The Temporal-Spatial Characteristics of Drought in the Loess Plateau Using the Remote-Sensed TRMM Precipitation Data from 1998 to 2014
Abstract
:1. Introduction
2. Research area and Materials
2.1. Study Area
2.2. Data Source
3. Methods
3.1. Calculation of the Standardized Precipitation Index
3.2. Mann-Kendall Trend Test with Trend-Free Pre-Whitening
3.3. Evaluate the Reliability of the TRMM Precipitation Data
3.4. The Vegetation Recovery Potential Assessment in the Loess Plateau
4. Results
4.1. The Reliability Analysis of TRMM Satellite Precipitation Data
4.2. The Temporal and Spatial Variability of Precipitation
4.2.1. Temporal Change of Precipitation in the Loess Plateau from 1998 to 2014
4.2.2. Spatial Distribution and Variability of Precipitation in the Loess Plateau
4.3. The Temporal and Spatial Variability of the Drought in the Loess Plateau
4.3.1. The Reliability Analysis of TRMM-Based SPI
4.3.2. The Temporal Variability of Drought
4.3.3. The Spatial Variability of Drought Based on SPI12
4.3.4. The Spatial Distribution of Drought in the Four Seasons
4.3.5. The Temporal Variability of Drought Events and Humid Events
5. Discussion
5.1. The Potential of Vegetation Recovery in the Loess Plateau
5.2. The Comparison between Our Findings and Those of the Previous Studies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Perkins, D.; Uhl, E.; Biber, P.; Toit, B.; Carraro, V.; Rotzer, T.; Pretzsch, H. Impact of Climate Trends and Drought Events on the Growth of Oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) within and beyond Their Natural Range. Forests 2018, 9, 108. [Google Scholar] [CrossRef]
- Bayarjargal, Y.; Karnieli, A.; Bayasgalan, M.; Khudulmur, S.; Gandush, C.; Tucker, C.J. A Comparative study of NOAA-AVHRR derived drought indices using change vector analysis. Remote Sens. Environ. 2006, 105, 9–22. [Google Scholar] [CrossRef]
- Bhuiyan, C.; Singh, R.P.; Kogan, F.N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 289–302. [Google Scholar] [CrossRef]
- Guttman, N.B. Comparing the palmer drought index and the standardized precipitation index. J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Naresh Kumar, M.; Murthy, C.S.; Sesha Sai, M.V.R.; Roy, P.S. On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorol. Appl. 2009, 16, 381–389. [Google Scholar] [CrossRef]
- Svoboda, M.; Hayes, M. Standardized Precipitation Index User Guide; WMO-No. 1090; Wood World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Zarch, M.A.A.; Sivakumar, B.; Sharma, A. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). J. Hydrol. 2015, 526, 183–195. [Google Scholar] [CrossRef]
- Mansour, A. Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos. Res. 2010, 99, 400–414. [Google Scholar] [CrossRef]
- Mcroberts, B.D.; Nielsengammon, J.W. The use of a high-resolution standardized precipitation index for drought monitoring and assessment. J. Appl. Meteorol. Clim. 2011, 51, 68–83. [Google Scholar] [CrossRef]
- Stampoulis, D.; Anagnostou, E.N. Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeorol. 2012, 13, 588–603. [Google Scholar] [CrossRef]
- Ghajarnia, N.; Liaghat, A.; Daneshkar Arasteh, P. Comparison and evaluation of high resolution precipitation estimation products in Urmia Basin-Iran. Atmos. Res. 2015, 158–159, 50–65. [Google Scholar] [CrossRef]
