Global Ionosphere Mapping and Differential Code Bias Estimation during Low and High Solar Activity Periods with GIMAS Software
Abstract
:1. Introduction
2. Global Ionosphere Mapping Methodology
3. Data Processing
4. GIMAS-Based GIMs Performance Validation
4.1. VTEC Validation Compared with IAACs VTEC Maps
4.2. VTEC Validation Compared with Jason-2 Altimeter Data
4.3. GPS and GLONASS Satellite DCBs Validation with IAACs DCBs
4.4. GPS and GLONASS Receiver DCBs Validation with IAACs DCBs
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hernández-Pajares, M.; Roma-Dollase, D.; Krankowski, A.; García-Rigo, A.; Orús-Pérez, R. Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J. Geodesy 2017, 91, 1405–1414. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.H.; Lindqwister, U.J.; Runge, T.F. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Feltens, J. The International GPS Service (IGS) Ionosphere Working Group. Adv. Space Res. 2003, 31, 635–644. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geodesy 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Roma-Dollase, D.; Hernández-Pajares, M.; Krankowski, A.; Kotulak, K.; Ghoddousi-Fard, R.; Yuan, Y.; Li, Z.; Zhang, H.; Shi, C.; Wang, C.; et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J. Geodesy 2017, in press. [Google Scholar] [CrossRef]
- Lanyi, G.E.; Roth, T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci. 1988, 23, 483–492. [Google Scholar] [CrossRef]
- Davies, K.; Hartmann, G.K. Studying the ionosphere with the Global Positioning System. Radio Sci. 1997, 32, 1695–1703. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Aragón-Àngel, À.; García-Rigo, A.; Salazar, D.; Escudero, M. The ionosphere: Effects, GPS modeling and the benefits for space geodetic techniques. J. Geodesy 2011, 85, 887–907. [Google Scholar] [CrossRef]
- Liu, J.; Hernandez-Pajares, M.; Liang, X.; An, J.; Wang, Z.; Chen, R.; Sun, W.; Hyyppä, J. Temporal and spatial variations of global ionospheric total electron content under various solar conditions. J. Geodesy 2017, 91, 485–503. [Google Scholar] [CrossRef]
- Schaer, S.; Beutler, G.; Rothacher, M.; Springer, T.A. Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center. In Proceedings of the IGS AC Workshop, Silver Spring, MD, USA, 19–21 March 1996; pp. 181–192. [Google Scholar]
- Schaer, S.; Gurtner, W.; Feltens, J. IONEX: The ionosphere map exchange format version 1. In Proceedings of the IGS AC Workshop, Darmstadt, Germany, 9–11 February 1998. [Google Scholar]
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System; Astronomical Institute, University of Berne: Berne, Switzerland, 1999. [Google Scholar]
- Mannucci, A.J.; Wilson, B.D.; Edwards, C.D. A new method for monitoring the Earth’s ionospheric total electron content using the GPS global network. In Proceedings of the Institute of Navigation GPS-93, Salt Lake City, UT, USA, 22–24 September 1993. [Google Scholar]
- Komjathy, A.; Wilson, B.D.; Runge, T.F.; Boulat, B.M.; Maimucci, A.J.; Reyes, M.J.; Sparks, L.C. A new ionospheric model for wide area differential GPS: The multiple shell approach. In Proceedings of the National Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 28–30 January 2002. [Google Scholar]
- Feltens, J. Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. Space Weather 2007, 5. [Google Scholar] [CrossRef]
