Modified Multi-Mode Target Tracker for High-Frequency Surface Wave Radar
Abstract
:1. Introduction
- (a)
- One target may have several measurements and one measurement may correspond to many targets, which may cause false detections;
- (b)
- The actual ground range calculation formula for each propagation modes are different, therefore, misjudgment of the measurement’s propagation mode will lead to a false estimation of the target’s true position; and
- (c)
- One target may form multiple tracks.
2. Multiple Propagation Modes’ Phenomenon Analysis
3. Modified Multi-Mode PDA Tracker for HFSWR
3.1. Target Dynamical Model
3.2. Measurement Model
3.3. Initiation
3.4. Event Probabilities
3.5. State Estimator
4. Numerical Simulation and Actual Data Processing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thayaparan, T.; MacDougall, J. Evaluation of ionospheric sporadic-E clutter in an arctic environment for the assessment of high-frequency surface-wave radar surveillance. IEEE Trans. Geosci. Remote Sens. 2005, 33, 1180–1188. [Google Scholar] [CrossRef]
- Wu, M.; Wen, B.Y.; Zhou, H. Ionospheric Clutter Suppression in HF Surface Wave Radar. J. Electromagn. Wave Appl. 2009, 23, 1265–1272. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, F.; Zhao, C.; He, C. An Orthogonal Projection Algorithm to Suppress Interference in High-Frequency Surface Wave Radar. Remote Sens. 2018, 10, 403. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, Q. A new way of estimating ionospheric virtual height based on island multipath echoes in HFSWR. In Proceedings of the Radar Conference, Seattle, WA, USA, 8–12 May 2017; pp. 576–580. [Google Scholar]
- Xianrong, W.; Hengyu, K.; Biyang, W. Adaptive ionospheric clutter suppression based on subarrays in monostatic HF surface wave radar. IEE Proc.-Radar Sonar Navig. 2005, 152, 89–96. [Google Scholar] [CrossRef]
- Tian, W.; Li, G.; Xu, R. Ionosphere Interference Suppression for HFSWR using L-Shape Array. In Proceedings of the 2010 2nd International Conference on Signal Processing System, Dalian, China, 5–7 July 2010; pp. V1-484–V1-488. [Google Scholar]
- Riddolls, R.J.; Adve, R.S. Two-dimensional adaptive processing for ionospheric clutter mitigation in High Frequency Surface Wave Radar. In Proceedings of the Radar Conference, Barcelona, Spain, 26–29 April 2009; pp. 1–4. [Google Scholar]
- Ponsford, A.M.; Wang, J. A review of high frequency surface wave radar for detection and tracking of ships. Turk. J. Electr. Eng. Comput. Sci. 2010, 18, 409–428. [Google Scholar]
- Dzvonkovskaya, A.; Gurgel, K.W.; Rohling, H.; Thomas, S. HF radar WERA application for ship detection and tracking. Eur. J. Navig. 2009, 7, 18–25. [Google Scholar]
- Huang, X.J.; Wen, B.Y.; Ding, F. Ship detection and tracking using multi-frequency HFSWR. IEICE Electron. Express 2010, 7, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Braca, P.; Grasso, R.; Vespe, M.; Maresca, S.; Horstmann, J. Application of the JPDA-UKF to HFSW radars for maritime situational awareness. In Proceedings of the IEEE International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 2585–2592. [Google Scholar]
- Chan, H.C. Iceberg Detection and Tracking Using High Frequency Surface Wave Radar; Defense Research Establishment Ottawa: Ottawa, ON, Canada, 1997. [Google Scholar]
- Bar-Shalom, Y.; Daum, F.; Huang, J. The probabilistic data association filter. IEEE Control Syst. Mag. 2009, 29, 82–100. [Google Scholar] [CrossRef]
- Chen, B.; Tugnait, J.K. Tracking of multiple maneuvering targets in clutter using IMM/JPDA filtering and fixed-lag smoothing. Automatica 2001, 37, 239–249. [Google Scholar] [CrossRef]
- Vivone, G.; Braca, P.; Horstmann, J. Konwledge-based multi-target ship tracking for HF surface wave radar systems. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3931–3949. [Google Scholar] [CrossRef]
- Scala, B.L.; Pulford, G. Viterbi Data Association Tracking for Over-the-Horizon Radar. In Proceedings of the International Radar Symposium, Munich, Germany, 15–17 September 1998; pp. 1155–1164. [Google Scholar]