- Khan, S.I.K.; Hong, H.; Gourley, J.J.; Khattak, M.U.K.; Yong, B.; Vergara, H.J. Evaluation of three high-resolution satellite precipitation estimates: Potential for monsoon monitoring over Pakistan. Adv. Space Res. 2014, 54, 670–684. [Google Scholar] [CrossRef]
- Zhao, T.B. Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily precipitation over China. Int. J. Climatol. 2014, 34, 2749–2762. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, K.; Hong, Y.; Zhao, Q.H.; Qin, H.Q.; Xu, Y.S.; Xue, X.W.; Chen, S. Evaluation of the TRMM multisatellite precipitation analysis and its applicability in supporting reservoir operation and water resources management in Hanjiang basin, China. J. Hydrol. 2017, 549, 313–325. [Google Scholar] [CrossRef]
- Mantas, V.M.; Liu, Z.; Caro, C.; Pereira, A.J.S.C. Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes. Atmos. Res. 2015, 163, 132–145. [Google Scholar] [CrossRef]
- Jiang, S.H.; Ren, L.L.; Zhou, M.; Yong, B.; Zhang, Y.; Ma, M. Drought monitoring and reliability evaluation of the latest TMPA precipitation data in the Weihe River Basin, Northwest China. J. Arid Land 2017, 9, 256–269. [Google Scholar] [CrossRef]
- Li, D.; Christakos, G.; Ding, X.X.; Wu, J.P. Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China). J. Hydrol. 2017. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Tan, M.L.; Chua, V.P.; Tan, K.C.; Brindha, K. Evaluation of TMPA 3B43 and NCEP-CFSR precipitation products in drought monitoring over Singapore. Int. J. Remote Sens. 2018, 39, 2089–2104. [Google Scholar] [CrossRef]
- Zeng, H.W.; Li, L.J.; Li, J.U. The evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) in drought monitoring in the Lancang River Basin. J. Geogr. Sci. 2012, 22, 273–282. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Carrao, H.; Singleton, A.; Vogt, J. Monitoring Drought Conditions and Their Uncertainties in Africa Using TRMM Data. J. Appl. Meteorol. Climatol. 2012, 51, 1867–1874. [Google Scholar] [CrossRef]
- Gao, X.R.; Zhao, Q.; Zhao, X.N.; Wu, P.T.; Pan, W.X.; Gao, X.D.; Sun, M. Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Sci. Total Environ. 2017, 595, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bian, Y. Building a Harmonious Relationship between Water Resource and the Environment on the Loess Plateau: How to Restore Its Vegetation. In Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011. [Google Scholar] [CrossRef]
- Liu, Z.P.; Wang, Y.Q.; Shao, M.G.; Jia, X.X.; Li, X.L. Spatiotemporal analysis of multiscalar drought characteristics across the Loess Plateau of China. J. Hydrol. 2016, 534, 281–299. [Google Scholar] [CrossRef]
- Sun, C.F.; Ma, Y.Y. Effects of non-linear temperature and precipitation trends on loess plateau droughts. Quat. Int. 2015, 372, 175–179. [Google Scholar] [CrossRef]
- Su, F.G.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, F.L.; Liu, W.Z. Spatially downscaling GCMs outputs to project changes in extreme precipitation and temperature events on the Loess Plateau of China during the 21st Century. Glob. Planet. Chang. 2012, 82, 65–73. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.E.; Shao, H.; Zhang, T.; Zhang, Y.X.; Xu, X.Q.; Zhao, C.H.; Wang, H.J. Response of ecosystem service values to land use change based on GIS and ecological compensation in Loess Plateau. Sci. Soil Water Conserv. 2013, 11, 25–31. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images for temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1435–1445. [Google Scholar] [CrossRef]
