Adaptive Contrast Enhancement for Infrared Images Based on the Neighborhood Conditional Histogram
Abstract
:1. Introduction
2. Review of CLAHE
3. Proposed Method
3.1. Neighborhood Conditional Histogram
3.2. Improved CLAHE
3.3. Optimized Local Contrast Enhancement
Algorithm 1: Adaptive contrast enhancement |
Input: original infrared image |
1. Divide the image into multiple equal-sized non-overlapped sub-blocks |
2. For each sub-block, extract the neighborhood conditional histogram based on Equation (7) |
3. Obtain the global mapping function and the original local mapping function based on |
4. Compute the updated local mapping function based on and |
5. Obtain improved CLAHE result based on |
6. Map the image with to get the global enhanced result |
7. Enhance the local contrast combining and |
Output: Enhanced result |
4. Experimental Results
4.1. The setting of Block Size and Threshold
4.2. Qualitative Evaluation
4.3. Quantitative Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, M.Y.; Tisse, C.L. Effective Strip Noise Removal for Low-Textured Infrared Images Based on 1-D Guided Filtering. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 2176–2188. [Google Scholar] [CrossRef]
- Ring, E.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33. [Google Scholar] [CrossRef]
- Liu, C.; Sui, X.; Liu, Y.; Kuang, X.; Gu, G. FPN estimation based nonuniformity correction for infrared imaging system. Infrared Phys. Technol. 2018, 96, 22–29. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; Tang, Z.; Long, G.; Yu, Q. Real-time visual enhancement for infrared small dim targets in video. Infrared Phys. Technol. 2017, 83, 217–226. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, J.-H.; Jung, S.-W.; Ko, S.-J.; Noh, C.-K. Novel contrast enhancement scheme for infrared image using detail-preserving stretching. OPTICE 2011, 50, 077002. [Google Scholar] [CrossRef]
- Huang, J.; Ma, Y.; Zhang, Y.; Fan, F. Infrared image enhancement algorithm based on adaptive histogram segmentation. Appl. Opt. 2017, 56, 9686–9697. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Pearson-Prentice-Hall: Upper Saddle River, NJ, USA, 2004; Volume 624. [Google Scholar]
- Song, K.S.; Kang, M.G. Optimized Tone Mapping Function for Contrast Enhancement considering Human Visual Perception System. IEEE Trans. Circuits Syst. Video Technol. 2018. [Google Scholar] [CrossRef]
- Lin, C.-L. An approach to adaptive infrared image enhancement for long-range surveillance. Infrared Phys. Technol. 2011, 54, 84–91. [Google Scholar] [CrossRef]
- Vickers, V.E. Plateau equalization algorithm for real-time display of high-quality infrared imagery. OPTICE 1996, 35, 1921–1927. [Google Scholar] [CrossRef]
- Wang, B.-J.; Liu, S.-Q.; Li, Q.; Zhou, H.-X. A real-time contrast enhancement algorithm for infrared images based on plateau histogram. Infrared Phys. Technol. 2006, 48, 77–82. [Google Scholar] [CrossRef]
- Liang, K.; Ma, Y.; Xie, Y.; Zhou, B.; Wang, R. A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization. Infrared Phys. Technol. 2012, 55, 309–315. [Google Scholar] [CrossRef]
- Li, S.; Jin, W.; Li, L.; Li, Y. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization. Infrared Phys. Technol. 2018, 90, 164–174. [Google Scholar] [CrossRef]
- Kim, Y.-T. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 1997, 43, 1–8. [Google Scholar]
- Wang, Y.; Chen, Q.; Zhang, B. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 1999, 45, 68–75. [Google Scholar] [CrossRef]
- Chen, S.-D.; Ramli, A.R. Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 2003, 49, 1301–1309. [Google Scholar] [CrossRef]
- Wan, M.; Gu, G.; Qian, W.; Ren, K.; Chen, Q.; Maldague, X. Infrared Image Enhancement Using Adaptive Histogram Partition and Brightness Correction. Remote Sens. 2018, 10, 682. [Google Scholar] [CrossRef]