- Juan, J.M.; Rius, A.; Hernández-Pajares, M.; Sanz, J. A two-layer model of the ionosphere using Global Positioning System data. Geophys. Res. Lett. 1997, 24, 393–396. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J. Neural network modeling of the ionospheric electron content at global scale using GPS data. Radio Sci. 1997, 32, 1081–1089. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J. New approaches in global ionospheric determination using ground GPS data. J. Atmos. Sol.-Terr. Phys. 1999, 61, 1237–1247. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Solé, J.G. Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data. J. Geophys. Res. Space Phys. 1998, 103, 20789–20796. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J. Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys. Res Lett. 2000, 27, 2473–2476. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Wang, N.; Hernandez-Pajares, M.; Huo, X. SHPTS: Towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J. Geodesy 2015, 89, 331–345. [Google Scholar] [CrossRef]
- Zhang, H.; Han, W.; Huang, L.; Geng, C.J. Modeling global ionospheric delay with IGS ground-based GNSS observations. Geomat. Inf. Sci. Wuhan Univ. 2012, 37, 1186–1189. (In Chinese) [Google Scholar]
- Zhang, H.; Xu, P.; Han, W.; Ge, M.; Shi, C. Eliminating negative VTEC in global ionosphere maps using inequality-constrained least squares. Adv. Space Res. 2013, 51, 988–1000. [Google Scholar] [CrossRef]
- Dagum, L.; Menon, R. OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 1998, 5, 46–55. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Q.L. Application of parallel computing with OpenMP in global ionosphere mapping. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 227–233. (In Chinese) [Google Scholar]
- Blewitt, G. An automatic editing algorithm for GPS data. Geophys. Res. Lett. 1990, 17, 199–202. [Google Scholar] [CrossRef]
- Hadas, T.; Krypiak-Gregorczyk, A.; Hernández-Pajares, M.; Kaplon, J.; Paziewski, J.; Wielgosz, P.; Garcia-Rigo, A.; Kazmierski, K.; Sosnica, K.; Kwasniak, D. Impact and implementation of higher-order ionospheric effects on precise GNSS applications. J. Geophys. Res. Solid Earth 2017, 122, 9420–9436. [Google Scholar] [CrossRef]
- Schaer, S.; Beutler, G.; Mervart, L.; Rothacher, M.; Wild, U. Global and regional ionosphere models using the GPS double difference phase observable. In Proceedings of the IGS Workshop, Potsdam, Germany, 15–17 May 1995. [Google Scholar]
- Davies, K. Ionospheric Radio; The Institution of Engineering and Technology: London, UK, 1990. [Google Scholar]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Lindqwister, U.J.; Runge, T.F. Global monitoring of ionospheric total electron content using the IGS network. In Proceedings of the IGS Workshop, Potsdam, Germany, 15–17 May 1995. [Google Scholar]
- Emmert, J.T.; Mannucci, A.J.; Mcdonald, S.E.; Vergados, P. Attribution of interminimum changes in global and hemispheric total electron content. J. Geophys. Res. Space Phys. 2017, 122, 2424–2439. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Astafyeva, E.I.; Oinats, A.V.; Yasukevich, Y.V.; Zhivetiev, I.V. Global electron content: A new conception to track solar activity. Ann. Geophys. 2008, 26, 335–344. [Google Scholar] [CrossRef]
- Dow, J.M.; Neilan, R.E.; Rizos, C. The international GNSS service in a changing landscape of global navigation satellite systems. J. Geodesy 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Azpilicueta, F.; Brunini, C. Analysis of the bias between TOPEX and GPS vTEC determinations. J. Geodesy 2009, 83, 121–127. [Google Scholar] [CrossRef]
