Classification of Karst Fenglin and Fengcong Landform Units Based on Spatial Relations of Terrain Feature Points from DEMs
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Extraction of Feature Points
3.2. Constructing Spatial Relationship between Feature Points
3.3. Division of Fenglin and Fengcong Landform Units
- (1)
- Nadirs are present in the Fengcong units, and peaks and saddles are distributed around the nadirs.
- (2)
- The typical Fenglin unit is composed of individual pinnacles (peaks), and no saddles or nadirs are present around the pinnacles. The nearest point is also a peak.
- (3)
- The Fenglin with pinnacle chains is typically distributed in strips; peaks and saddles are distributed alternately, whereas strips are open.
4. Results
4.1. Extraction of Peaks, Saddles, and Nadirs
4.2. Fenglin and Fengcong
5. Discussion
5.1. Comparison with Other Methods Used in the Guilin Area
5.2. Implication of Landform Development
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, X. Discussions on fenglin karst in China. Carsologica Sin. 2009, 28, 155–168. [Google Scholar]
- Brook, G.A.; Hanson, M. Double Fourier series analysis of cockpit and doline karst near Browns Town, Jamaica. Phys. Geogr. 1991, 12, 37–54. [Google Scholar] [CrossRef]
- Day, M.J.; Chenoweth, M.S. The karstlands of Trinidad and Tobago, their land use and conservation. Geogr. J. 2004, 170, 256–266. [Google Scholar] [CrossRef]
- Obu, J.; Podobnikar, T. Algorithm for karst depression recognition using digital terrain models. Géod. Vestn. 2013, 57, 260–270. [Google Scholar] [CrossRef]
- Čeru, T.; Šegina, E.; Gosar, A. Geomorphological Dating of Pleistocene Conglomerates in Central Slovenia Based on Spatial Analyses of Dolines Using LiDAR and Ground Penetrating Radar. Remote Sens. 2017, 9, 1213. [Google Scholar] [CrossRef]
- Šegina, E.; Benac, Č.; Rubinić, J.; Knez, M. Morphometric analyses of dolines—The problem of delineation and calculation of basic parameters. Acta Carsologica 2018, 47, 23–33. [Google Scholar] [CrossRef]
- Hofierka, J.; Gallay, M.; Bandura, P.; Šašak, J. Identification of karst sinkholes in a forested karst landscape using airborne laser scanning data and water flow analysis. Geomorphology 2018, 308, 265–277. [Google Scholar] [CrossRef]
- Zumpano, V.; Pisano, L.; Parise, M. An integrated framework to identify and analyze karst sinkholes. Geomorphology 2019, 332, 213–225. [Google Scholar] [CrossRef]
- Moreno-Gómez, M.; Liedl, R.; Stefan, C. A New GIS-Based Model for Karst Dolines Mapping Using LiDAR.; Application of a Multidepth Threshold Approach in the Yucatan Karst, Mexico. Remote Sens. 2019, 11, 1147. [Google Scholar]
- Kim, Y.J.; Nam, B.H.; Youn, H. Sinkhole Detection and Characterization Using LiDAR-Derived DEM with Logistic Regression. Remote Sens. 2019, 11, 1592. [Google Scholar] [CrossRef]
- Zhu, D. Evolution of peak cluster-depression in Guilin area and morphometric measurement. Carsologica Sin. 1982, 2, 127–134. [Google Scholar]
- Yang, M.; Zhang, Y.; Smart, P.; Waltham, T. Karst geomorphology of western Guizhou, China. Carsologica Sin. 1987, 6, 345–352. [Google Scholar]
- Waltham, T. Fengcong, fenglin, cone karst and tower karst. Cave Karst Sci. 2008, 35, 77–88. [Google Scholar]
- Day, M.J. The role of valley systems in the evolution of tropical karstlands. In Evolution of Karst: From Prekarst to Cessation; Gabrovsek, F., Ed.; Zalozba ZRC: Ljublana, Slovenia, 2002; pp. 235–241. [Google Scholar]
- Zhou, C. A Dictionary of Geomorphology; China Water Power Press: Beijing, China, 2006. [Google Scholar]
- Tüfekçi, K.; Sener, M. Evaluating of karstification in the Menteşe Region of southwest Turkey with GIS and remote sensing applications. Z. für Geomorphol. 2007, 51, 45–61. [Google Scholar]
- Yuan, D. Modern karstification; Science Press: Beijing, China, 2016. [Google Scholar]
- Yang, M.; He, C. Developmental Characteristics of Cone-shaped Karst in China. In Proceedings of Danxia Mountain; Science Press: Beijing, China, 2004. [Google Scholar]
- Hill, C.A.; Eberz, N.; Buecher, R.H. A Karst Connection model for Grand Canyon, Arizona, USA. Geomorphology 2008, 95, 316–334. [Google Scholar] [CrossRef]