- Arici, T.; Dikbas, S.; Altunbasak, Y. A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process. 2009, 18, 1921–1935. [Google Scholar] [CrossRef]
- Xiao, B.; Tang, H.; Jiang, Y.; Li, W.; Wang, G. Brightness and contrast controllable image enhancement based on histogram specification. Neurocomputing 2018, 275, 2798–2809. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast limited adaptive histogram equalization. Graph. Gems 1994, 474–485. [Google Scholar]
- Kim, J.-Y.; Kim, L.-S.; Hwang, S.-H. An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans. Circuits Syst. Video Technol. 2001, 11, 475–484. [Google Scholar]
- Branchitta, F.; Diani, M.; Corsini, G.; Porta, A. Dynamic-range compression and contrast enhancement in infrared imaging systems. OPTICE 2008, 47, 076401. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Z. Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization. Infrared Physics Technol. 2017, 86, 59–65. [Google Scholar] [CrossRef]
- Li, S.; Jin, W.; Wang, X.; Li, L.; Liu, M. Contrast Enhancement Algorithm for Outdoor Infrared Images based on Local Gradient-grayscale Statistical Feature. IEEE Access 2018, 6. [Google Scholar] [CrossRef]
- Yuan, L.T.; Swee, S.K.; Ping, T.C. Infrared image enhancement using adaptive trilateral contrast enhancement. Pattern Recognit. Lett. 2015, 54, 103–108. [Google Scholar] [CrossRef]
- Branchitta, F.; Diani, M.; Corsini, G.; Romagnoli, M. New technique for the visualization of high dynamic range infrared images. OPTICE 2009, 48, 096401. [Google Scholar] [CrossRef]
- Zuo, C.; Chen, Q.; Liu, N.; Ren, J.; Sui, X. Display and detail enhancement for high-dynamic-range infrared images. OPTICE 2011, 50, 127401. [Google Scholar] [CrossRef]
- Li, Y.; Hou, C.; Tian, F.; Yu, H.; Guo, L.; Xu, G.; Shen, X.; Yan, W. Enhancement of infrared image based on the retinex theory. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 3315–3318. [Google Scholar]
- Zhan, B.; Wu, Y. Infrared image enhancement based on wavelet transformation and retinex. In Proceedings of the 2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanjing, China, 26–28 August 2010; pp. 313–316. [Google Scholar]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Singh, R.; Khare, A. Fusion of multimodal medical images using Daubechies complex wavelet transform–A multiresolution approach. Inf. Fusion 2014, 19, 49–60. [Google Scholar] [CrossRef]
- Liu, C.; Sui, X.; Kuang, X.; Liu, Y.; Gu, G.; Chen, Q. Optimized Contrast Enhancement for Infrared Images Based on Global and Local Histogram Specification. Remote Sens. 2019, 11, 849. [Google Scholar] [CrossRef]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.B.; Zuiderveld, K. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Unal, B.; Akoglu, A. Resource efficient real-time processing of contrast limited adaptive histogram equalization. In Proceedings of the 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–8. [Google Scholar]
- Jenifer, S.; Parasuraman, S.; Kadirvelu, A. Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm. Appl. Soft Comput. 2016, 42, 167–177. [Google Scholar] [CrossRef]
- Chang, Y.; Jung, C.; Ke, P.; Song, H.; Hwang, J. Automatic Contrast Limited Adaptive Histogram Equalization with Dual Gamma Correction. IEEE Access 2018, 6, 11782–11792. [Google Scholar] [CrossRef]
- Wu, Z.; Fuller, N.; Theriault, D.; Betke, M. A thermal infrared video benchmark for visual analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 201–208. [Google Scholar]
- Panetta, K.; Gao, C.; Agaian, S. No reference color image contrast and quality measures. IEEE Trans. Consum. Electron. 2013, 59, 643–651. [Google Scholar] [CrossRef]