- Kirubarajan, T.; Bar-Shalom, Y. Probabilistic data association techniques for target tracking in clutter. Proc. IEEE 2004, 92, 536–557. [Google Scholar] [CrossRef]
- Zhang, Y.; Ran, J. Dynamic weighted track fusion algorithm based on track comparability degree. In Proceedings of the IEEE International Conference on Information Theory and Information Security, Beijing, China, 17–19 December 2010; pp. 710–713. [Google Scholar]
- Tian, X.; Barshalom, Y. Sequential track-to-track fusion algorithm: Exact solution and approximate implementation. In Proceedings of SPIE; The International Society for Optical Engineering: Washington, DC, USA, 2008; Volume 6969, p. 696910. [Google Scholar]
- Streit, R.L.; Luginbuhl, T.E. Probabilistic Multi-Hypothesis Tracking; Naval Underwater Systems Center: Newport, RI, USA, 1995. [Google Scholar]
- Pulford, G.W.; Evans, R.J. A multipath data association tracker for over-the-horizon radar. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 1165–1183. [Google Scholar] [CrossRef]
- Pulford, G.; Scala, B.L. Over-The-Horizon Radar Tracking Using the Viterbi Algorithm Second Report to HFRD; Cooperative Research Center for Sensor Signal and Information Processing (CSSIP), University of Melbourne: Melbourne, Australia, 1995. [Google Scholar]
- Bergman, N.; Doucet, A. Markov chain Monte Carlo data association for target tracking. IEEE Trans. Autom. Control 2009, 54, 481–497. [Google Scholar]
- Zhang, X.; Yao, D.; Yang, Q.; Dong, Y.; Deng, W. Knowledge-Based Generalized Side-Lobe Canceller for Ionospheric Clutter Suppression in HFSWR. Remote Sens. 2018, 10, 104. [Google Scholar] [CrossRef]
- Rotheram, S. Ground-wave propagation Part 2: Theory for medium and long distances and reference propagation curves. IEE Proc. 1981, 128, 285–295. [Google Scholar] [CrossRef]
- Consultative Committee of International Radio (CCIR). Second CCIR Computer-Based Interim Method for Estimating Sky-Wave Field Strength and Transmission Loss at Frequencies between 2 and 30 MHz; CCIR Recommendation 252-2; CCIR: Geneva, Switzerland, 1992. [Google Scholar]
Time | Path Length/km | Ground Distance/km | Velocity m/s | Azimuth/Degrees |
---|---|---|---|---|
10:57:56 | 974 | 934 | 33.8 | −27 |
10:58:03 | 973 | 933 | 34.1 | −27 |
10:58:10 | 971 | 930 | 33.9 | −28 |
10:58:17 | 971 | 931 | 33.6 | −28 |
10:58:24 | 971 | 930 | 33.3 | −27 |
10:58:31 | 969 | 928 | 33.3 | −27 |
Time | Path Length/km | Ground Distance/km | Velocity m/s | Azimuth/Degrees |
---|---|---|---|---|
10:57:49 | 1013 | 932 | 33.6 | −29 |
10:57:56 | 1013 | 932 | 33.2 | −28 |
10:58:03 | 1010 | 929 | 34.4 | −27 |
10:58:10 | 1013 | 932 | 33.8 | −25 |
Time | Ground Distance/km | Velocity m/s | Azimuth/Degrees |
---|---|---|---|
10:57:49 | - | - | - |
10:57:56 | 2 | 0.6 | 1 |
10:58:03 | 4 | 0.3 | 0 |
10:58:10 | 1 | 0.1 | 3 |
10:58:17 | - | - | - |
10:58:24 | - | - | - |
10:58:31 | - | - | - |
Index | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Mode | GG | GS | SG | SS | SS |
- |
Label | Parameter | Value |
---|---|---|
T | Revisit time | 10 (s) |
L | Total number of iterations | 50 |
The initial state of target | 100 km, 0.15 km/s, 5 deg, 0.001 deg/s | |
Range noise standard deviation | 10−6 (km) | |
Bearing filter noise standard deviation | 5 × 10−5 (deg) | |
Range error variance | 0.0025 (km2) | |
Velocity error variance | 0.0001 ((m/s)2) | |
Azimuth error variance | 0.04 (deg2) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Zhang, X.; Yang, Q. Modified Multi-Mode Target Tracker for High-Frequency Surface Wave Radar. Remote Sens. 2018, 10, 1061. https://doi.org/10.3390/rs10071061
Zhao M, Zhang X, Yang Q. Modified Multi-Mode Target Tracker for High-Frequency Surface Wave Radar. Remote Sensing. 2018; 10(7):1061. https://doi.org/10.3390/rs10071061
Chicago/Turabian StyleZhao, Mengxiao, Xin Zhang, and Qiang Yang. 2018. "Modified Multi-Mode Target Tracker for High-Frequency Surface Wave Radar" Remote Sensing 10, no. 7: 1061. https://doi.org/10.3390/rs10071061
APA StyleZhao, M., Zhang, X., & Yang, Q. (2018). Modified Multi-Mode Target Tracker for High-Frequency Surface Wave Radar. Remote Sensing, 10(7), 1061. https://doi.org/10.3390/rs10071061