Comparison of TMPA-3B42RT Legacy Product and the Equivalent IMERG Products over Mainland China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. TMPA-3B42RT Legacy Product and the Equivalent IMERG Products
2.3. Rain Gauge Measurement
2.4. Methods
3. Results
3.1. Performance of Satellite Rainfall Products at Different Rainfall Intensities
3.2. Spatial Differences of the Performance of Satellite Rainfall Products
3.3. Temporal Characteristics of the Performance of Satellite Rainfall Products
4. Discussion
4.1. Dependence of the Performance of Satellite Rainfall Products
4.2. Cause of the Performance Differences
4.3. Uncertainty of the Evaluation Results
5. Conclusions
- (1)
- Both 3B42RT and IMERG products overestimated light rain, while underestimated moderate rain to heavy rainstorm, with an increase in mean (absolute) error and a decrease in relative mean absolute error. The 3B42RT had smaller error magnitude in estimating light rainstorm and moderate rainstorm, while the equivalent IMERG products performed better in estimating light rain to heavy rain, and heavy rainstorm.
- (2)
- Higher rainfall intensity associated with better detection. Threshold values of <2.0 mm/day, below which 3B42RT is unreliable at detecting rain, and <1.0 mm/day, below which both 3B42RT and IMERG products are more likely to cause false alarms, were found.
- (3)
- Generally, both 3B42RT and IMERG products performed better in wet areas with relatively heavy rainfall intensity and/or during wet season than in dry areas with relatively light rainfall intensity and/or during dry season. Compared with 3B42RT, the IMERG-E and IMERG-L constantly improved the performance in space and time, but it is not obvious in dry areas and/or during dry season.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prakash, S.; Mitra, A.K.; Pai, D.S.; AghaKouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
- Tekeli, A.E.; Fouli, H. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia. J. Hydrol. 2016, 541, 471–479. [Google Scholar] [CrossRef]
- Li, D.; Christakos, G.; Ding, X.X.; Wu, J.P. Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China). J. Hydrol. 2018, 556, 1139–1152. [Google Scholar] [CrossRef]
- Hou, Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.M.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.J.; Stepanian, P.M. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res. 2016, 176–177, 121–133. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.; Hong, Y. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol. 2013, 500, 157–169. [Google Scholar] [CrossRef]
- Collischonn, B.; Collischonn, W.; Tucci, C.E.M. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. J. Hydrol. 2008, 360, 207–216. [Google Scholar] [CrossRef]
- Islam, T.; Rico-Ramirez, M.A.; Han, D.W.; Srivastava, P.K.; Ishak, A.M. Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network. J. Atmos. Sol.-Terr. Phys. 2012, 77, 194–208. [Google Scholar] [CrossRef]
- Pombo, S.; de Oliveira, R.P. Evaluation of extreme precipitation estimates from TRMM in Angola. J. Hydrol. 2015, 523, 663–679. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Al-Zahrani, M.A.; Sharif, H.O. Assessment of global precipitation measurement satellite products over Saudi Arabia. J. Hydrol. 2018, 559, 1–12. [Google Scholar] [CrossRef]
- Chappell, A.; Renzullo, L.J.; Raupach, T.H.; Haylock, M. Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia. J. Hydrol. 2013, 493, 105–114. [Google Scholar] [CrossRef]
- Schneebeli, M.; Dawes, N.; Lehning, M.; Berne, A. High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps. J. Appl. Meteorol. Clim. 2013, 52, 378–394. [Google Scholar] [CrossRef]
- Kidd, C.; Kniveton, D.R.; Todd, M.C.; Bellerby, T.J. Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms. J. Hydrometeorol. 2003, 4, 1088–1104. [Google Scholar] [CrossRef]
- Turk, F.J.; Miller, S.D. Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1059–1069. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.J.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM multi-satellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hsu, K.L.; Gupta, H.V.; Gao, X.G.; Sorooshian, S. Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res. 1999, 35, 1605–1618. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P.P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Yong, B.; Liu, D.; Gourley, J.J.; Tian, Y.D.; Huffman, G.J.; Ren, L.L.; Hong, Y. Global view of real-time TRMM Multisatellite Precipitation Analysis: Implications for its successor Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2015, 96, 1–15. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T. Real-Time TRMM Multi-Satellite Precipitation Analysis Data Set Documentation. NASA Goddard Space Flight Center. Available online: https://pmm.nasa.gov/sites/default/files/document_files/3B4XRT_doc_V7_180426.pdf (accessed on 28 May 2018).
