Three-Fold Urban Expansion in Saudi Arabia from 1992 to 2013 Observed Using Calibrated DMSP-OLS Night-Time Lights Imagery
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. Stepwise Calibration
3.1.1. Systematic Correction of Satellite F14
3.1.2. Period-based Correction of Satellite F15
3.1.3. Correction of Satellite F16
3.1.4. Correction of Satellite F18-2010
3.2. Intra-Annual Composition and Inter-Annual Series Correction
3.3. Urban Extraction
4. Results and Discussion
4.1. DMSP-OLS SNT Calibration and Validation
4.2. Urban Area Extraction and Accuracy Assessment
4.3. Dynamics of Urban Expansion
4.4. Socio-Economic Relevance and Potential Impact
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abubakar, I.R.; Aina, Y.A. Achieving sustainable cities in Saudi Arabia: Juggling the competing urbanization challenges. In Population Growth and Rapid Urbanization in the Developing World; Benna, U.G., Garba, S.B., Eds.; IGI Global: Hershey, PA, USA, 2016; pp. 42–63. [Google Scholar]
- UN. World Urbanization Prospects: The 2018 Revision; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2018. [Google Scholar]
- Alkhedheiri, A.A. The Role of Secondary Cities in the National Development Process of Saudi Arabia, 1st ed.; Riyadh Press: Riyadh, Saudi Arabia, 2002. [Google Scholar]
- Al-Hathloul, S.; Mughal, M.A. Urban growth management-the Saudi experience. Habitat Int. 2004, 28, 609–623. [Google Scholar] [CrossRef]
- MOMRA. National Report: Third United Nations Conferences on Housing and Sustainable Urban Development (HABITAT III); MOMRA: Riyadh, Saudi Arabia, 2016. [Google Scholar]
- Li, X.; Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: A review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- Tan, M. Urban growth and rural transition in China based on DMSP/OLS nighttime light data. Sustainability 2015, 7, 8768–8781. [Google Scholar] [CrossRef]
- Rahman, M. Detection of land use/land cover changes and urban sprawl in Al-Khobar, Saudi Arabia: An analysis of multi-temporal remote sensing data. ISPRS Int. J. Geo-Inf. 2016, 5, 15. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhu, Z.; Liang, L.; Yu, B.; Cao, W. Mapping annual urban dynamics (1985–2015) using time series of Landsat data. Remote Sens. Environ. 2018, 216, 674–683. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Yi, K.; Tani, H.; Li, Q.; Zhang, J.; Guo, M.; Bao, Y.; Wang, X.; Li, J. Mapping and evaluating the urbanization process in northeast China using DMSP/OLS nighttime light data. Sensors 2014, 14, 3207–3226. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Wang, X.; Feng, X.; Zhang, X.; Yang, Y. Detecting China’s urban expansion over the past three decades using nighttime light data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4095–4106. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Li, Q.; Lu, L.; Weng, Q.; Xie, Y.; Guo, H. Monitoring urban dynamics in the southeast USA using time-series DMSP/OLS nightlight imagery. Remote Sens. 2016, 8, 578. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. Updating urban extents with nighttime light imagery by using an object-based thresholding method. Remote Sens. Environ. 2016, 187, 1–13. [Google Scholar] [CrossRef]
- Fu, H.; Shao, Z.; Fu, P.; Cheng, Q. The dynamic analysis between urban nighttime economy and urbanization using the DMSP/OLS nighttime light data in China from 1992 to 2012. Remote Sens. 2017, 9, 416. [Google Scholar] [CrossRef]
- Xin, X.; Liu, B.; Di, K.; Zhu, Z.; Zhao, Z.; Liu, J.; Yue, Z.; Zhang, G. Monitoring urban expansion using time series of night-time light data: A case study in Wuhan, China. Int. J. Remote Sens. 2017, 38, 6110–6128. [Google Scholar] [CrossRef]