- CNES. Jason-3 Products Handbook; SALP-MU-M-OP-16118-CN; CNES: Paris, France, 2016. [Google Scholar]
- Gulyaeva, T.L.; Arikan, F.; Delay, S.H. Scale factor mitigating non-compliance of double-frequency altimeter measurements of the ionospheric electron content over the oceans with GPS-TEC maps. Earth Planets Space 2009, 61, 1103–1109. [Google Scholar] [CrossRef]
- Jee, G.; Schunk, R.W.; Ludger, S. Analysis of TEC data from the TOPEX/Poseidon mission. J. Geophys. Res. Atmos. 2004, 109, A01301. [Google Scholar] [CrossRef]
- Jee, G.; Lee, H.B.; Kim, Y.H.; Chung, J.K.; Cho, J. Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective. J. Geophys. Res. Space Phys. 2010, 115, 161–168. [Google Scholar] [CrossRef]
- Orús, R.; Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Garcıa-Fernández, M. Performance of different TEC models to provide GPS ionospheric corrections. J. Atmos. Sol.-Terr. Phys. 2002, 64, 2055–2062. [Google Scholar] [CrossRef]
- Wilson, B.D.; Mannucci, A.J. Instrumental biases in ionospheric measurements derived from GPS data. In Proceedings of the 6th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1993), Salt Lake City, UT, USA, 22–24 September 1993. [Google Scholar]
- Wang, N.; Yuan, Y.; Li, Z.; Montenbruck, O.; Tan, B. Determination of differential code biases with multi-GNSS observations. J. Geodesy 2016, 90, 209–228. [Google Scholar] [CrossRef]
- Hauschild, A.; Montenbruck, O. A study on the dependency of GNSS pseudorange biases on correlator spacing. GPS Solut. 2016, 20, 159–171. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hauschild, A.; Steigenberger, P. Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navigation 2014, 61, 191–201. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Li, H.; Ou, J.; Huo, X. Two-step method for the determination of the differential code biases of COMPASS satellites. J. Geodesy 2012, 86, 1059–1076. [Google Scholar] [CrossRef]
- Dach, R.; Brockmann, E.; Schaer, S.; Beutler, G.; Meindl, M.; Prange, L.; Bock, H.; Jäggi, A.; Ostini, L. GNSS processing at CODE: Status report. J. Geodesy 2009, 83, 353–365. [Google Scholar] [CrossRef]
Method | GRC | CODE | ESA/ESOC | JPL | UPC |
---|---|---|---|---|---|
Observations | carrier phase + code a | carrier phase + code | carrier phase + code | carrier phase + code | carrier phase |
Models | SH expansion | SH expansion | SH expansion | spherical triangles with splines | tomographic with splines/kriging |
Shell/Layer | one shell (450 km) | one shell (450 km) | one shell (450 km) | three shells (250, 450, 800 km) | two layers (60–740–1420 km) |
Daily process | 2 h before + 1 day + 2 h after | middle day in consecutive 3 days | 2 h update | 15 min update | 2 h/15 min update |
Parameters estimation | inequality constrained least squares b | least squares | Kalman filter | Kalman filter | Kalman filter |
GNSS data used | GPS + GLONASS | GPS + GLONASS | GPS + GLONASS | GPS c | GPS |
DCB estimation | simultaneously | simultaneously | simultaneously | simultaneously | post-fit residuals |
Software | GIMAS d | BGS | IONMON | JPL/GIM | TOMION |
References | Zhang et al. [23] | Schaer [12] | Feltens [15] | Mannucci et al. [2] | Hernández-Pajares et al. [18] |
System | Year | GRC–CODE | GRC–JPL | GRC–ESA | GRC–UPC |
---|---|---|---|---|---|
GPS | 2008 | 0.03, 0.17 | 0.03, 0.19 | 0.05, 0.16 | 0.07, 0.20 |
2014 | 0.05, 0.13 | 0.07, 0.14 | 0.09, 0.17 | 0.16, 0.25 | |