- Kim, K.Y.; Park, J.M.; Baik, J.J.; Choi, M.H. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res. 2017, 187, 95–105. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.Q.; Yang, L.; Hu, H.C.; Lu, H.; Hou, A.Z. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos. 2017, 122, 1–15. [Google Scholar] [CrossRef]
- Tang, G.Q.; Ma, Y.Z.; Long, D.; Zhong, L.Z.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Zhao, S.Q. A new scheme for comprehensive physical regionalization in China. Acta Geogr. Sin. 1983, 38, 1–10. [Google Scholar]
- Bothe, O.; Fraedrich, K.; Zhu, X.H. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol. 2012, 108, 345–354. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an Artificial Neural Network Cloud Classification System. J. Appl. Meteorol. 2004, 43, 1834–1852. [Google Scholar] [CrossRef]
- Joyce, R.J.; Xie, P.P. Kalman Filter-based CMORPH. J. Hydrometeorol. 2011, 12, 1547–1563. [Google Scholar] [CrossRef]
- Tang, G.Q.; Behrangi, A.; Long, D.; Li, C.M.; Hong, Y. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol. 2018, 559, 294–306. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.L.; Moradkhani, H.; Sorooshian, S. Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res. 2006, 42, 1–15. [Google Scholar] [CrossRef]
- Pipunic, R.C.; Ryu, D.; Costelloe, J.F.; Su, C.H. An evaluation and regional error modeling methodology for near-real-time satellite rainfall data over Australia. J. Geophys. Res. Atmos. 2015, 120, 10767–10783. [Google Scholar] [CrossRef]
- Chen, F.R.; Li, X. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over Mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef]
- Tan, M.L.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Res. Atmos. 2017, 9, 720. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Duan, Z.; Cracknell, A.P.; Chaplot, V. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens. 2015, 7, 1504–1528. [Google Scholar] [CrossRef]
- Villarini, G.; Krajewski, W.F. Evaluation of the research version TMPA three hourly 0.25°×0.25° rainfall estimates over Oklahoma. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Chen, S.; Hong, Y.; Cao, Q.; Gourley, J.J.; Kirstetter, P.E.; Yong, B.; Tian, Y.D.; Zhang, Z.X.; Shen, Y.; Hu, J.J.; et al. Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China. J. Geophys. Res. Atmos. 2013, 118, 13060–13074. [Google Scholar] [CrossRef]
- Zhao, H.G.; Yang, B.G.; Yang, S.T.; Huang, Y.C.; Dong, G.T.; Bai, J.; Wang, Z.W. Systematical estimation of GPM-based global satellite mapping of precipitation products over China. Atmos. Res. 2018, 201, 206–217. [Google Scholar] [CrossRef]
- Zhao, H.G.; Yang, S.T.; Wang, Z.W.; Zhou, X.; Luo, Y.; Wu, L.N. Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological model in the Weihe River catchment in China. J. Geogr. Sci. 2015, 25, 177–195. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Kirstetter, P.E.; Hong, Y.E.; Gourley, J.J.; Huffman, G.J.; Petersen, W.A.; Xue, X.W.; Schwaller, M.R. To what extent is the day 1 GPM IMERG satellite precipitation estimate improved as compared to TRMM TMPART? J. Geophys. Res. Atmos. 2018, 123, 1694–1707. [Google Scholar]
- Amitai, E.; Liort, X.; Liao, L.; Meneghini, R. A framework for global verification of space-borne radar estimates of precipitation based on rain type classification. In Proceedings of the 2nd TRMM International Science Conference, Nara, Japan, 6–10 September 2004. [Google Scholar]
- Grody, N.C.; Weng, F.Z. Microwave emission and scattering from deserts: Theory compared with satellite measurements. IEEE Trans. Geosci. Remote Sens. 2008, 46, 361–375. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Pretty, G.W. The status of satellite-based rainfall estimation over land. Remote Sens. Environ. 1995, 51, 125–137. [Google Scholar] [CrossRef]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 1–18. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-Satellite Retrievals for GPM (IMERG) Technical Documentation. NASA Goddard Space Flight Center. Available online: https://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc_180207.pdf (accessed on 28 May 2018).