- Zou, Y.; Peng, H.; Liu, G.; Yang, K.; Xie, Y.; Weng, Q. Monitoring urban clusters expansion in the middle reaches of the Yangtze River, China, using time-series nighttime light images. Remote Sens. 2017, 9, 1007. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Hsu, F.-C.; Baugh, K.E.; Ghosh, T. National trends in satellite-observed lighting. In Global Urban Monitoring and Assessment through Earth Observation; Weng, Q., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2014; pp. 97–120. [Google Scholar]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. Mapping urban areas with integration of DMSP/OLS nighttime light and MODIS data using machine learning techniques. Remote Sens. 2015, 7, 12419–12439. [Google Scholar] [CrossRef]
- Huang, X.; Schneider, A.; Friedl, M.A. Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights. Remote Sens. Environ. 2016, 175, 92–108. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Gharechelou, S.; Iizuka, K. Global mapping of urban built-up areas of year 2014 by combining MODIS multispectral data with VIIRS nighttime light data. Int. J. Digit. Earth 2016, 9, 1004–1020. [Google Scholar] [CrossRef]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.; Obremski, T. Building and evaluating models to estimate ambient population density. Photogramm. Eng. Remote Sens. 2003, 69, 545–553. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of gross domestic product at sub-national scales using nighttime satellite imagery. Int. J. Ecol. Econ. Stat. 2007, 8, 5–21. [Google Scholar]
- Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.; Elvidge, C.D. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 054011. [Google Scholar] [CrossRef]
- Aina, Y.A.; Merwe, J.; Alshuwaikhat, H.M. Urban spatial growth and land use change in Riyadh: Comparing spectral angle mapping and band ratioing techniques. In Proceedings of the Academic Track of the 2008 Free and Open Source Software for Geospatial (FOSS4G) Conference, Incorporating the GISSA 2008 Conference, Cape Town, South Africa, 29 September–4 October 2008; pp. 51–57. [Google Scholar]
- Jamali, N.A.; Rahman, M.T. Utilization of remote sensing and GIS to examine urban growth in the city of Riyadh, Saudi Arabia. Cities 2016, 10, 11. [Google Scholar] [CrossRef]
- Alqurashi, A.F.; Kumar, L. Land use and land cover change detection in the Saudi Arabian desert cities of Makkah and Al-Taif using satellite data. Adv. Remote Sens. 2014, 3, 106–119. [Google Scholar] [CrossRef]
- Aljoufie, M.; Zuidgeest, M.; Brussel, M.; van Maarseveen, M. Spatial–temporal analysis of urban growth and transportation in Jeddah City, Saudi Arabia. Cities 2013, 31, 57–68. [Google Scholar] [CrossRef]
- STATS. The Total Population. Available online: https://www.stats.gov.sa/ (accessed on 4 June 2019).
- Elvidge, C.; Ziskin, D.; Baugh, K.; Tuttle, B.; Ghosh, T.; Pack, D.; Erwin, E.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- STATS. Statistical Yearbook; Central Department of Statistics & Information: Riyadh, Saudi Arabia, 1992–2013.
- Li, X.; Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sens. 2017, 9, 637. [Google Scholar]
- Zhang, Q.; Pandey, B.; Seto, K.C. A robust method to generate a consistent time series from DMSP/OLS nighttime light data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5821–5831. [Google Scholar] [CrossRef]
- Alqurashi, A.; Kumar, L.; Sinha, P. Urban land cover change modelling using time-series satellite images: A case study of urban growth in five cities of Saudi Arabia. Remote Sens. 2016, 8, 838. [Google Scholar] [CrossRef]
- Liu, L.; Leung, Y. A study of urban expansion of prefectural-level cities in South China using night-time light images. Int. J. Remote Sens. 2015, 36, 5557–5575. [Google Scholar] [CrossRef]
- Aljabri, N.; Alhazmi, R. Observing and monitoring the urban expansion of Makkah Al-Mukarramah using the remote sensing and GIS. J. Eng. Sci. Inf. Technol. 2017, 1, 103–125. [Google Scholar]
Authors | Study Area | Methodology | Accuracy |
---|---|---|---|
