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Watson, D. Mood and Temperament; Guilford Press: New York, NY, USA, 2000. [Google Scholar]
- Giacobbi, P.; Hausenblas, H.; Frye, N. A naturalistic assessment of the relationship between personality, daily live events, leisure-time exercise, and mood. Psychol. Sport Exerc. 2005, 6, 67–81. [Google Scholar] [CrossRef]
- Thayer, R.E. The Origin of Everyday Moods; Oxford University Press: Don Mills, ON, Canada, 1997. [Google Scholar]
- Sarmiento, B.R.; Matusz, P.J.; Sanabria, D.; Murray, M.M. Contextual factors multiplex to control multisensory processes. Hum. Brain Map. 2015, 37, 273–288. [Google Scholar] [CrossRef]
- Perakakis, P.; Luque-Casado, A.; Ciria, L.F.; Ivanov, P.C.; Sanabria, D. Neural Responses to Heartbeats of Physically Trained and Sedentary Young Adults. bioRxiv 2017. [Google Scholar] [CrossRef]
- Maister, L.; Tang, T.; Tsakiris, M. Neurobehavioral evidence of interoceptive sensitivity in early infancy. eLife 2017, 6. [Google Scholar] [CrossRef]
- Vales-Alonso, J.; Lopez-Matencio, P.; Gonzalez-Castano, F.J.; Navarro-Hellin, H.; Banos-Guirao, P.J.; Perez-Martinez, F.J.; Martinez-Alvarez, R.P.; González-Jimenez, D.; Gil-Castineira, F.; Duro-Fernandez, R. Ambient Intelligence Systems for Personalized Sport Training. Sensors 2010, 10, 2359–2385. [Google Scholar] [CrossRef] [PubMed]
- Gravenhorst, F.; Muaremi, A.; Bardram, J.; Grunerbl, A.; Mayora, O.; Wurzer, G.; Frost, M.; Osmani, V.; Arnrich, B.; Lukowicz, P.; Troster, G. Mobile phones as medical devices in mental disorder treatment: An overview. Pers. Ubiquitous Comput. 2015, 19, 335–353. [Google Scholar] [CrossRef]
- Tausczik, Y.R.; Pennebaker, J.W. The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods. J. Lang. Soc. Psychol. 2009, 29, 24–54. [Google Scholar] [CrossRef]
- Hui, T.K.L.; Sherratt, R.S. Coverage of Emotion Recognition for Common Wearable Biosensors. Biosensors 2018, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Kunecke, J.; Hildebrandt, A.; Wilhelm, O. Facial EMG Responses to Emotional Expressions Are Related to Emotion Perception Ability. PLoS ONE 2014, 9, e84053. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Sim, J.K.; Cho, Y.H. A Flexible and Wearable Human Stress Monitoring Patch. Sci. Rep. 2016, 6, 23486–23496. [Google Scholar] [CrossRef]
- Katsigiannis, S.; Ramzan, N. DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-shelf Devices. IEEE J. Biomed. Health Inform. 2018, 22, 98–107. [Google Scholar] [CrossRef]
- Kanning, M.K.; Ebner-Priemer, U.W.; Schlicht, W.M. How to investigate within-subject associations between physical activity and momentary affective states in everyday life: A position statement based on a literature overview. Front. Psychol. 2013, 4, 1–16. [Google Scholar] [CrossRef]
- Ferreira, D.; Kostakos, V.; Dey, A.K. AWARE: Mobile context instrumentation framework. Front. ICT 2015, 2, 6. [Google Scholar] [CrossRef]
- Berkel, N.V.; Ferreira, D.; Kostakos, V. The Experience Sampling Method on Mobile Devices. ACM Comput. Surv. 2018, 50, 1–40. [Google Scholar] [CrossRef]
- Wohlfahrt-Laymann, J.; Hermens, H.; Villalonga, C.; Vollenbroek-Hutten, M.; Banos, O. Mobile CogniTracker—A mobile experience sampling tool for tracking cognitive behaviour. J. Ambient Intell. Hum. Comput. 2018, 1–18. [Google Scholar] [CrossRef]
- Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Bradley, M.M.; Greenwald, M.K.; Petry, M.C.; Lang, P.J. Remembering pictures: Pleasure and arousal in memory. J. Exp. Psychol. Learn. Mem. Cogn. 1992, 18, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.; Tellegen, A. Toward a consensual structure of mood. Psychol. Bull. 1985, 98, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Meschtscherjakov, A.; Weiss, A.; Scherndl, T. Utilizing Emoticons on Mobile Devices within ESM studies to Measure Emotions in the Field. In Proceedings of the International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI’09), Bonn, Germany, 15–18 September 2009. [Google Scholar]
- Han, M.; Bang, J.H.; Nugent, C.; McClean, S.; Lee, S. A lightweight hierarchical activity recognition framework using smartphone sensors. Sensors 2014, 14, 16181–16195. [Google Scholar] [CrossRef]
- Lane, N.D.; Lin, M.; Mohammod, M.; Yang, X.; Lu, H.; Cardone, G.; Ali, S.; Doryab, A.; Berke, E.; Campbell, A.T.; et al. Bewell: Sensing sleep, physical activities and social interactions to promote wellbeing. Mob. Netw. Appl. 2014, 19, 345–359. [Google Scholar] [CrossRef]
- BCI Lab-UGR. RABio w8 Biopotentials Acquisition System. Available online: http://rabiow.wixsite.com/rabio (accessed on 28 May 2018).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailon, C.; Damas, M.; Pomares, H.; Sanabria, D.; Perakakis, P.; Goicoechea, C.; Banos, O. Intelligent Monitoring of Affective Factors Underlying Sport Performance by Means of Wearable and Mobile Technology. Proceedings 2018, 2, 1202. https://doi.org/10.3390/proceedings2191202
Bailon C, Damas M, Pomares H, Sanabria D, Perakakis P, Goicoechea C, Banos O. Intelligent Monitoring of Affective Factors Underlying Sport Performance by Means of Wearable and Mobile Technology. Proceedings. 2018; 2(19):1202. https://doi.org/10.3390/proceedings2191202
Chicago/Turabian StyleBailon, Carlos, Miguel Damas, Hector Pomares, Daniel Sanabria, Pandelis Perakakis, Carmen Goicoechea, and Oresti Banos. 2018. "Intelligent Monitoring of Affective Factors Underlying Sport Performance by Means of Wearable and Mobile Technology" Proceedings 2, no. 19: 1202. https://doi.org/10.3390/proceedings2191202