- Wang, D.; Xu, M.; Qi, J.; Zang, Q. Analysis on morphologic features of the peak-cluster depression in Qiubei, Southeast Yunnan. Carsologica Sin. 2010, 29, 239–245. [Google Scholar]
- Smith, D.I. Process, Land-forms and Climate in Limestone Regions. In Geomorphology and Climate; Wiley: London, UK, 1976. [Google Scholar]
- Yang, M.; Liang, H. The processes of evolution dynamic of cone karst and the exploitation of the water resource. Carsologica Sin. 2000, 1, 44–51. [Google Scholar]
- Thrailkill, J. Karst Geomorphology and Hydrology; Geomorphology and Hydrology of Karst Terrains; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Meng, X.; Xiong, L.-Y.; Yang, X.-W.; Yang, B.-S.; Tang, G.-A. A terrain openness index for the extraction of karst Fenglin and Fengcong landform units from DEMs. J. Mt. Sci. 2018, 15, 752–764. [Google Scholar] [CrossRef]
- Yuan, D. About Fenglin karst. Geol. Guangxi 1984, 1, 79–84. [Google Scholar]
- Dian, Z. A morphological analysis of Tibetan limestone pinnacles: Are they remnants of tropical karst towers and cones? Geomorphology 1996, 15, 79–91. [Google Scholar] [CrossRef]
- Tang, T.; Day, M.J. Field survey and analysis of hillslopes on tower karst in Guilin, southern China. Earth Surf. Process. Landf. 2000, 25, 1221–1235. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, B.; Wang, K.; Liu, B.; Li, R.; Jiao, Q.; Yang, Q.; Zhang, M. Spectral indices for estimating ecological indicators of karst rocky desertification. Int. J. Remote Sens. 2010, 31, 2115–2122. [Google Scholar] [CrossRef]
- Liang, F.; Du, Y.; Ge, Y.; Li, C. A quantitative morphometric comparison of cockpit and doline karst landforms. J. Geogr. Sci. 2014, 24, 1069–1082. [Google Scholar] [CrossRef]
- Viles, H.A.; Tucker, G.E.; Lyew-Ayee, P.; Viles, H.; Tucker, G.; Lyew-Ayee, P. The use of GIS-based digital morphometric techniques in the study of cockpit karst. Earth Surf. Process. Landf. 2007, 32, 165–179. [Google Scholar]
- Siart, C.; Bubenzer, O.; Eitel, B. Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: A multi-component case study on Mediterranean karst in Central Crete. Geomorphology 2009, 112, 106–121. [Google Scholar] [CrossRef]
- Xu, M.; Wang, D.; Qi, J. Study on morphological characteristics of karst landform based on the fractal theory. J. Chengdu Univ. Technol. 2011, 38, 328–333. [Google Scholar]
- Liang, F.; Xu, B. Discrimination of tower-, cockpit-, and non-karst landforms in Guilin, Southern China, based on morphometric characteristics. Geomorphology 2014, 204, 42–48. [Google Scholar] [CrossRef]
- Huang, W.; Deng, C.; Day, M.J. Differentiating tower karst (fenglin) and cockpit karst (fengcong) using DEM contour, slope, and centroid. Environ. Earth Sci. 2014, 72, 407–416. [Google Scholar] [CrossRef]
- Purkis, S.; Rowlands, G.; Riegl, B.; Renaud, P. The paradox of tropical karst morphology in the coral reefs of the arid Middle East. Geology 2010, 38, 227–230. [Google Scholar] [CrossRef]
- Kakavas, M.; Nikolakopoulos, K.G.; Kyriou, A.; Zagana, H. Assessment of freely available DSMs for automatic karst feature detection. Arab. J. Geosci. 2018, 11, 388. [Google Scholar] [CrossRef]
- Rajabi, A. Sinkhole Detection and Quantification Using LiDAR Data; University of Central Florida: Orlando, FL, USA, 2018. [Google Scholar]
- Sweeting, M.M. Karst in China: Its Geomorphology and Environment; Springer: Berlin, Germany, 1995. [Google Scholar]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Deng, Z.; Lin, Y.; Zhang, M.; Liu, G.; Wei, Z. Karst and Geological Structure in Guilin; Chongqing Publishing House: Chongqing, China, 1988. [Google Scholar]
- Zhu, X. Guilin Karst; Shanghai Scientific and Technical Publishers: Shanghai, China, 1988. [Google Scholar]
- Daoxian, Y.; Drogue, C.; Aide, D.; Wenke, L.; Wutian, C.; Bidaux, P.; Razack, M. Hydrology of the Karst aquifer at the experimental site of Guilin in southern China. J. Hydrol. 1990, 115, 285–296. [Google Scholar] [CrossRef]
- Xiong, L.; Tang, G. Loess Landform Inheritance: Modeling and Discovery; Springer: Singapore, 2019. [Google Scholar]
- Wu, Q.; Deng, C.; Chen, Z. Automated delineation of karst sinkholes from LiDAR-derived digital elevation models. Geomorphology 2016, 266, 1–10. [Google Scholar] [CrossRef]
