Sewer Inlet Localization in UAV Image Clouds: Improving Performance with Multiview Detection
Abstract
:1. Introduction
1.1. The Need for Urban Drainage Network Infrastructure Data
1.2. Remote Sensing of Urban Infrastructure
1.3. Unmanned Aerial Vehicles Enable Low-Cost Collection of Aerial Image Clouds
1.4. Scope and Novelty of the Present Study
2. Methods
2.1. Single-View and Muliview Detection
2.2. Image Clipping
2.3. Object Detection in Images
2.4. Projection of Proposals into Three-Dimensional Space
2.5. Clustering Proposals
2.6. Removal of False Positives Based on Cluster Properties
- Detection count: the number of detections that are part of the cluster.
- Image count: the number of images contributing detections to the cluster.
- Maximum, average, and summed detection scores: each of the detections comes with a score from last stage of the Viola–Jones classifier. For the ensemble of detections belonging to a cluster, the maximum score is found, and the arithmetic average and the sum of the scores are computed.
- Surface area: the surface area of the bounding box containing the detections is computed in map units. This property informs on how spread out the detections are.
- Density: the density is computed as the number of detections divided by the surface area.
- Histogram of detections per image: a vector x, with each element containing the number of UAV images contributing i detections to the cluster, with i varying from 1 to 49. The vector is generally quite sparse.
- Average and maximum detections per image: for images contributing detections to the cluster, the average and maximum number of detections is computed.
2.7. Assessing Detection Performance
2.8. Analyzing Sensitivity to Clustering Parameters
2.9. Analyzing Hard Negatives
3. Study Area and Data Sets
3.1. Data Collection and Preprocessing
3.2. Training and Testing Data
4. Results
4.1. Multiview Significantlys Outperforms Single-View Detection
4.2. Sensitivity to Clustering Algorithm Parameters
4.3. Analysis of Nature of Hard Negatives
5. Discussion
5.1. Comparison to Previous Work
5.2. Advantages of Multiview Detection
5.3. Sensitivity to Clustering Parameters
5.4. Role of Digital Surface Model Accuracy
5.5. Improvement Potential and Directions for Future Work
5.6. Inherent Limitations of Aerial Sewer Inlet Mapping
5.7. Practical Considerations for Urban Water Management
5.8. Reusability and Generality of the Multiview Methodology
6. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix
GCP Name | Error X (m) | Error Y (m) | Error Z (m) |
---|---|---|---|
E | 0.006 | −0.025 | −0.029 |
F | 0.023 | 0.016 | −0.007 |
H | −0.017 | 0.033 | −0.003 |
G | 0.010 | 0.027 | 0.013 |
D | 0.014 | −0.000 | −0.024 |
J | −0.019 | 0.013 | 0.000 |
C | 0.001 | 0.004 | −0.064 |
A | −0.008 | −0.009 | −0.006 |
I | −0.011 | −0.024 | 0.002 |
B | 0.004 | −0.022 | 0.059 |
Mean (m) | 0.000332 | 0.001385 | −0.005928 |
Sigma (m) | 0.013205 | 0.019985 | 0.029818 |
RMS Error (m) | 0.013209 | 0.020033 | 0.030401 |
References
- Verband der Schweizerischen Abwasser- und Gewässerschutzfachleute (VSA). Kosten und Leistungen der Abwasserentsorgung—Erhebung 2010; VSA: Glattbrugg, Switzerland, 2011. (In German) [Google Scholar]
- Hürter, H.; Schmitt, T.G. Die bunte Welt der Gefahrenkarten bei Starkregen—Ein Methodenvergleich. Proceedings of Aqua Urbanica 2016, Rigi-Kaltbad, Switzerland, 26–27 September 2016; pp. 1–5. (In German). [Google Scholar]
- Simões, N.E.; Ochoa-Rodríguez, S.; Wang, L.-P.; Pina, R.D.; Marques, A.S.; Onof, C.; Leitão, J.P. Stochastic Urban Pluvial Flood Hazard Maps Based upon a Spatial-Temporal Rainfall Generator. Water 2015, 7, 3396–3406. [Google Scholar] [CrossRef] [Green Version]
- Maurer, M.; Chawla, F.; von Horn, J.; Staufer, P. Abwasserentsorgung 2025 in der Schweiz; Schriftenreihe der Eawag: Dübendorf, Switzerland, 2012. (In German) [Google Scholar]