- Yuan, W.P.; Zhou, G.S. Comparison between Standardized Precipitation Index and Z_index in China. Acta Phytoecol. Sin. 2004, 28, 523–529. (In Chinese) [Google Scholar]
- Thom, H. A note on the gamma distribution. Mon. Weather Rev. 1958, 86, 117–122. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B.; Saunders, M. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 3, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rand Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Gocic, M.; Trajkovic, S. Analysis of precipitation and drought data in Serbia over the period 1980–2010. J. Hydrol. 2013, 494, 32–42. [Google Scholar] [CrossRef]
- Li, J.; Chen, F.; Cook, E.R. Drought reconstruction for north central China from tree rings: The value of the palmer drought severity index. Int. J. Climatol. 2007, 27, 903–909. [Google Scholar] [CrossRef]
- Blain, G. The influence of nonlinear trends on the power of the trend–free prewhitening approach. Acta Sci. Agron. 2015, 37, 21–28. [Google Scholar] [CrossRef]
- Wang, Y.F.; Chen, Y.; Chen, X.W. Runoff trend detection in the Minjiang River Basin with TFPW-MK method. Sci. Soil Water Conserv. 2013, 11, 96–102. (In Chinese) [Google Scholar]
- Liu, X.; Zhou, W.; Bai, Z. Vegetation coverage change and stability in large open-pit coal mine dumps in China during 1990–2015. Ecol. Eng. 2016, 95, 447–451. [Google Scholar] [CrossRef]
- Li, D.; Fan, J.; Wang, J. Change characteristics and their causes of fractional vegetation coverage (FVC) in Shaanxi Province. Chin. J. Appl. Ecol. 2010, 21, 2896–2903. (In Chinese) [Google Scholar]
- Kimura, R.; Liu, Y.; Takayama, N. Heat and water balances of the bare soil surface and the potential distribution of vegetation in the Loess Plateau, China. J. Arid Environ. 2005, 63, 439–457. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Lin, Y. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Yan, G.X.; Liu, Y.; Chen, X. Evaluating satellite-based precipitation products in monitoring drought events in southwest China. Int. J. Remote Sens. 2018, 39, 3186–3214. [Google Scholar] [CrossRef]
- Tao, H.; Fischer, T.; Zeng, Y.; Fraedrich, K. Evaluation of TRMM 3B43 Precipitation Data for Drought Monitoring in Jiangsu Province, China. Water 2016, 8, 221. [Google Scholar] [CrossRef]
- Yan, L.B. Characteristics of temperature and precipitation on the Loess Plateau from 1961 to 2014. J. Earth Environ. 2015, 6, 276–282. (In Chinese) [Google Scholar]
- Gao, X.R.; Sun, M.; Zhao, Q.; Wu, P.T.; Zhao, X.N.; Pan, W.X.; Wang, Y.B. Actual ET modelling based on the Budyko framework and the sustainability of vegetation water use in the loess plateau. Sci. Total Environ. 2016, 579, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zheng, F.; Liu, W. Spatiotemporal characteristics of reference evapotranspiration during 1961–2009 and its projected changes during 2011–2099 on the Loess Plateau of China. Agric. For. Meteorol. 2012, 154–155, 147–155. [Google Scholar] [CrossRef]
- Liu, Y.F.; Yuan, Z.H.; Li, W.Z.; Kong, W.; Zhang, L.; Wu, L. Extreme and persistent analysis of drought-flood variation in the Loess Plateau during 1961–2013. Geogr. Res. 2017, 36, 345–360. (In Chinese) [Google Scholar]
SPI Value | Category | Probability (%) |
---|---|---|
Extremely wet | 2.3 | |
Severely wet | 4.4 | |
Moderately wet | 9.2 | |
Mildly wet | 34.1 | |
Mild drought | 34.1 | |
Moderate drought | 9.2 | |
Severe drought | 4.4 | |