- Oksanen, J.; Sarjakoski, T. Error propagation of DEM-based surface derivatives. Comput. Geosci. 2005, 31, 1015–1027. [Google Scholar] [CrossRef]
- Oksanen, J.; Sarjakoski, T. Uncovering the statistical and spatial characteristics of fine toposcale DEM error. Int. J. Geogr. Inf. Sci. 2006, 20, 345–369. [Google Scholar] [CrossRef]
- Podobnikar, T.; Vrečko, A. Digital Elevation Model from the Best Results of Different Filtering of a LiDAR Point Cloud. Trans. GIS 2012, 16, 603–617. [Google Scholar] [CrossRef]
- Podobnikar, T.; Székely, B. Towards the automated geomorphometric extraction of talus slopes in Martian landscapes. Planet. Space Sci. 2015, 105, 148–158. [Google Scholar] [CrossRef]
- Tang, G. Progress of DEM and digital terrain analysis in China. Acta Geographica Sinica. 2014, 69, 1305–1325. [Google Scholar]
- Toulia, E.; Kokinou, E.; Panagiotakis, C. The contribution of pattern recognition techniques in geomorphology and geology: The case study of Tinos Island (Cyclades, Aegean, Greece). Eur. J. Remote Sens. 2018, 51, 88–99. [Google Scholar] [CrossRef]
- Verbovšek, T.; Gabor, L. Morphometric properties of dolines in Matarsko podolje, SW Slovenia. Environ. Earth Sci. 2019, 78, 396. [Google Scholar] [CrossRef]
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbe, I.; Rodríguez-Iturbe, I. On the extraction of channel networks from digital elevation data. Hydrol. Process. 1991, 5, 81–100. [Google Scholar] [CrossRef]
- Sagar, B.S.D.; Murthy, M.B.R.; Rao, C.B.; Raj, B. Morphological approach to extract ridge and valley connectivity networks from Digital Elevation Models. Int. J. Remote Sens. 2003, 24, 573–581. [Google Scholar] [CrossRef]
- Koka, S.; Anada, K.; Nomaki, K.; Sugita, K.; Tsuchida, K.; Yaku, T. Ridge Detection with the Steepest Ascent Method. Procedia Comput. Sci. 2011, 4, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Yang, X.; Tang, G.; Meng, X.; Xiong, L. Saddle Position-Based Method for Extraction of Depressions in Fengcong Areas by Using Digital Elevation Models. ISPRS Int. J. Geo Inf. 2018, 7, 136. [Google Scholar] [CrossRef]
- Assunção, R.M.; Neves, M.C.; Câmara, G.; Freitas, C.D.C. Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees. Int. J. Geogr. Inf. Sci. 2006, 20, 797–811. [Google Scholar] [CrossRef]
- Jain, A.K. Data Clustering: 50 Years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- William, B.; Elizabeth, L. Karst geomorphology. Earth Sci. Rev. 1983, 19, 350–352. [Google Scholar]
- Xiong, K. Hydrodynamic genetics of cone karst and tower karst—With special reference to the middle Guizhou. Carsologica Sin. 1994, 3, 237–246. [Google Scholar]
Name | Peaks | Saddles | Nadirs | |||
---|---|---|---|---|---|---|
Fengcong Peaks | Individual Peaks | Fenglin Chain Peaks | Fengcong Saddles | Fenglin Chain Saddles | ||
Total | 792 | 173 | 96 | 897 | 61 | 252 |
Maximum elevation (m) | 699.2 | 414.9 | 569.5 | 628.1 | 510.4 | 588.8 |
Minimum elevation (m) | 221.3 | 195.6 | 210.2 | 166.8 | 195.1 | 155.4 |
Average elevation (m) | 466.9 | 241.3 | 273.9 | 379.3 | 234.3 | 311.9 |
Median elevation (m) | 472.6 | 233.3 | 265.6 | 376.5 | 217.9 | 299.1 |
Standard deviation (m) | 86.1 | 36.1 | 56.5 | 78.4 | 47.7 | 71.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Tang, G.; Meng, X.; Xiong, L. Classification of Karst Fenglin and Fengcong Landform Units Based on Spatial Relations of Terrain Feature Points from DEMs. Remote Sens. 2019, 11, 1950. https://doi.org/10.3390/rs11161950
Yang X, Tang G, Meng X, Xiong L. Classification of Karst Fenglin and Fengcong Landform Units Based on Spatial Relations of Terrain Feature Points from DEMs. Remote Sensing. 2019; 11(16):1950. https://doi.org/10.3390/rs11161950
Chicago/Turabian StyleYang, Xianwu, Guoan Tang, Xin Meng, and Liyang Xiong. 2019. "Classification of Karst Fenglin and Fengcong Landform Units Based on Spatial Relations of Terrain Feature Points from DEMs" Remote Sensing 11, no. 16: 1950. https://doi.org/10.3390/rs11161950
APA StyleYang, X., Tang, G., Meng, X., & Xiong, L. (2019). Classification of Karst Fenglin and Fengcong Landform Units Based on Spatial Relations of Terrain Feature Points from DEMs. Remote Sensing, 11(16), 1950. https://doi.org/10.3390/rs11161950