- Adam, J.C.; Lettenmaier, D.P. Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res. Atmos. 2003, 108, 1–9. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Zhang, Y.S.; Yang, D.Q.; Farhan, S.B. Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region. Int. J. Climatol. 2015, 35, 1201–1211. [Google Scholar] [CrossRef]
- Jensen, N.E.; Pedersen, L. Spatial variability of Rainfall: Variations within a single radar pixel. Atmos. Res. 2005, 77, 269–277. [Google Scholar] [CrossRef]
- Villarini, G.; Mandapaka, P.V.; Krajewski, W.F.; Moore, R.J. Rainfall and sampling errors: A rain gauge perspective. J. Geophys. Res. Atmos. 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Zhang, X.X.; Anagnostou, E.N.; Schwartz, C.S. NWP-based adjustment of IMERG precipitation for flood-inducing complex terrain storms: evaluation over CONUS. Remote Sens. 2018, 10, 642. [Google Scholar] [CrossRef]
Metrics | Equation | Perfect Value | Unit |
---|---|---|---|
Correlation Coefficient | 1 | NA | |
Mean Error | 0 | mm | |
Mean Absolute Error | 0 | mm | |
Relative Mean Absolute Error | 0 | % | |
Probability of Detection | 1 | NA | |
False Alarm Ratio | 0 | NA | |
Critical Success Index | 1 | NA |
Observation (mm/day) | 3B42RT | IMERG-E | IMERG-L | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | ME | MAE | RMAE | CC | ME | MAE | RMAE | CC | ME | MAE | RMAE | |
0.1–9.9 | 0.23 | 2.13 | 4.89 | 190.23 | 0.29 | 1.05 | 3.51 | 136.88 | 0.32 | 0.90 | 3.32 | 129.69 |
10.0–24.9 | 0.15 | −0.66 | 13.96 | 88.80 | 0.16 | −2.85 | 11.58 | 73.66 | 0.17 | −2.83 | 11.30 | 71.89 |
25.0–49.9 | 0.15 | −6.72 | 22.87 | 66.52 | 0.14 | −10.33 | 21.38 | 62.21 | 0.15 | −10.19 | 21.04 | 61.23 |
50.0–99.9 | 0.17 | −19.74 | 36.37 | 55.03 | 0.14 | −26.19 | 37.54 | 56.81 | 0.15 | −25.72 | 37.07 | 56.10 |
100.0–249.9 | 0.20 | −58.26 | 71.71 | 53.13 | 0.20 | −66.07 | 76.07 | 56.35 | 0.19 | −65.37 | 76.23 | 56.47 |
≥250.0 | -0.19 | −201.02 | 201.02 | 65.92 | −0.12 | −180.68 | 190.00 | 62.30 | −0.08 | −184.26 | 186.51 | 61.16 |
Observation (mm/day) | Hits + Misses | Hits | POD | ||||||
---|---|---|---|---|---|---|---|---|---|
3B42RT | IMERG-E | IMERG-L | 3B42RT | IMERG-E | IMERG-L | 3B42RT | IMERG-E | IMERG-L | |
0.1–9.9 | 148,089 | 149,877 | 149,877 | 70,524 | 103,995 | 106,527 | 0.48 | 0.69 | 0.71 |
10.0–24.9 | 29,695 | 29,920 | 29,920 | 23,856 | 28,254 | 28,632 | 0.80 | 0.94 | 0.96 |
25.0–49.9 | 11,848 | 11,893 | 11,893 | 10,910 | 11,677 | 11,722 | 0.92 | 0.98 | 0.99 |
50.0–99.9 | 3,918 | 3,923 | 3,923 | 3,800 | 3,876 | 3,889 | 0.97 | 0.99 | 0.99 |
100.0–249.9 | 673 | 674 | 674 | 661 | 673 | 674 | 0.98 | 1.00 | 1.00 |
≥250.0 | 22 | 22 | 22 | 22 | 22 | 22 | 1.00 | 1.00 | 1.00 |
All Samples | 194,245 | 196,309 | 196,309 | 109,773 | 148,497 | 151,466 | 0.57 | 0.76 | 0.77 |
Estimate (mm/day) | Hits + False | False | FAR | ||||||
---|---|---|---|---|---|---|---|---|---|
3B42RT | IMERG-E | IMERG-L | 3B42RT | IMERG-E | IMERG-L | 3B42RT | IMERG-E | IMERG-L | |
0.1–9.9 | 109,084 | 216,613 | 214,820 | 46,619 | 108,990 | 103,820 | 0.43 | 0.50 | 0.48 |
10.0–24.9 | 32,598 | 28,276 | 27,682 | 6,308 | 2,134 | 1,439 | 0.19 | 0.08 | 0.05 |
25.0–49.9 | 15,353 | 11,063 | 10,175 | 1,567 | 649 | 150 | 0.10 | 0.06 | 0.01 |
50.0–99.9 | 6,298 | 3,609 | 3,468 | 305 | 28 | 9 | 0.05 | 0.01 | 0.00 |
100.0–249.9 | 1,216 | 671 | 675 | 25 | 1 | 1 | 0.02 | 0.00 | 0.00 |
≥250.0 | 20 | 25 | 25 | 0 | 0 | 0 | 0.00 | 0.00 | 0.00 |
All Samples | 164,569 | 260,257 | 256,845 | 54,824 | 111,802 | 105,419 | 0.33 | 0.43 | 0.41 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Xu, Y.; Wang, S. Comparison of TMPA-3B42RT Legacy Product and the Equivalent IMERG Products over Mainland China. Remote Sens. 2018, 10, 1778. https://doi.org/10.3390/rs10111778
Wu L, Xu Y, Wang S. Comparison of TMPA-3B42RT Legacy Product and the Equivalent IMERG Products over Mainland China. Remote Sensing. 2018; 10(11):1778. https://doi.org/10.3390/rs10111778
Chicago/Turabian StyleWu, Lei, Youpeng Xu, and Siyuan Wang. 2018. "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IMERG Products over Mainland China" Remote Sensing 10, no. 11: 1778. https://doi.org/10.3390/rs10111778