Extreme drought | 2.3 |
Category | Sufficient Water Condition (FDE < 20%) | Normal Water Condition (20% ≤ FDE < 30%) | Water Scarce Condition (FDE ≥ 30%) |
---|---|---|---|
High vegetation coverage (VGC ≥ 50%) | Medium potential with Level 4 | Normal potential with Level 3 | Lowest potential with Level 1 |
Low vegetation coverage (VGC < 50%) | Highest potential with Level 6 | High potential with Level 5 | Low potential with Level 2 |
Name | R | Bias | RBias | Name | R | Bias | RBias |
---|---|---|---|---|---|---|---|
Menyuan | 0.901 | 4.674 | 0.108 | Hengshan | 0.908 | 3.282 | 0.107 |
Wushaoling | 0.954 | −0.434 | −0.012 | Lishi | 0.973 | 2.420 | 0.060 |
Xining | 0.951 | −2.237 | −0.063 | Taiyuan | 0.969 | 4.449 | 0.126 |
Minhe | 0.888 | 3.795 | 0.136 | Haiyuan | 0.894 | −1.575 | −0.052 |
Jingyuan | 0.875 | 3.100 | 0.171 | Tongxin | 0.765 | 24.940 | 0.120 |
Yuzhong | 0.886 | 1.639 | 0.053 | Guyuan | 0.923 | 0.935 | 0.026 |
Linxia | 0.890 | −5.629 | −0.133 | Huanxian | 0.926 | 4.083 | 0.114 |
Linzhao | 0.912 | −5.269 | −0.126 | Xixian | 0.926 | 4.343 | 0.104 |
Huajialing | 0.934 | −2.083 | −0.053 | Jiexiu | 0.953 | 3.878 | 0.103 |
Wulatehouqi | 0.870 | −0.152 | −0.009 | Linfen | 0.933 | 4.497 | 0.114 |
Baotou | 0.872 | 0.656 | 0.027 | Xiji | 0.905 | 3.083 | 0.095 |
Huhehaote | 0.950 | 1.087 | 0.033 | Pingliang | 0.960 | 1.548 | 0.037 |
Youyu | 0.925 | 2.693 | 0.077 | Xifengzhen | 0.951 | 4.876 | 0.107 |
Linhe | 0.882 | 1.095 | 0.095 | Changwu | 0.860 | 4.246 | 0.086 |
Huinong | 0.789 | 2.656 | 0.194 | Luochuan | 0.911 | −1.299 | −0.025 |
Wutuokeqi | 0.838 | −2.377 | −0.112 | Yuncheng | 0.940 | 4.530 | 0.106 |
Dongsheng | 0.933 | −1.673 | −0.053 | Yangcheng | 0.957 | 4.903 | 0.101 |
Hequ | 0.947 | 7.628 | 0.237 | Hezuo | 0.955 | −2.873 | −0.063 |
Yinchuan | 0.859 | −0.561 | −0.036 | Minxian | 0.939 | 1.685 | 0.036 |
Taole | 0.717 | 3.792 | 0.254 | Wugong | 0.878 | −1.759 | −0.035 |
Wuzai | 0.936 | 1.969 | 0.049 | Huashan | 0.921 | −4.360 | −0.070 |
Xingxian | 0.915 | 2.940 | 0.073 | Sanmenxia | 0.933 | 5.655 | 0.128 |
Zhongning | 0.831 | 0.835 | 0.051 | Lushi | 0.972 | 5.000 | 0.094 |
Yanchi | 0.927 | −2.537 | −0.104 | Mengjin | 0.952 | 3.092 | 0.061 |
Wuqi | 0.889 | 3.868 | 0.099 | Luanchuan | 0.933 | −3.725 | −0.053 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Chen, Q.; Jiao, M.; Wu, P.; Gao, X.; Ma, M.; Hong, Y. The Temporal-Spatial Characteristics of Drought in the Loess Plateau Using the Remote-Sensed TRMM Precipitation Data from 1998 to 2014. Remote Sens. 2018, 10, 838. https://doi.org/10.3390/rs10060838
Zhao Q, Chen Q, Jiao M, Wu P, Gao X, Ma M, Hong Y. The Temporal-Spatial Characteristics of Drought in the Loess Plateau Using the Remote-Sensed TRMM Precipitation Data from 1998 to 2014. Remote Sensing. 2018; 10(6):838. https://doi.org/10.3390/rs10060838
Chicago/Turabian StyleZhao, Qi, Qianyun Chen, Mengyan Jiao, Pute Wu, Xuerui Gao, Meihong Ma, and Yang Hong. 2018. "The Temporal-Spatial Characteristics of Drought in the Loess Plateau Using the Remote-Sensed TRMM Precipitation Data from 1998 to 2014" Remote Sensing 10, no. 6: 838. https://doi.org/10.3390/rs10060838
APA StyleZhao, Q., Chen, Q., Jiao, M., Wu, P., Gao, X., Ma, M., & Hong, Y. (2018). The Temporal-Spatial Characteristics of Drought in the Loess Plateau Using the Remote-Sensed TRMM Precipitation Data from 1998 to 2014. Remote Sensing, 10(6), 838. https://doi.org/10.3390/rs10060838