Liu et al. [15] | China | Calibration: Elvidge et al. [34], intra-annual and inter-annual corrections. Urban extraction: threshold with ancillary data (land cover). | = 0.68–0.75 OA = 86, K= 0.6 |
Yi et al. [16] | Northeast China | Calibration: Elvidge et al. [34]. Urban extraction: threshold. | = 0.91 |
Xiao et al. [17] | China | Calibration: Elvidge et al. [34]. Urban extraction: SVM classification with ancillary data (NDVI). | OA = 75–88 |
Li et al. [19] | Southeast USA | Calibration: Elvidge et al. [34]. Urban extraction: threshold with ancillary data (NDVI). | = 0.97 OA = 85, K= 0.58 |
Xie and Weng [20] | China | Calibration and urban extraction: object-based urban threshold. | = 0.98–0.94 |
Fu et al. [21] | China | Calibration: Elvidge et al. [34] and Liu et al. [15]. Urban extraction: threshold with ancillary data (land cover). | OA = 98, K= 0.6 |
Xin et al. [22] | Wuhan, China | Calibration: Elvidge et al. [34] and Liu et al. [15]. Urban extraction: threshold. | > 0.75 |
Zou et al. [23] | Yangtze River, China | Calibration: Elvidge et al. [34]. Urban extraction: neighborhood statistics analysis and threshold. | OA = 82, K= 0.40 |
OA: overall accuracy; K: kappa statistic. |
Years | ||||
---|---|---|---|---|
F18-2010 | 1.418 | 0.790 | 0.003 | 0.90 |
F18-2012 | 1.004 | 0.752 | 0.003 | 0.94 |
F18-2013 | 1.314 | 0.728 | 0.003 | 0.96 |
Groups | No. of Governorates | Samples (30%) | Appropriate Threshold |
---|---|---|---|
High-populated areas | 12 | 4 (Riyadh, Taif, Dammam and Kamis Mushit) | ≥57 |
Medium-populated areas | 29 | 9 (Hail, Jubail, Hafer Albaten, Samtah, Abu Arish, Arar, Haet, Almajardah and Albaha) | ≥55 |
Low-populated areas | 37 | 11 (Rabigh, Jamoum, Sharorah, Rafha, Baljorashi, Alola, Badr, Deba, Boqiq, Alnoireiah and Domat Aljandal) | ≥53 |
Very low-populated areas | 40 | 12 (Traif, Kaibar, Almandaq, Alnabhaniah, Algora, Haqel. Romah, Aoin Aljawa, Karkier, Alshamasiah, Badr Aljanoob and Alhariq. | ≥45 |
Regions | Provinces | Urban Areas (km2) | % Change | |||||
---|---|---|---|---|---|---|---|---|
1992 | 1999 | 2006 | 2013 | 1992–1999 | 1999–2006 | 2006–2013 | ||
West | Makkah | 1616 | 2156 | 2628 | 3461 | 33% | 22% | 32% |
West | Madinah | 502 | 672 | 850 | 1224 | 34% | 26% | 44% |
Middle | Riyadh | 2340 | 3381 | 4344 | 6097 | 44% | 28% | 40% |
Middle | Qasim | 508 | 1084 | 1348 | 1965 | 113% | 24% | 46% |
East | Eastern | 1645 | 2163 | 2570 | 3511 | 31% | 19% | 37% |
South | Asir | 511 | 911 | 1355 | 2864 | 78% | 49% | 111% |
South | Najran | 213 | 316 | 377 | 703 | 48% | 19% | 86% |
South | Baha | 159 | 341 | 499 | 919 | 114% | 46% | 84% |
South | Jazan | 98 | 353 | 543 | 1479 | 260% | 54% | 172% |
North | Tabuk | 187 | 313 | 408 | 577 | 67% | 30% | 41% |
North | Hail | 177 | 239 | 441 | 966 | 35% | 85% | 119% |
North | Jouf | 158 | 249 | 384 | 619 | 58% | 54% | 61% |
North | Northern | 70 | 129 | 207 | 314 | 84% | 60% | 52% |
Saudi Arabia | 8184 | 12,307 | 15,954 | 24,699 | 50% | 30% | 55% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahmadi, M.; Atkinson, P.M. Three-Fold Urban Expansion in Saudi Arabia from 1992 to 2013 Observed Using Calibrated DMSP-OLS Night-Time Lights Imagery. Remote Sens. 2019, 11, 2266. https://doi.org/10.3390/rs11192266
Alahmadi M, Atkinson PM. Three-Fold Urban Expansion in Saudi Arabia from 1992 to 2013 Observed Using Calibrated DMSP-OLS Night-Time Lights Imagery. Remote Sensing. 2019; 11(19):2266. https://doi.org/10.3390/rs11192266
Chicago/Turabian StyleAlahmadi, Mohammed, and Peter M. Atkinson. 2019. "Three-Fold Urban Expansion in Saudi Arabia from 1992 to 2013 Observed Using Calibrated DMSP-OLS Night-Time Lights Imagery" Remote Sensing 11, no. 19: 2266. https://doi.org/10.3390/rs11192266
APA StyleAlahmadi, M., & Atkinson, P. M. (2019). Three-Fold Urban Expansion in Saudi Arabia from 1992 to 2013 Observed Using Calibrated DMSP-OLS Night-Time Lights Imagery. Remote Sensing, 11(19), 2266. https://doi.org/10.3390/rs11192266