- Mair, M.; Zischg, J.; Rauch, W.; Sitzenfrei, R. Where to Find Water Pipes and Sewers?—On the Correlation of Infrastructure Networks in the Urban Environment. Water 2017, 9, 146. [Google Scholar] [CrossRef]
- Blumensaat, F.; Wolfram, M.; Krebs, P. Sewer model development under minimum data requirements. Environ. Earth Sci. 2012, 65, 1427–1437. [Google Scholar] [CrossRef]
- Commandré, B.; Chahinian, N.; Bailly, J.S.; Chaumont, M.; Subsol, G.; Rodriguez, F.; Derras, M.; Deruelle, L.; Delenne, C. Automatic reconstruction of urban wastewater and stormwater networks based on uncertain manhole cover locations. In Proceedings of the 14th IWA/IAHR International Conference on Urban Drainage (ICUD 2017), Prague, Czech Republic, 10–15 September 2017. [Google Scholar]
- Yu, Y.; Li, J.; Guan, H.; Wang, C.; Yu, J. Automated detection of road manhole and sewer well covers from mobile LiDAR point clouds. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1549–1553. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Guan, H.; Wang, C.; Yu, J. Semiautomated Extraction of Street Light Poles From Mobile LiDAR Point-Clouds. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1374–1386. [Google Scholar] [CrossRef]
- Pu, S.; Rutzinger, M.; Vosselman, G.; Oude Elberink, S. Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS J. Photogramm. Remote Sens. 2011, 66, S28–S39. [Google Scholar] [CrossRef]
- Wegner, J.D.; Branson, S.; Hall, D.; Schindler, K.; Perona, P. Cataloging Public Objects Using Aerial and Street-Level Images—Urban Trees. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 26 June–1 July 2016; IEEE: New York, NY, USA, 2016; pp. 6014–6023. [Google Scholar]
- Hebbalaguppe, R.; Garg, G.; Hassan, E.; Ghosh, H.; Verma, A. Telecom Inventory Management via Object Recognition and Localisation on Google Street View Images. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; IEEE: New York, NY, USA, 2017; pp. 725–733. [Google Scholar]
- Timofte, R.; Van Gool, L. Multi-view manhole detection, recognition, and 3D localisation. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; IEEE: New York, NY, USA, 2011; pp. 188–195. [Google Scholar]
- Pasquet, J.; Desert, T.; Bartoli, O.; Chaumont, M.; Delenne, C.; Subsol, G.; Derras, M.; Chahinian, N. Detection of Manhole Covers in High-Resolution Aerial Images of Urban Areas by Combining Two Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1802–1807. [Google Scholar] [CrossRef]
- Commandre, B.; En-Nejjary, D.; Pibre, L.; Chaumont, M.; Delenne, C.; Chahinian, N. Manhole Cover Localization in Aerial Images with a Deep Learning Approach. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 333–338. [Google Scholar] [CrossRef]
- Ortega, M.; Jesse, J.; Gkintzou, C. Pix4D Support Team Pix4D Knowledge Base. Available online: https://support.pix4d.com/entries/26825498 (accessed on 18 June 2014).
- Tokarczyk, P.; Leitao, J.P.; Rieckermann, J.; Schindler, K.; Blumensaat, F. High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery. Hydrol. Earth Syst. Sci. 2015, 19, 4215–4228. [Google Scholar] [CrossRef]
- Leitão, J.P.; Moy De Vitry, M.; Scheidegger, A.; Rieckermann, J. Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas. Hydrol. Earth Syst. Sci. 2016, 20, 1637–1653. [Google Scholar] [CrossRef]
- Warmerdam, F. The Geospatial Data Abstraction Library. In Open Source Approaches in Spatial Data Handling; Hall, G.B., Leahy, M.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2, pp. 87–104. [Google Scholar]
- Van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Struture for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef]
- Pix4D Developers Pix4Dmapper Software Manual. Available online: https://support.pix4d.com/entries/28216826 (accessed on 17 June 2014).