- Rivera, A.R.; Ryu, B.; Chae, O. Content-aware dark image enhancement through channel division. IEEE Trans. Image Process. 2012, 21, 3967–3980. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhou, J.; Wu, Q. No-reference quality index for image blur. J. Comput. Appl. 2010, 30, 921–924. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, J.; Hu, H.-M.; Li, B. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 2013, 22, 3538–3548. [Google Scholar] [CrossRef]
- ZWang, Z. Image quality assessment from error measurement to structural similarity. IEEE Trans. Image Process. 2004, 13, 600r612. [Google Scholar]
Metrics | Methods | Infrared Images in the Experiments | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Building1 | Hills | Building2 | Sky | Trees | Windows | Road | Students | |||
EMEE | CLAHE | 0.2000 | 0.1963 | 0.5770 | 0.3317 | 0.4823 | 0.5753 | 1.4999 | 0.3592 | 0.5277 |
BCCE | 0.4388 | 0.4486 | 0.7091 | 0.6456 | 1.0899 | 1.5121 | 1.8979 | 0.4839 | 0.9032 | |
ABMHE | 1.4180 | 1.8156 | 1.6300 | 1.8697 | 2.5899 | 1.4987 | 1.6859 | 0.7242 | 1.6540 | |
LGGSF | 0.2960 | 0.2153 | 0.6360 | 0.1497 | 1.2646 | 0.9432 | 1.1786 | 0.1701 | 0.6067 | |
GLHS | 0.3809 | 0.2377 | 2.8797 | 0.4055 | 1.5728 | 1.9295 | 0.5263 | 0.3730 | 1.0382 | |
Proposed | 3.3892 | 1.8031 | 5.5496 | 2.1652 | 5.9257 | 4.8795 | 2.5674 | 0.8721 | 3.3940 | |
SI | CLAHE | 0.6873 | 0.6851 | 0.6887 | 0.6885 | 0.6569 | 0.8021 | 0.6476 | 0.7586 | 0.7019 |
BCCE | 0.6449 | 0.6388 | 0.6672 | 0.5907 | 0.6476 | 0.7943 | 0.6197 | 0.5595 | 0.6453 | |
ABMHE | 0.7930 | 0.8563 | 0.6541 | 0.9103 | 0.7924 | 0.8197 | 0.8676 | 0.8211 | 0.8143 | |
LGGSF | 0.8347 | 0.9283 | 0.7537 | 0.9778 | 0.6575 | 0.8341 | 0.7031 | 0.8551 | 0.8180 | |
GLHS | 0.9577 | 0.9494 | 0.8608 | 0.9793 | 0.9027 | 0.9211 | 0.9761 | 0.9094 | 0.9321 | |
Proposed | 0.8607 | 0.8996 | 0.7503 | 0.9625 | 0.7247 | 0.8490 | 0.8999 | 0.9520 | 0.8623 | |
NRSS | CLAHE | 0.8704 | 0.8442 | 0.8535 | 0.8483 | 0.7960 | 0.7682 | 0.7734 | 0.8115 | 0.8207 |
BCCE | 0.9237 | 0.9038 | 0.9092 | 0.8981 | 0.8609 | 0.8202 | 0.8723 | 0.8806 | 0.8836 | |
ABMHE | 0.8578 | 0.8343 | 0.8425 | 0.8263 | 0.7780 | 0.8141 | 0.7656 | 0.7856 | 0.8130 | |
LGGSF | 0.8925 | 0.8797 | 0.8748 | 0.8770 | 0.8474 | 0.8257 | 0.8491 | 0.8684 | 0.8643 | |
GLHS | 0.9613 | 0.9583 | 0.9398 | 0.9352 | 0.8997 | 0.9055 | 0.8771 | 0.8851 | 0.9203 | |
Proposed | 0.9160 | 0.8988 | 0.9124 | 0.8879 | 0.8660 | 0.8558 | 0.8102 | 0.8349 | 0.8728 | |
LOE | CLAHE | 73.89 | 87.27 | 64.98 | 97.09 | 70.73 | 43.24 | 523.51 | 257.11 | 152.23 |
BCCE | 79.95 | 89.96 | 68.28 | 104.92 | 74.46 | 44.77 | 544.24 | 324.97 | 166.44 | |
ABMHE | 42.46 | 41.41 | 44.83 | 51.38 | 39.90 | 48.97 | 338.67 | 241.06 | 106.09 | |
LGGSF | 34.68 | 35.15 | 35.38 | 9.67 | 82.74 | 41.20 | 463.96 | 201.55 | 113.04 | |
GLHS | 11.26 | 9.5156 | 9.08 | 8.75 | 10.13 | 10.35 | 63.04 | 28.01 | 18.77 | |
Proposed | 23.47 | 26.44 | 25.78 | 17.56 | 53.64 | 29.90 | 274.76 | 94.67 | 68.28 |
Method | CLAHE | BCCE | ABMHE | LGGSF | GLHS | Proposed |
---|---|---|---|---|---|---|
Time | 0.0675 | 0.0842 | 3.2471 | 0.1522 | 0.9172 | 0.1674 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Sui, X.; Kuang, X.; Liu, Y.; Gu, G.; Chen, Q. Adaptive Contrast Enhancement for Infrared Images Based on the Neighborhood Conditional Histogram. Remote Sens. 2019, 11, 1381. https://doi.org/10.3390/rs11111381
Liu C, Sui X, Kuang X, Liu Y, Gu G, Chen Q. Adaptive Contrast Enhancement for Infrared Images Based on the Neighborhood Conditional Histogram. Remote Sensing. 2019; 11(11):1381. https://doi.org/10.3390/rs11111381
Chicago/Turabian StyleLiu, Chengwei, Xiubao Sui, Xiaodong Kuang, Yuan Liu, Guohua Gu, and Qian Chen. 2019. "Adaptive Contrast Enhancement for Infrared Images Based on the Neighborhood Conditional Histogram" Remote Sensing 11, no. 11: 1381. https://doi.org/10.3390/rs11111381