GLONASS | 2014 | 0.08, 0.26 | - | 0.16, 0.31 | - |
System | Year | GRC | CODE | JPL | ESA | UPC |
---|---|---|---|---|---|---|
GPS | 2008 | 0.04 | 0.03 | 0.04 | 0.05 | 0.07 |
2014 | 0.07 | 0.05 | 0.07 | 0.11 | 0.17 | |
GLONASS | 2014 | 0.09 | 0.06 | - | 0.17 | - |
Receiver Type | Station Name | Antenna Type | Receiver Type | Station Name | Antenna Type |
---|---|---|---|---|---|
AOA BENCHMARK ACT | ALBH | AOAD/M_T | KIT3 | JAV_RINGANT_G3T | |
AOA SNR-12 ACT | WSRT | AOAD/M_T | ULAB | JAV_RINGANT_G3T | |
ASHTECH UZ-12 | GODE | AOAD/M_T | CHPI | TPSCR.G3 | |
RESO | ASH700936A_M | JPS E_GGD | ONSA | AOAD/M_B | |
KELY | ASH701945C_M | JPS EGGDT | GOLD | AOAD/M_T | |
HOLM | ASH701945D_M | JPS LEGACY | IRKJ | JPSREGANT_SD_E1 | |
BOGT | ASH701945E_M | NOVM | JPSREGANT_SD_E1 | ||
QAQ1 | ASH701945E_M | ADIS | TRM29659.00 | ||
SUTH | ASH701945G_M | TPS LEGACY | UNBJ | TRM57971.00 | |
RABT | TRM29659.00 | TPS NETG3 | MDVJ | JPSREGANT_DD_E1 | |
ASHTECH Z-XII3 | YAKT | ASH701933B_M | FLIN | NOV750.R4 | |
JAVAD TRE_G3T DELTA | STJO | AOAD/M_T | TPS NET-G3A | ALGO | AOAD/M_T |
YELL | AOAD/M_T | WHIT | AOAD/M_T | ||
JAVAD TRE_G3TH DELTA | MBAR | ASH701945B_M | SCH2 | ASH701945E_M | |
PIMO | ASH701945C_M | CHUR | ASH701945E_M |
Receiver Type | Station Name | Antenna Type | Receiver Type | Station Name | Antenna Type |
---|---|---|---|---|---|
JAVAD TRE_G3TH DELTA | MBAR | ASH701945B_M | BSHM | TRM59800.00 | |
PIMO | ASH701945C_M | TPS NET-G3A | PRDS | AOAD/M_T | |
PIE1 | ASH701945E_M | WHIT | AOAD/M_T | ||
KOKV | ASH701945G_M | SCH2 | ASH701945E_M | ||
POTS | JAV_RINGANT_G3T | BAKE | TPSCR.G3 | ||
TASH | JAV_RINGANT_G3T | FRDN | TPSCR.G3 | ||
ULAB | JAV_RINGANT_G3T | HLFX | TPSCR.G3 | ||
JPS EGGDT | GODZ | AOAD/M_T | IQAL | TPSCR.G3 | |
GOLD | AOAD/M_T | VALD | TPSCR.G3 | ||
KIR0 | AOAD/M_T | TRIMBLE NETR9 | AUCK | TRM55971.00 | |
SUTV | ASH701945G_M | REUN | TRM55971.00 | ||
MOBK | JPSREGANT_SD_E1 | SYOG | TRM59800.00 | ||
TIXI | TPSCR3_GGD | NKLG | TRM59800.00 | ||
FAIV | TRM29659.00 | GMSD | TRM59800.00 |
System | Year | GRC–CODE | GRC–JPL | GRC–ESA | GRC–UPC |
---|---|---|---|---|---|
GPS | 2008 | −0.17, 0.21 | −0.13, 0.23 | −0.16, 0.35 | −0.38, 0.42 |
2014 | −0.16, 0.33 | −0.30, 0.53 | −0.33, 0.77 | −1.36, 1.47 | |
GLONASS | 2014 | −0.49, 0.67 | - | −0.64, 0.96 | - |
System | Year | GRC | CODE | JPL | ESA | UPC |
---|---|---|---|---|---|---|
GPS | 2008 | 0.16 | 0.15 | 0.14 | 0.18 | 0.16 |
2014 | 0.47 | 0.45 | 0.35 | 0.59 | 0.63 | |
GLONASS | 2014 | 0.48 | 0.47 | - | 0.64 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zhao, Q. Global Ionosphere Mapping and Differential Code Bias Estimation during Low and High Solar Activity Periods with GIMAS Software. Remote Sens. 2018, 10, 705. https://doi.org/10.3390/rs10050705
Zhang Q, Zhao Q. Global Ionosphere Mapping and Differential Code Bias Estimation during Low and High Solar Activity Periods with GIMAS Software. Remote Sensing. 2018; 10(5):705. https://doi.org/10.3390/rs10050705
Chicago/Turabian StyleZhang, Qiang, and Qile Zhao. 2018. "Global Ionosphere Mapping and Differential Code Bias Estimation during Low and High Solar Activity Periods with GIMAS Software" Remote Sensing 10, no. 5: 705. https://doi.org/10.3390/rs10050705
APA StyleZhang, Q., & Zhao, Q. (2018). Global Ionosphere Mapping and Differential Code Bias Estimation during Low and High Solar Activity Periods with GIMAS Software. Remote Sensing, 10(5), 705. https://doi.org/10.3390/rs10050705