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001; IEEE: New York, NY, USA, 2001; Volume 1, pp. I:511–I:518. [Google Scholar]
- Mallat, S.G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Lienhart, R.; Maydt, J. An extended set of Haar-like features for rapid object detection. In Proceedings of the International Conference on Image Processing, Rochester, NY, USA, 22–25 September 2002; IEEE: New York, NY, USA, 2002; Volume 1, pp. I:900–I:903. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting. Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV Library. Dr. Dobbs J. Softw. Tools 2000, 25, 120–125. [Google Scholar] [CrossRef]
- Torralba, A.; Murphy, K.P.; Freeman, W.T. Sharing features: Efficient boosting procedures for multiclass object detection. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004; Volume 3, pp. 762–769. [Google Scholar]
- Schroeder, W.J.; Martin, K.M. The visualization toolkit. In Visualization Handbook; Hansen, C., Johnson, C.R., Eds.; Academic Press: Cambridge, MA, USA, 2004; pp. 593–614. [Google Scholar]
- Gottschalk, S.; Lin, M.C.; Manocha, D.; Hill, C. OBBTree: A Hierarchical Structure for Rapid Interference Detection. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 171–180. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Pedregosa, F.; Varoquaux, G. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 1999, 10, 61–74. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Swiss Federal Department of the Environment, Transport, Energy and Communications (DETEC). Ordinance on Special Category Aircraft; DETEC: Bern, Switzerland; Available online: https://www.admin.ch/opc/en/classified-compilation/19940351/index.html (accessed on 16 April 2018).
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Nips 2015, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; et al. Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA, 2017; pp. 3296–3297. [Google Scholar]
- Leitão, J.P.; Simões, N.E.; Pina, R.D.; Ochoa-Rodriguez, S.; Onof, C.; Sá Marques, A. Stochastic evaluation of the impact of sewer inlets’ hydraulic capacity on urban pluvial flooding. Stoch. Environ. Res. Risk Assess. 2016, 1–16. [Google Scholar] [CrossRef]
Number of stages | 15 |
Minimum hit rate for each stage | 99% |
Maximum false alarm rate for each stage | 40% |
Maximum number of weak classifiers per stage | 20 |
Weak classifier type | Decision tree |
Maximum depth | 1 |
Feature type | Extended Haar-like features [24] |
Boosting type | Gentle AdaBoost [27] |
Location | Zurich, CH |
Date of data collection | 30 January 2014 |
Weather | Overcast |
Surface area | 0.57 km2 |
Flight height | 90 m above ground |
Lateral image overlap | 70% |
Frontal image overlap | 60% |
Number of UAV images | 252 |
UAV Flight duration | 2 × 30 min |
Image GSD | 3–3.5 cm/pixel |
Orthoimage GSD | 3.5 cm/pixel |
Image resolution | 4608 × 3456 pixels |
Number of sewer inlets | 228 |
Ground control points | 10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moy de Vitry, M.; Schindler, K.; Rieckermann, J.; Leitão, J.P. Sewer Inlet Localization in UAV Image Clouds: Improving Performance with Multiview Detection. Remote Sens. 2018, 10, 706. https://doi.org/10.3390/rs10050706
Moy de Vitry M, Schindler K, Rieckermann J, Leitão JP. Sewer Inlet Localization in UAV Image Clouds: Improving Performance with Multiview Detection. Remote Sensing. 2018; 10(5):706. https://doi.org/10.3390/rs10050706
Chicago/Turabian StyleMoy de Vitry, Matthew, Konrad Schindler, Jörg Rieckermann, and João P. Leitão. 2018. "Sewer Inlet Localization in UAV Image Clouds: Improving Performance with Multiview Detection" Remote Sensing 10, no. 5: 706. https://doi.org/10.3390/rs10050706